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Abstract— This paper is concerned with control applica-
tions over lossy data networks. Sensor data is transmitted
to an estimation-control unit over a network, and control
commands are issued to subsystems over the same network.
Sensor, control and acknowledgement packets may be randomly
lost according to a Bernoulli process. In this context, the
discrete-time Linear Quadratic Gaussian (LQG) optimal control
problem is considered. We can show how the partial loss of
acknowledgements makes the optimal control law a nonlinear
function of the information set. For the special case of complete
state observation we can compute the optimal controller and
show that the stability range increases monotonically with the
arrival rate of the acknowledgement packets.

I. INTRODUCTION

This paper is concerned with the problem of the design and

analysis of control systems when components are connected

via packet based communication networks. This requires a

generalization of classical control techniques that explicitly

takes into account the stochastic nature of the communication

channel.

In our analysis, we distinguish between two classes of

protocols. The distinction resides simply in the availability

of packet acknowledgements. Adopting the framework pro-

posed by Imer et al. [1], we will refer therefore to TCP-like

protocols if packet acknowledgements are available and to

UDP-like protocols otherwise.

We consider a generalized formulation of the Linear

Quadratic Gaussian (LQG) optimal control problem by mod-

eling the arrival of both observations and control packets

as random processes whose parameters are related to the

characteristics of the communication channel. Accordingly,

two independent Bernoulli processes are considered, with

parameters γ and ν, that govern packet losses between the

sensors and the estimation-control unit, and between the latter

and the actuation points. Furthermore we introduce a third

Bernoulli process of parameter, θ, which models the loss of

the acknowledgement packet. The goal of this paper is to

provide some partial answers to the question of how control
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Fig. 1. Overview of the system. Architecture of the closed loop system
over a communication network. The binary random variables νt, γt and θt

indicates whether packets are transmitted successfully.

loop performance is affected by communication constraints

and what are the basic system-theoretic implications of using

unreliable networks for control.

We have shown in some previous work [2], [3], [4] the

existence of a critical domain of values for the parameters

of the Bernoulli arrival processes, ν and γ, outside which

a transition to instability occurs and the optimal controller

fails to stabilize the system. In particular, we have shown that

under TCP-like protocols the critical arrival probabilities for

the control and observation channels are independent of each

other. A more involved situation regards UDP-like protocols.

In this case the critical arrival probabilities for the control

and observation channels are coupled. The stability domain

and the performance of the optimal controller degrade con-

siderably as compared with TCP-like protocols as shown in

Figure 2.

We have also shown that in the TCP-like case the classic

separation principle holds, and consequently the controller

and estimator can be designed independently. Moreover,

the optimal controller is a linear function of the state. In

sharp contrast, in the UDP-like case, the optimal controller

is in general non-linear. In this case the absence of an

acknowledgement structure generates a nonclassical informa-

tion pattern [5]. Because of the importance of UDP protocols

for wireless sensor networks, we have analyzed a special

case when the arrival of a sensor packet provides complete

knowledge of the state, despite the lack of acknowledge-

ments, the optimal control design problem yields a linear

controller [3]. Also, for the general case, a sub-optimal

Forty-Fifth Annual Allerton Conference
Allerton House, UIUC, Illinois, USA
September 26-28, 2007

WeA5.1

81



solution was provided in [6], by designing the optimal linear

static regulator, composed by constant gains for both the

observer and the controller. This is particularly attractive

for sensor networks, where simplicity of implementation is

highly desirable and complexity issues are a primary concern.

In this paper, we drop the assumption of deterministic

and instantaneous available of acknowledgement. Loss of

acknowledgement leads once again to a nonclassical infor-

mation pattern, and we are able to prove that in general the

optimal control law is a nonlinear function of the information

set. By restricting ourselves to the complete observability

case, we are able to solve the LQG problem. We show that

probabilistic acknowledgements increase the stability range

of the system. Furthermore we can show how such range

converges to the TCP-like one as the erasure probability for

the acknowledgement channel tends to zero.
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Fig. 2. Region of stability for UDP-like and TCP-like optimal control
relative to measurement packet arrival probability γ̄, and the control packet
arrival probability ν̄.

In the past few years networked embedded control systems

have drawn considerable attention in the academic world. We

will now try to set our work in the context of the existing

literature. In [7] and [8], an estimator, i.e. a Kalman filter,

is placed at the sensor side of the link and no assumption

is made on the statistical model of the data loss process.

Smith et al. [9] focused on designing a suboptimal yet

computationally efficient estimator for Markov Chain arrival

processes. In [10] the authors study the stability of Kalman

Filter under general Markovian packet losses. In [11], the

authors present a simple estimation scheme that is able

to recover the fate of the control packet under UDP-like

protocols by constraining the control signal sent to the plant.

Drew et al [12] analyze the problem of designing a controller

over a wireless LAN. Control design has been investigated in

the context of Cross Layer Design by Liu et al [13]. Finally,

in [14],[15] the plant and the controller are modeled as

deterministic time invariant discrete-time systems connected

to zero-mean stochastic structured uncertainty, where the

variance of the stochastic perturbation is a function of the

Bernoulli parameters. Here, the controller design is posed an

an optimization problem to maximize mean-square stability

of the closed loop system. While this method allows analysis

of Multiple Input Multiple Output (MIMO) systems with

many different controller and receiver compensation schemes

[14], it does not include process and observation noise. The

resulting controller is restricted to be time-invariant, hence

sub-optimal. Finally, within the context of UDP-like control,

Epstein et al. [11] recently proposed to estimate not only the

state of the system, but also a binary variable which indicates

wether the previous control packet has been received or not.

Such strategy, improves closed loop performance at the price

of a somewhat larger computational complexity.

The remainder of this paper is organized as follows.

Section 2 provides the problem formulation. In Section 3 we

derive the estimator equations. In section 4 we consider the

control problem in the general case. Section 5 considers the

special case of complete observability. Section 6 provides

conclusions and directions for future work. To make the

paper more readable we moved all the proofs to the Appendix

contains all the proofs.

II. PROBLEM STATEMENT AND FORMULATION

Consider the following linear stochastic system with inter-

mittent observation and control packets:

xk+1 = Axk + Bua
k + ωk

ua
k = νkuc

k + [1 − νk] ul
k

y (k) = γkCxk + vk

(1)

where ua
k is the control input to the actuator, uc

k is the

desired control input computed by the controller, (x0, ωk, vk)
are Gaussian, uncorrelated, white, with mean (x0, 0, 0) and

covariance (P0, Q, R) respectively, and γk and νk are i.i.d.

Bernoulli random variable with P (γk = 1) = γk and

P (γk = 1) = γk. ul
k is the signal it is locally provided to

the actuators in the case νk = 0 (all packet to the actuators

are lost).

It is possible to choose ul
k in several way, the principal

strategy are:

1) zero-input scheme ul
k = 0

2) hold-input scheme ul
k = uc

k

It is important to define which is the Information Set the

controller handle with. In previous publications ([1],), usually

two kind of protocols are discussed:

Ik =

{
Fk = {γkyk, γk, νk−1|k = 0, . . . , t}
Gk = {γkyk, γk|k = 0, . . . , t}

TCP − like
UDP − like

It is a common experience in wireless “open-air” networks

the fact that using “secure” TCP-like protocols can have a

very bad effect on the communication bandwidth, due to the
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big amount of packet collisions. Otherwise UDP-like proto-

cols based Kalman filter exhibit much lower performances

with respect to TCP protocols.

A possible way to deal with such a problem is to use

an intermediate solution, that is to send a single message

command and a single acknowledgement packet through

UDP-like channels. This means that during each process we

have a certain non-zero probability
(
1 − θ

)
to not receive

any acknowledgment by the actuator.

Ek = {γkyk, γk, θk−1, θk−1vk−1|k = 0, . . . , t}

Moreover consider the following cost function

JN

(
uN−1, x0, P0

)
=

E

[
xT

NWNxN +
N−1∑
k=0

xT
k Wkxk + ua

k
T Ukua

k

∣∣∣∣ uN−1, x0, P0

]
.

(2)

where uN−1 = uN−1, uN−2, . . . , u1. The aim here is,

given at each time instant the the information set Ek,

to compute the optimal control input sequence u∗ (·) =
g (k, I (k)) such that it minimize the functional (2) i.e.:

min
uk=gk(Ik)

JN

(
uN−1, x0, P0

)
.

III. ESTIMATOR DESIGN

Let’s consider the system

xk+1 = Axk + νkBuk + ωk

yk = γkCxk + vk

And let be θk the probability to receive the acknowledgment.

The one predition of the Kalman filter becomes

x̂k+1|k = Ax̂k|k + θkνkBuk + (1 − θk) νBuk

ek+1|k = xk+1 − x̂k+1|k

x̂k+1|k = Ax̂k|k + θkνkBuk + (1 − θk) νBuk

ek+1|k = xk+1 − x̂k+1|k = Axk + νkBuk + ωk

−Ax̂k|k + θkνkBuk − (1 − θk) νBuk =
= Aek|k + (νk − θkνk − (1 − θk) ν) Buk + ωk

Then the covariance is:

Pk+1|k = E
[
ek+1|keT

k+1|k|Ek, θk, θkνk

]
=

= E
[
Aek|keT

k|kA|Ek

]
+ E

[
ωkωT

k |Ek

]
+E

[
(νk − θkνk − (1 − θk) ν)

2 |Ek, θk, θkνk

]
BukuT

k BT

Pk+1|k = APk|kAT + Q

+E
[
(νk − θkνk − (1 − θk) ν)

2 |Ek, θk, θkνk

]
BukuT

k BT

Finally we get

Pk+1|k = APk|kAT + Q + (1 − θk) (1 − ν) ν
[
BukuT

k BT
]

The correction step instead remains the one showed in [16]:

x̂k+1|k+1 = x̂k+1|k + γk+1Kk+1

(
yk+1 − Cxk+1|k

)
Pk+1|k+1 = Pk+1|k − γk+1Kk+1CPk+1|k

Kk+1 = Pk+1|kCT
(
CPk+1|kCT + R

)−1

Remark 1: Note that:

θk = 1 ⇒ Pk+1|k = APk|kA + Q
θk = 0 ⇒ Pk+1|k = APk|kA + Q + ν (1 − ν)

[
BukuT

k BT
]

this means that, at each time k, the prediction switch between

the ”TCP-style” predictions or the UDP ones, depending on

the instant value of θk.

IV. OPTIMAL CONTROL - GENERAL CASE

Here we show that, in the general case, the optimal control

law is not a linear function of the state estimate and that, the

estimation and control design cannot be treated separately.

To prove that let us consider the following very simple

case: let A=B=C=WN =Wk=R=1,Uk=Q=0.

Let us define

V (N) = E
[
xT

NWNxN |EN

]
= E

[
x2

N |EN

]
for k = N − 1 we will have:

VN−1 (xN−1) = min
uN

E
[
x2

N−1 + VN (xN ) |EN−1

]
=

min
uN

E
[
x2

N−1 + x2
N |EN−1

]
= min

uN

E
[
x2

N−1 + (xN−1 + νN−1uN−1)
2 |EN−1

]
=

E
[
2x2

N−1|N−1|EN−1

]
+ min

uN

ν
(
u2

N−1 + 2x̂N−1|N−1uN−1

)
(3)

The optimal input is then:

uN−1 = −x̂N−1|N−1̂

Then, if we substitute back this solution in (3) the cost

becomes

VN−1 (x) = E
[
2x2

N−1|EN−1

]
− ν x̂2

N−1|N−1 =

(2 − ν) E
[
x2

N−1|G
]
− νPN−1|N−1

Let us focus on the covariance matrix:

PN−1|N−1 = PN−1|N−2 − γN−1
P 2

N−1|N−2

(PN−1|N−2+1)
=

= PN−1|N−2 − γN−1

(
P−

N−1|N−21 + 1

(PN−1|N−2+1)

)

Becouse of

PN−1|N−2 = PN−2|N−2 + (1 − θN−2) (1 − ν) νu2
N−2

Then:

E
[
PN−1|N−1|EN−2

]
= PN−2|N−2 +

(
1 − θ

)
(1 − ν)νu2

N−2

−γ

(
PN−2|N−2 +

(
1 − θ

)
(1 − ν) ν u2

N−2 − 1+

θ 1
PN−2|N−2

+
(
1 − θ

)
1

PN−2|N−2+(1−ν)νu2
N−2

)
Finally we get

VN−2 (x) = min
uN−2

E
[
x2

N−2 + VN−1 (xN−1) |EN−2

]
=

(3 − ν) E
[
x2

N−1|EN−2

]
+ min

uN−2

PN−2|N−2+

(
1 − θ

)
(1 − ν) νu2

N−2 − γ

(
PN−2|N−2 +(

1 − θ
)
(1 − ν) νu2

N−2 − 1 + θ 1
PN−2|N−2

+
(
1 − θ

)
1

PN−2|N−2+(1−ν)νu2
N−2

)
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The first terms within the last parenthesis are convex

quadratic functions of the control input uN−2, however the

last term is not. Therefore, the optimal control law is, in

general, a nonlinear function of the information set Ek. Such

a nonlinearity arises from the fact that the correction error

covariance matrix Pk+1|k+1 is a non-linear function of the

innovation error covariance Pk+1|k.
Theorem 1: Let us consider the stochastic system defined

in Equations 81) with horizon N ≥ 2. Then:

• Unless θ = 1 (TCP-like case), the separation principle

does not hold

• The optimal control feedback uk = g∗k (Ek) that mini-

mizes the cost functional defined in Equation (2) is, in

general, a nonlinear function of information set Ek

• The optimal control feedback uk = g∗k (Ek) is a linear

function of the estimated state if and only if one of the

following conditions holds true:

– θ = 1
– C is invertible R = 0

in such a case, in the infinite horizon scenario, if it exist

the optimal state-feedback gain is constant, i.e. L∗
k =

L∗ , and can be computed as the solution of a convex

optimization problem.

Proof. It follows by inspection. �

V. OPTIMAL CONTROL – C INVERTIBLE, R=0 CASE

Without loss of generality we can assume C = I (it is

always possible to use a linear transformation z = Cx).
Because of the hypothesis that there is no measurement noise,

i.e. R = 0, it is possible to simply measure the state xk

when a packet is delivered. The estimator equations simplify

as follow:

Kk+1 = I
Pk+1|k = APk|kA + Q + (1 − θk) (1 − ν) ν

[
BukuT

k BT
]

Pk+1|k+1 = (1 − γk+1) Pk+1|k =
(1 − γk+1)

(
APk|kA + Q + (1 − θk) (1 − ν) ν

[
BukuT

k BT
])

E
[
Pk+1|k+1|Ek

]
=

(1 − γ)
(
APk|kA + Q +

(
1 − θ

)
(1 − ν) ν

[
BukuT

k BT
])

(4)

In the last equation the independence of Ek, γk+1, θk are

exploited.

Following the classical dynamic programming approach to

optimal control, we claim that the value function V ∗
k (xk) can

be written as follows:

Vk (xk) = x̂T
k|kSkx̂k|k + trace

(
TkPk|k

)
+ trace (DkQ) =

E
[
xT

k|kSkxk|k

]
+ trace

(
HkPk|k

)
+ trace (DkQ)

(5)

For each k = N, . . . , 0 where Hk = Tk − Sk.

This is clearly true for k = N , in fact we have:

VN (xN ) = E
[
xT

NWNxN |EN

]
=

x̂T
N |NWN x̂N |N + trace

(
WNPN |N

)

therefore the statement is satisfied by SN = TN =
WN , DN = 0.

Let us suppose that Equation (5)is true for k + 1 and let

us show by induction it holds true for k:

Vk(xk)=minuk
E

[
xT

k Wkxk + νkuT
k Ukuk + Vk+1(xk+1)|Ek

]
=

minuk
E

[
xT

k Wkxk|Ek

]
+νuT

k Ukuk + E
[
xT

k+1Sk+1xk+1|Ek

]
+

trace
(
Hk+1Pk+1|k+1

)
+ trace (Dk+1Q) =

minuk
E

[
xT

k Wkxk|Ek

]
+ νkuT

k Ukuk+

+E

[ (
Axk|k + θkνkBuk + (1 − θk) νBuk

)T
Sk+1(

Axk|k + θkνkBuk + (1 − θk) νBuk

)
∣∣∣∣ Ek

]
+

+trace
(
Hk+1

(
(1−γ)

(
APk|kA+Q+(1−θk)ν (1 − ν)

[
BukuT

k BT
])))

+trace (Dk+1Q)

Then it becomes:

Vk (xk) = minuk
E

[
xT

k Wkxk + νkuT
k Ukuk+(

xT
k|kAT Sk+1Axk|k

)
+

(
θkνkuT

k BT Buk

)
+

(
(1−θk)νu

T
kB

TBuT
k

)
+

2θkνkxT
k|kAT Sk+1Buk + 2 (1 − θk) νxT

k|kAT Sk+1Buk|Ek

]
+

+trace
(
Hk+1

(
(1−γ)

(
APk|kA+Q+

(
1−θ

)
ν (1−ν)

[
BukuT

k BT
])))

+trace (Dk+1Q) = E
[
xT

k|k

(
Wk + AT Sk+1A

)
xk|k

]
+

(1 − γ) trace
(
Hk+1

((
APk|kA + Q

)))
+ trace (Dk+1Q)

+minuk
ν
(
uT

k

(
Uk+BT

(
Sk+1+

(
1−θ

)
(1−ν)νHk+1

)
B
)
uT

k

)
+

2ν
(
xT

k|kAT Sk+1Buk

)

Since Vk (xk) is a convex quadratic function w.r.t. uk, the

minimizer is the solution

of ∂Vk (xk) /∂uk = 0 which is given by:

u∗
k = −

(
Uk + BT (Sk+1 + αHk+1) B

)−1 (
BT Sk+1Axk|k

)
= Lkxk|k

where α = (1 − γ)
(
1 − θ

)
(1 − ν) ν. which is linear func-

tion of the estimated statexk|k. Substituting back into the

value function we get:

Vk (xk) = trace
(
(1 − γ) Hk+1

((
APk|kA

)))
+trace (((1 − γ) Tk+1 + Dk+1) Q)

+E
[
xT

k|k

(
Wk+AT Sk+1A

)
xk|k

]
−νxT

k|k

(
AT Sk+1BLk

)
xk|k

It becomes

Vk (xk) = trace
(
(1 − γ) Hk+1

((
APk|kA

)))
+

E
[
xT

k|k

(
Wk+AT Sk+1A

)
xk|k+

(
ν
(
xT

k|kAT Sk+1B
)
Lkxk|k

)]
+

trace((Dk+1+(1−γ)Tk+1)Q)−trace
((
νATSk+1BLkPk|k

))
Then finally we obtain

Vk (xk) = trace ((Dk+1 + (1 − γ) Hk+1) Q)+

E
[
xT

k|k

(
Wk+AT Sk+1A

)
xk|k+

(
ν
(
xT

k|kAT Sk+1B
)
Lkxk|k

)]
+

+trace
(((

(1 − γ) AT Hk+1A − νAT Sk+1BLk

)
Pk|k

))
From the last equation we see that the value function can

be written as in Equation (5) if and only if the following

equations are satisfied:

Sk = Wk + AT Sk+1A. + ν
(
AT Sk+1B

)
Lk (6)
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Tk = (1 − γ) AT Tk+1A + Wk + γAT Sk+1A (7)

Dk = Dk+1 + (1 − γ) Tk+1 + γ̄Sk+1 (8)

Remark 2: Notice that, if θ → 0, the UDP special case

presented is [16] is reached. �

The optimal minimal cost for the finite horizon, J∗
N =

V0 (x0)is then given by: For the infinite horizon optimal

controller, necessary and sufficient conditions for the average

minimal cost J∗
∞ = lim

N→∞
J∗

N to be finite, are that the

coupled iterative Equations (7) and (6) should converge to

a finite value S∞ and T∞ as N → ∞.

Theorem 2: Consider the system (1) and consider the

problem of minimizing the cost function (2) within the class

of admissible policies uk = f (Ek).Assume also that R = 0
and C is square and invertible. Then:

1) The optimal estimator gain is constant and in particular

Kk = I if C = I .

2) The infinite horizon optimal control exists if and only if

there exists positive definite matrices S∞, T∞ > 0 such

that S∞ = ΦS (S∞, T∞) and T∞ = ΦT (S∞, T∞),
where ΦS and ΦT are:

ΦS (Sk, Wk) = Wk + AT SkA−ν
(
AT SkB

)
(
Uk+BT ((1 − α)Sk+1+αTk+1)B

)−1(
BT Sk+1A

)
ΦT (Sk, Tk) = (1 − γ) AT Tk+1A + Wk + γAT Sk+1A

3) The infinite horizon optimal controller gain is constant:

lim
k→∞

Lk = L∞

L∞=−
(
U+BT ((1−α)S∞+αT∞)B

)−1(
BT S∞A

)
4) A necessary condition for existence of S∞, T∞ > 0 is

1 − |A|2
(

1 − ν

(1−α)+α
γ|A|2

1−(1−γ)|A|2

)
≥ 0

γ > 1 − 1
|A|2

where |A| = maxi |λi (A) | is the largest eigenvalue of

the matrix A. This condition is also sufficient if B is

square and invertible.

5) The expected minimum cost for the infinite horizon

scenario converges to:

J∗
∞ = lim

k→∞

1

N
J∗

N = trace (((1 − γ) Tk + γSk) Q)

Proof: 1) This fact follows from Equations (4). State-

ments 2), 3) and 5) follow from Lemma 2 (See Appendix)

and Equations (6) and (7). Statement 5) corresponds to

Lemmas 3 and 4 (See Appendix).

VI. CONCLUSIONS

In this paper we analyzed a generalized version of the

LQG control problem in the case where both observation

and control packets may be lost during transmission over a

communication channel. This situation arises frequently in

distributed systems where sensors, controllers and actuators
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Fig. 3. Region of stability relative to measurement packet arrival probability
γ̄, and the control packet arrival probability ν̄, parametrized into the
acknowledgment packet arrival probability θ̄.

reside in different physical locations and have to rely on

data networks to exchange information. In this context con-

troller design heavily depends on the communication protocol

used. In fact, in TCP-like protocols, acknowledgements of

successful transmissions of control packets are provided to

the controller, while in UDP-like protocols, no such feedback

is provided. In the first case, the separation principle holds

and the optimal control is a linear function of the state.

As a consequence, controller and estimator design problems

are decoupled. UDP-like protocols present a much more

complex problem. We have shown that the even partial

lack of acknowledgement of control packets results in the

failure of the separation principle. Estimation and control

are now intimately coupled. We have shown that the LQG

optimal control is, in general, nonlinear in the estimated

state. In the particular case, where we have access to full

state information, the optimal controller is linear in the

state. In this particular case we could show how the partial

presence of acknowledgement increases the stability range

of the overall system, converging to the TCP-like with

deterministic acknowledgements as the arrival rate for the

acknowledgement packets tends to one.

APPENDIX: PROOFS

Lemma 1: Let S, T ∈ M = {M ∈ R
n×n|M ≥ 0}.

Consider the operators ΦS(S, T ), and ΦT (S, T ) as de-

fined in Equations (6) and (7), and consider the sequences

Sk+1 = ΦS(Sk, Tk) and Tk+1 = ΦT (Sk, Tk). Consider

L∗
S,T = −

(
U + B′

(
(1 − ᾱ)S + ᾱT

)
B

)−1
B′SA and the op-

erator:

Υ(S, T, L) = (1 − ν̄
1−ᾱ )A′SA + W+

+ ν̄
1−ᾱ

(
A + (1 − ᾱ)BL

)′
S

(
A + (1 − ᾱ)BL

)
+

+ν̄L′UL + ν̄ᾱL′B′TBL

Then the following facts are true:
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(a) ΦS(S, T ) = minL Υ(S, T, L)
(b) 0 ≤ Υ(S, T, L∗

S,T ) = ΦS(S, T ) ≤ Υ(S, T, L) ∀L
(c) If Sk+1 > Sk and Tk+1 > Tk, then Sk+2 > Sk+1

and Tk+2 > Tk+1.

(d) If the pair (A,W 1/2) is observable and S =
ΦS(S, T ) and T = ΦT (S, T ), then S > 0 and T > 0.

Proof:
(a) If U is invertible then it is easy to verify by direct

substitution substitution that

Υ(S, T, L) = ΦS(S, T ) +

+ν̄(L−L
∗

S,T )′
(
U+B

′
(
(1−ᾱ)S+ᾱT

)
B

)
(L−L

∗

S,T )

≥ ΦS(S, T )

(b) The nonnegativeness follows form the observation

that Υ(S, T, L) a sum of positive semi-definite matrices.

In fact (1 − ν̄
1−ᾱ ) ≥ 0 and 0 ≤ ᾱ ≤ 1. The equality

Υ(S, T, L∗
S,T ) = ΦS(S, T ) can be verified by direct sub-

stitution. The last inequality follows directly from Fact (b).

(c)

Sk+2 = ΦS(Sk+1, Tk+1) = Υ(Sk+1, Tk+1, L
∗
Sk+1,Tk+1

)

≥ Υ(Sk, Tk, L∗
Sk+1,Tk+1

) ≥ Υ(Sk, Tk, L∗
Sk,Tk

)

= ΦS(Sk, Tk) = Sk+1

Tk+2 = ΦT (Sk+1, Tk+1) ≥ ΦT (Sk, Tk) = Tk+1

(d) First observe that S = ΦS(S, T ) ≥ 0 and

T = ΦT (S, T ) ≥ 0. Thus, to prove that S, T > 0, we

only need to establish that S, T are nonsingular. Suppose

they are singular, the there exist vectors 0 	= vs ∈ N (S)
and 0 	= vt ∈ N (T ), i.e. Svs = 0 and Tvt = 0, where N (·)
indicates the null space. Then

0 = v′
sSvs = v′sΦ

S(S, T )vs = v′
sΥ(S, T, L∗

S,T )vs

= (1 − ν̄
1−ᾱ )v′sA

′SAvs + v′sWvs + 	

where 	 indicates other terms. Since all the terms are positive

semi-definite matrices, this implies that all the term must be

zero:

v′
sA

′SAvs = 0 =⇒ SAvs = 0 =⇒ Avs ∈ N (S)
v′

sWvs = 0 =⇒ W 1/2vs = 0

As a result, the null space N (S) is A-invariant. Therefore,

N (S) contains an eigenvector of A, i.e. there exists u 	= 0
such that Su = 0 and Au = σu. As before, we conclude

that Wu=0. This implies (using the PBH test) that the pair

(A,W 1/2) is not observable, contradicting the hypothesis.

Thus, N (S) is empty, proving that S > 0. The same

argument can be used to prove that also T > 0.

Lemma 2: Consider the following operator:

Υ(S, T, L) = A′SA + W + 2ν̄A′SBL+

+ν̄L′
(
U + B′

(
(1 − ᾱ)S + ᾱT

)
B

)
L

(9)

Assume that the pairs (A,W 1/2) and (A, B) are observable

and controllable, respectively. Then the following statements

are equivalent:

(a) There exist a matrix L̃ and positive definite matrices

S̃ and T̃ such that:

S̃ > 0, T̃ > 0, S̃ = Υ(S̃, T̃ , L̃), T̃ = ΦT (S̃, T̃ )

(b) Consider the sequences:

Sk+1 = ΦS(Sk, Tk), Tk+1 = ΦT (Sk, Tk)

where the operators ΦS(·), ΦT (·) are defined in Equa-

tions (6) and (7). For any initial condition S0, T0 ≥ 0
we have

lim
k→∞

Sk = S∞, lim
k→∞

Tk = T∞

and S∞, T∞ > 0 are the unique positive definite

solution of the following equations

S∞ = ΦS(S∞, T∞), T∞ = ΦT (S∞, T∞)
Proof: See [16].

Lemma 3: Let us consider the fixed points of Equations

(6) and (7), i.e. S = ΦS(S, T ), T = ΦT (S, T ) where S, T ≥
0. Let A be unstable. A necessary condition for existence of

solution is

1 − |A|2
(

1 − ν

(1−α)+α
γ|A|2

1−(1−γ)|A|2

)
≥ 0

γ > 1 − 1
|A|2

(10)

where |A|
Δ
= maxi |λi(A)| is the largest eigenvalue of the

matrix A.
Proof: To prove the necessity condition it is suf-

ficient to show that there exist some initial condi-
tions S0, T0 ≥ 0 for which the sequences Sk+1 =
ΦS(Sk, Tk), Tk+1 = ΦT (Sk, Tk) are unbounded, i.e.
limk→∞ Sk = limk→∞ Tk = ∞. To do so, suppose that
at some time-step k we have Sk ≥ skvv′ and Tk ≥ tkvv′,
where sk, tk > 0, and v is the eigenvector corresponding
to the largest eigenvalue of A′, i.e. A′v = λmaxv and
|λmax| = |A′| = |A|. Then we have:

Sk+1 = ΦS(Sk, Tk) ≥ ΦS(skvv
′

, tkvv
′)

= min
L

Υ(skvv
′

, tkvv
′

, L)

= min
L

(
skA

′

vv
′

A + W + 2skν̄A
′

vv
′

BL +

+ν̄L
′
(
U + B

′
(
(1 − ᾱ)skvv

′ + ᾱtkvv
′
)
B

)
L

)

≥ min
L

(
sk|A|2vv

′ + 2skν̄λmaxvv
′

BL +

+ν̄L
′

B
′
(
(1 − ᾱ)skvv

′ + ᾱtkvv
′
)
BL

)

= min
L

(
sk|A|2vv

′ −
|A|2ν̄s2

k

ξk

vv
′ +

+ν̄ξk(λmaxs
2
kI +

1

ξk

BL)′vv
′(λmaxs

2
kI +

1

ξk

BL)
)

≥ sk|A|2vv
′ −

|A|2ν̄s2
k

(1 − ᾱ)sk + ᾱtk

vv
′

= |A|2sk

(
1 −

ν̄sk

(1 − ᾱ)sk + ᾱtk

)
vv

′

= sk+1vv
′
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where I is the identity matrix and ξk = (1 − ᾱ)sk + ᾱtk.

Similarly we have:

Tk+1 = ΦT (Sk, Tk) ≥ ΦT (skvv′, tkvv′)

= (1 − γ̄)tkA′vv′A + γ̄skA′vv′A + W

≥ (1 − γ̄)tk|A
2|vv′ + γ̄sk|A|2vv′

= |A|2
(
(1 − γ̄)tk + γ̄sk)

)
vv′

= tk+1vv′

We can summarize the previous results as follows:

(Sk ≥ skvv′, Tk ≥ tkvv′) ⇒

⇒ (Sk+1 ≥ sk+1vv′, Tk+1 ≥ tk+1vv′)

sk+1 =φs(sk, tk) = |A|2sk

(
1 −

ν̄sk

(1 − ᾱ)sk + ᾱtk

)
,

tk+1 =φt(sk, tk) = |A|2
(
(1 − γ̄)tk + γ̄sk)

)
Let us define the following sequences:

Sk+1 =ΦS(Sk, Tk), Tk+1 = ΦT (Sk, Tk), S0 = T0 = vv′

sk+1 =φs(sk, tk), tk+1 = φt(sk, tk), s0 = t0 = 1

S̃k = skvv′, T̃k = tkvv′

From the previous derivations we have that Sk ≥ S̃k, Tk ≥
T̃k for all time k. Therefore, it is sufficient to find when

the scalar sequences sk, tk diverges to find the necessary

conditions. It should be evident that also the operators

φs(s, t), φt(s, t) are monotonic in their arguments. Also

it should be evident that the only fixed points of s =
φs(s, t), t = φt(s, t) are s = t = 0. Therefore we should be

find when the origin is an unstable equilibrium point, since

in this case limk→∞ sk, tk = ∞. Note that t = φt(s, t) can

be written as:

t = ΦT (s, t) = (1 − γ̄)|A|2t + γ̄|A|2s

= ψ(s) =
γ̄|A|2s

1 − (1 − γ̄)|A|2

with the additional constraint 1−(1−γ̄)A2 > 0. A necessary

condition for stability for the origin is that the origin of

restricted map zk+1 = φ(zk, ψ(zk)) is stable. The restricted

map is given by:

zk+1 = |A|2zk

⎛
⎝1 − ν̄

zk

(1 − ᾱ)zk + ᾱ γ̄|A|2

1−(1−γ̄)A2 zk

⎞
⎠

= |A|2

⎛
⎝1 −

ν̄

(1 − ᾱ) + ᾱ γ̄|A|2

1−(1−γ̄)A2

⎞
⎠ zk.

This is a linear map and it is stable only if the term inside

the parenthesis is smaller than unity, i.e.

1 − |A|2
(

1 − ν

(1−α)+α
γ|A|2

1−(1−γ)|A|2

)
< 1 (11)

which concludes the lemma.

Lemma 4: Let us consider the fixed points of Equations

(6) and (7), i.e. S = ΦS(S, T ), T = ΦT (S, T ) where S, T ≥
0. Let A be unstable, (A,W 1/2) observable and B square

and invertible. Then a sufficient condition for existence of

solution is

1 − |A|2
(

1 − ν

(1−α)+α
γ|A|2

1−(1−γ)|A|2

)
< 1

γ > 1 − 1
|A|2

(12)

where |A|
Δ
= maxi |λi(A)| is the largest eigenvalue of the

matrix A.

Proof: The proof is constructive. In fact we find a

control feedback gain L̃ that satisfies the conditions stated in

Theorem 2(a). Let L̃ = −ηB−1A where η > 0 is a positive
scalar that is to be determined. Also consider S = sI, T =
tI , where I is the identity matrix and s, t > 0 are positive
scalars. Then we have

Υ(sI, tI, L̃) = A
′

sA + W − 2ν̄ηA
′

sA + ν̄A
′

B
−

′

UB
−1

A +

+ν̄η
2
A

′
(
(1 − ᾱ)s + ᾱt

)
A

≤ |A|2
(
s − 2ν̄sη + ν̄

(
(1 − ᾱ)s + ᾱt

)
η
2
)
I + wI

= ϕ
s(s, t, η)I (13)

ΦT (sI, tI) = γ̄A
′

sA + (1 − γ̄)A′

tA + W

≤
(
γ̄|A|2s + (1 − γ̄)|A|2t

)
I + wI

≤ ϕ
t(s, t)I (14)

where w = |W + ν̄A′B−′

UB−1A| > 0 and I is the identity

matrix. Let us consider the following scalar operators and

sequences:

ϕs(s, t, η) = |A|2(1 − 2ν̄η + ν̄(1 − ᾱ)η2)s + ν̄ᾱη2t + w

ϕt(s, t) = γ̄|A|2s + (1 − γ̄)|A|2t + w

sk+1 = ϕs(sk, tk, η), tk+1 = ϕt(sk, tk), s0 = t0 = 0

The operators are clearly monotonically increasing in s, t,
and since s1 = ϕs(s0, t0, η) = w ≥ s0 and t1 = ϕt(s0, t0) =
w ≥ t0, it follows that the sequences sk, tk are monotonically

increasing. If these sequences are bounded, then they must

converge to s̃, t̃. Therefore sk, tk are bounded if and only if

there exist s̃, t̃ > 0 such that s̃ = ϕs(s̃, t̃, η) and t̃ = ϕt(s̃, t̃).
Let us find the fixed points:

t̃ = ϕt(s̃, t̃) ⇒

t̃ =
γ̄|A|2

1 − (1 − γ̄)|A|2
s̃ + wt

where wt
Δ
= w

1−(1−γ̄)|A|2 > 0, and we must have 1 − (1 −

γ̄)|A|2 > 0 to guarantee that t̃ > 0. Substituting back into
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the operator ϕs we have:

s̃ = |A|2(1 − 2ν̄η + ν̄(1 − ᾱ)η2)s̃ + ν̄ᾱη
2 γ̄|A|2

1 − (1 − γ̄)|A|2
s̃ +

+ν̄ᾱη
2
wt + w

= |A|2
(

1−2ν̄η+ν̄
(
(1−ᾱ)+

γ̄ᾱ|A|2

1−(1−γ̄)|A|2

)
η
2

)
s̃+w(η)

= a(η)s̃ + w(η)

where w(η)
Δ
= ν̄ᾱη2wt +w > 0. For a positive solution s̃ to

exist, we must have a(η) < 1. Since a(η) is a quadratic func-

tion of the free parameter η, we can try to increase the basin

of existence of solutions by choosing η∗ = argminηa(η),

which can be found by solving da
dη (η∗) = 0 and is given by:

η∗ =
1

(1 − α) + γα|A2|
1−(1−γ)A2

Therefore a sufficient condition for existence of solutions is

given by:

a (η∗) < 1

|A|2

⎛
⎝1 −

ν(
(1 − α) + γα|A|2

1−(1−γ)A2

)
⎞
⎠ < 1

which is the same bound for the necessary condition of

convergence in Lemma 3.

If this condition is satisfied then limk→∞ sk = s̃ and

limk→∞ tk = t̃. Let us consider now the sequences

S̄k = skI , T̄k = tkI , Sk+1 = Υ(Sk, Tk, L̃) and Tk+1 =
ΦT (Sk, Tk), where L̃ = −η∗B−1A, S0 = T0 = 0, and sk, tk
where defined above. These sequences are all monotonically

increasing. From Equations (13) and (14) it follows that

(Sk ≤ skI, Tk ≤ tkI) ⇒ (Sk+1 =≤ sk+1I, Tk+1 ≤ tkI).
Since this is verified for k = 0 we can claim that Sk < s̃I
and Tk < t̃I for all k. Since Sk, Tk are monotonically

increasing and bounded, then they must converge to positive

semidefinite matrices S̃, T̃ ≥ 0 which solve the equations

S̃ = Υ(S̃, T̃ , L̃) and T̃ = ΦT (S̃, T̃ ). Since by hypothesis

the pair (A,W 1/2) is observable, using similar arguments of

Lemma 1(d), it is possible to show that S̃, T̃ > 0. Therefore

S̃, T̃ , L̃ satisfy the conditions of Theorem 2(a) , from which

if follows statement (b) of the same theorem. This implies

that the sufficient conditions derived here guarantee the

claim of the lemma.
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