
Approximate Dynamic Programming using Fluid and Diffusion

Approximations with Applications to Power Management

Wei Chen, Dayu Huang, Ankur A. Kulkarni, Jayakrishnan Unnikrishnan

Quanyan Zhu, Prashant Mehta, Sean Meyn, and Adam Wierman

Abstract— TD learning and its refinements are powerful
tools for approximating the solution to dynamic programming
problems. However, the techniques provide the approximate
solution only within a prescribed finite-dimensional function
class. Thus, the question that always arises is how should the
function class be chosen? The goal of this paper is to propose
an approach for TD learning based on choosing the function
class using the solutions to associated fluid and diffusion
approximations. In order to illustrate this new approach, the
paper focuses on an application to dynamic speed scaling for
power management.

I. INTRODUCTION

Stochastic dynamic programming and, specifically, con-

trolled Markov chain models have become central tools

for evaluating and designing communication, computer, and

network applications. These tools have grown in popularity

as computing power has increased; however, even with

increasing computing power, it is often impossible to attain

exact solutions. This is due to the so-called “curse of dimen-

sionality”, which refers to the fact that the complexity of

dynamic programming equations often grows exponentially

with the dimension of the underlying state space.

However, the “curse of dimensionality” is slowly dissolv-

ing in the face of approximation techniques such as Q-

learning and TD-learning [3]. These techniques are designed

to approximate a solution to a dynamic programming equa-

tion within a prescribed finite-dimensional function class. A

key determinant of the success of these techniques is the

selection of this function class. The question of how to

select an appropriate basis has been considered in specific

contexts, e.g. [9], [6]. However, determining the appropriate

function class for these techniques is still more of an art than

a science.

The goal of this paper is to illustrate that a useful function

class can be attained by solving the dynamic programming

equation for a highly idealized approximate model. Specifi-

cally, a useful function class is obtained by first constructing

a fluid or diffusion approximation of the model, and solving

the corresponding dynamic programming equation for the

simpler system.

In the special case of network scheduling and routing,

it is known that the dynamic programming equations for

the continuous-time model are closely related to the cor-

responding equations for the discrete-time model [7]. The

A.W. is with Dept. of CS, California Inst. of Tech.. The remaining
authors are with the Coordinated Science Laboratory, University of Illinois
at Urbana-Champaign.

fluid value function has been used as part of a basis in the

approximate dynamic programming approaches of [10], [8].

In this paper we demonstrate that the solution to the dynamic

programming equations for the fluid, diffusion, and discrete-

time models are closely related in more general classes of

models.

In order to provide a concrete illustration of the proposed

approximation techniques, the paper considers an example

of a stochastic control problem from the area of power

management in computer systems. Specifically, an important

tradeoff in modern computer system design is between reduc-

ing energy usage and maintaining good performance (small

delays). To this end, an important technique is dynamic

speed scaling [2], which dynamically adjusts the processing

speed in response to changes in the workload — reducing

(increasing) the speed in times when the workload is small

(large). Dynamic speed scaling is now common in many chip

designs, e.g. [1], and network environments, e.g. wireless

communication [12].

For purposes of this paper, dynamic speed scaling is sim-

ply a stochastic control problem – a single server queue with

a controllable service rate – and the goal is to understand

how to control the service rate in order to minimize the total

cost, which is a weighted sum of the energy cost and the

delay cost. In this context, this paper will illustrate how

to use the solutions of the fluid and diffusion models in

order to apply TD learning to determine an approximately

optimal policy for control. Fluid and diffusion models for

the dynamic speed scaling problem are analyzed in Sec. IV.

The results of applying TD learning to the speed scaling

problem are illustrated in Sec. V. These results highlight

the usefulness of the fluid and diffusion solutions for TD

learning.

II. PRELIMINARIES

A. Markov Decision Processes (MDPs)

In this paper we will consider the following general MDP

model. Let X = R
ℓ
+ denote the state space for the model. The

action space is denoted U. In addition there is an i.i.d. process

W evolving on R
w that represents a disturbance process.

For a given initial condition X(0) ∈ X, and a sequence U

evolving on U, the state process X evolves according to the

recursion,

X(t+1) = X(t)+f(X(t), U(t),W (t+1)), t ≥ 0. (1)

Joint 48th IEEE Conference on Decision and Control and
28th Chinese Control Conference
Shanghai, P.R. China, December 16-18, 2009

ThA13.1

978-1-4244-3872-3/09/$25.00 ©2009 IEEE 3575

We restrict to inputs that are defined by a (possibly ran-

domized) stationary policy. This defines a Markov Decision

Process (MDP) with controlled transition law

Pu(x,A) := P{x+ f(x, u,W (1)) ∈ A}, A ∈ B(X).

We let Du denote the generator in discrete time. For any

function h : R → R,

Duh (x) := E[h(X(t+ 1)) − h(X(t))|X(t) = x, U(t) = u]
(2)

A cost function c : X × U → R+ is given, and our goal is

to find an optimal control based on this cost function. We

focus on the average cost problem, with associated Average

Cost Optimality Equation (ACOE):

min
u

(

c(x, u) + Duh∗ (x)
)

= η∗ (3)

The ACOE is a fixed point equation in the relative value

function h∗, and the optimal cost for the MDP η∗.

B. The fluid and diffusion models

The fluid model associated with the MDP model is defined

by the following mean flow equations,

d
dtx(t) = f(x(t), u(t)), x(0) ∈ X,

where u evolves on U, and f(x, u) := E[f(x, u,W (1))].
The generator for the fluid model is defined similarly. Given

u(0) = u, x(0) = x,

DF

uh (x) = d
dth(x(t))

∣

∣

∣

t=0
= ∇h (x) · f(x, u). (4)

The associated Total Cost Optimality Equation (TCOE) is

min
u

(

c(x, u) + DF

uJ
∗ (x)

)

= 0 (5)

It is solved with the value function,

J∗(x) = inf
u

∫ ∞

0

c(x(t), u(t)) dt, x(0) = x ∈ X, (6)

provided J∗ is finite valued, which requires assumptions on

the cost and dynamics. Under these assumptions the optimal

policy is any minimizer,

φF∗(x) ∈ argmin
u

(

c(x, u) + DF

uJ
∗ (x)

)

(7)

In this paper, motivation for approximate models comes

from a Taylor series expansion. In particular, if the fluid value

function J∗ is smooth then we have the approximation,

DuJ∗ (x) ≈ Ex,u

[

∇J∗(X(0))(X(1) −X(0))
]

= ∇J∗ (x)f (x, u)
(8)

where the subscript indicates expectation conditional on

X(0) = x, U(0) = u. That is, DuJ∗ ≈ DF

uJ
∗, where the

approximation depends on the smoothness of the function

J∗.

A diffusion model is obtained similarly. We again choose

its dynamics to reflect the behavior of the discrete-time

model. To capture the state space constraint we opt for a

reflected diffusion, defined by the Ito equation:

dX(t) = f(X(t), U(t))dt+ σ(U(t))dN(t) + dI(t), (9)

where the process N is a standard Brownian motion on R
ℓ

and I is a reflection process. That is, for each 1 ≤ i ≤ ℓ,
the process Ii is non-decreasing and is minimal subject to

the constraint that Xi(t) ≥ 0 for each t and each i. This is

captured through the sample path constraint,

∫ ∞

0

Xi(t) dIi(t) = 0, 1 ≤ i ≤ ℓ.

C. TD learning

TD learning is a technique for approximating value func-

tions of MDPs within a linearly parameterized class.

Specifically, we define {ψi : 1 ≤ i ≤ d} as real-valued

functions on X and we let hr =
∑

riψi or, with ψ : X →
R
d the vector of basis functions, hr = rTψ. Suppose that a

stationary policy φ is applied to the MDP model, and that the

resulting Markov chain is ergodic with stationary marginal

π. Let h denote the solution to Poisson’s equation Pφh =
h− cφ+ ηφ where Pφ(x, dy) = Pφ(x)(x, dy) is the resulting

transition law for the chain, cφ(x) = c(x, φ(x)) is the cost

as a function of state for this policy, and ηφ is the average

cost. TD learning then takes the mean-square error criterion:

1
2Eπ[(h(X(0))−hr(X(0)))2] := 1

2

∫

(h(x)−hr(x))2 π(dx).

Hence the optimal parameter satisfies the fixed point equa-

tion,

Eπ[(h(X(0)) − hr(X(0)))ψ(X(0))] = 0. (10)

In the rest of this section we assume that the control is fixed

to be φ(x). We use c(x) to denote the cost function cφ(x)
and E to denote the expectation under this stationary policy.

The TD and LSTD learning algorithms are techniques for

computing the optimal parameter. We refer the reader to

Chapter 11 of [7] for details of the LSTD learning algorithm

used in the numerical results described in this paper and

provide only a high-level description of the LSTD algorithm

here.

When the parameterization is linear then (10) implies that

the optimal parameter can be expressed

r∗ = Σ−1z with Σ = Eπ[ψ(X(0))ψ(X(0))T]

z = Eπ[ψ(X(0))h(X(0))].
(11)

To estimate Σ and z we define the sequence of eligibility

vectors,

ϕ(t+ 1) = ϕ(t) + I{X(t) 6= x∗}(ψ(X(t)) − ηψ(t))

where ϕ(0) = ψ(X(0)), and ηψ(t) the sample mean of ψ.

We then define,

ΣT =
1

T

T
∑

t=1

ψ(X(t))ψT(X(t)) , zT =
1

T

T
∑

t=1

c(X(t))ϕ(t)

The LSTD learning algorithm for average cost defines es-

timates of r∗ in (11) via, rT = Σ−1
T zT . This is consistent

provided ψ and h are square integrable.

ThA13.1

3576

III. POWER MANAGEMENT VIA SPEED SCALING

Dynamic speed scaling is an increasingly common ap-

proach to power management in computer system design.

The goal is to control the processing speed so as to optimally

balance energy and delay costs – reducing (increasing) the

speed in times when the workload is small (large).

We model the dynamic speed scaling problem as a single

server queue with controllable service rate. Specifically, we

assume that jobs arrive to a single processor and are pro-

cessed at a rate determined by the current power. The primary

model is described in discrete time: For each t = 0, 1, 2, . . .
we let A(t) denote the job arrivals in this time slot, Q(t)
the number of jobs awaiting service, and U(t) the number

of services. It is assumed that A is i.i.d. Hence the MDP

model is described as the controlled random walk,

Q(t+ 1) = Q(t) − U(t) +A(t+ 1), t ≥ 0. (12)

This is an MDP model of the form (1) with X ≡ Q. The

cost function we consider balances the cost of delay with the

energy cost associated with the processing speed:

c(x, u) = x+ βP(u), (13)

where P denotes the power required as a function of the

speed u, and β > 0. This form of cost function is common

in the literature, e.g., [4], [11].

The remaining piece of the model is to define the form

of P . In this paper, we consider two forms of P based on

two different applications. For processor design applications

P(u) ∝ u̺ [11] and for wireless transmission applications

P(u) ∝ eκu [12].

IV. APPROXIMATE MODELS

In this section we study the fluid and diffusion approxi-

mations of the speed scaling model described in (12). The

solutions to these approximate models will later serve as

the basis for applying TD learning to determine an approxi-

mately optimal control of the speeds.

A. The fluid model

The fluid model corresponding to the speed scaling model

(12) is given by:

d
dtq(t) = −u(t) + α, (14)

where α is the mean of A(t), and the control u(t) and buffer

contents q(t) are assumed to be non-negative valued.

It is assumed here that the cost function vanishes at the

equilibrium q(t) = 0, u(t) = α. In this case the total cost J∗

defined in (6) is finite for each x. The infimum in (6) is over

all feasible u. Feasibility means that u(t) ≥ 0 for each t, and

the resulting state trajectory q is also non-negative valued.

In this section we consider two classes of normalized cost

functions,

Polynomial cost c(x, u) = x+ β([u − α]+)̺

Exponential cost c(x, u) = x+ β[eκu − eκα]+
(15)

where [·]+ = max(0, ·), and the parameters β, κ, ̺ are

positive. The normalization is used to ensure that c(0, α) =

0. Observe that the cost is also zero for u < α when

x = 0. However, it can be shown that the u that achieves

the infimum in (6) is never less than α.

We now return to (8) to show that the fluid value function

provides a useful approximation to the solution to the average

cost optimality equations. We construct a cost function c◦

that approximates c, along with a constant η◦ > 0 such that

J∗ satisfies the ACOE for this cost function:

min
0≤u≤x

{c◦(x, u) + PuJ
∗ (x)} = J∗(x) + η◦. (16)

This construction is based on the two error functions,

E(x, u) = c(x, u) − J∗(x) + PuJ
∗ (x)

E(x) = min
0≤u≤x

E(x, u) (17)

The constant η◦ ∈ R+ is arbitrary, and the perturbation of

the cost function is defined as

c◦(x, u) = c(x, u) − E(x) + η◦

Based on the definition of E , we conclude that (16) is

satisfied. To demonstrate the utility of this construction it

remains to obtain bounds on the difference between c and

c◦.

We begin with some structural results for the fluid value

function. Proofs are omitted due to lack of space. Note

that part (ii) is obtained from bounds on the “Lambert W
function” [5].

Proposition 1. For any of the cost functions defined in (15),

the fluid value function J∗ is increasing, convex, and its

second derivative ∇2J∗ is non-increasing. Moreover,

(i) For polynomial cost the value function and optimal

policy are given by, respectively,

J∗(x) = x
2̺−1

̺
̺

2̺− 1

(1

β(̺− 1)

)

̺−1

̺

(18)

φF∗(x) =
(x

β(̺− 1)

)1/̺

+ α, x ∈ R+. (19)

(ii) For exponential cost the value function satisfies the

following upper and lower bounds: On setting β̃ = βeκα

and x̃ = x − β̃, there are constants C−, C+ such that,

whenever x ≥ β̃(e2 + 1),

C−+
κ

2

x̃2

log(x̃) − log(β) − (κα+ 1)
≤ J∗(x) ≤ C++

κ

2
x̃2

Part (i) of the above proposition exposes a connection

between the fluid control policy and prior results about speed

scaling obtained in the literature on worst-case algorithms

[2]. In particular, the optimal fluid control corresponds to

a speed scaling scheme that is known to have a small

competitive ratio.

Next, we can derive a lower bound on the difference c−c◦
relatively easily.

Lemma 2. E(x, u) ≥ 0 everywhere, giving c ≥ c◦ − η◦.

Proof: Convexity of J∗ gives the bound,

J∗(Q(t+ 1))− J∗(Q(t)) ≥ ∇J∗(Q(t)) · (Q(t+ 1)−Q(t))

ThA13.1

3577

Consequently, for each x ∈ R+, u ∈ R+ we have the lower

bound,

PuJ
∗(x) = J∗(x) + Ex,u[J

∗(Q(1)) − J∗(Q(0))]

≥ J∗(x) + Ex,u[∇J∗(Q(0)) · ((Q(1)) −Q(0))]

= J∗(x) + ∇J∗(x) · (−u+ α)

From the definition (17) this gives,

E(x, u) ≥ c(x, u) + ∇J∗(x) · (−u+ α)

Non-negativity follows from the TCOE (5). ⊓⊔

Further, we can derive an upper bound on c − c◦ in two

simple steps. We first write,

E(x) ≤ E(x, φF∗(x)) (20)

where φF∗(x) is the optimal policy for the fluid model given

in (7). Next we apply the second order Mean Value Thoerem

to bound E . Given Q(0) = x and U(0) = u we have Q(1) =
x− u+ A(1). For some random variable Q between x and

x− u+A(1) we have

DuJ∗(x) := Ex,u[J
∗(Q(1)) − J∗(Q(0))]

= ∇J∗(x) · (−u+ α)

+ 1
2E

[

∇2J∗ (Q) · (−u+A(1))2
]

(21)

Proposition 1 states that the second derivative of J∗ is non-

increasing. Hence we can combine (21) with (20) to obtain,

E(x) ≤ 1
2E

[

∇2J∗(x − φF∗(x)) · (−φF∗(x) +A(1))2
]

.
(22)

Lemma 3 provides an implication of this bound in the

special case of quadratic cost.

Lemma 3. For polynomial cost (15) with ̺ = 2, β = 1
2 ,

we have E(x) = O(
√
x), and hence c(x, u) ≤ c◦(x, u) +

O(
√
x).

Proof: The optimal policy is given in (19), giving

φF∗(x) = O(
√
x) in this special case. The formula (18)

gives ∇2J∗(x) = O(1/
√
x). The bound (22) then gives

E(x) = O(
√
x). ⊓⊔

Lemma 4 is an extension to the case of exponential cost.

There is no space here for a proof.

Lemma 4. For exponential cost (15), with β = 1, we have

E(x) ≤ κ log(x)2 for all x sufficiently large. For such x we

have c(x, u) ≤ c◦(x, u) − η◦ + κ log(x)2. ⊓⊔

Hence, for quadratic or exponential cost, the fluid value

function J∗ can be interpreted as the relative value function

for a cost function that approximates c(x, u).

B. The diffusion model

We next consider the diffusion model introduced in (9).

We motivate the model using the second order Taylor series

approximation (21). This continuous-time model will be used

to obtain additional insight regarding the structure of h∗.

The ACOE for the diffusion model is similar to the total

cost DP equation for the fluid model:

min
u≥0

{c(x, u) + Duh∗ (x)} = η∗ (23)

where η∗ is the average cost, h∗ is called the relative value

function, and Du denotes the usual differential generator.

This is defined for C2 functions g : R+ → R+ via,

Dug (x) =
d

dx
g (x)(−u + α) + 1

2σ
2(u)

d2

dx2
g (x)

However, for a reflected diffusion the domain of the differ-

ential generator is restricted to those C2 functions satisfying

the boundary condition,

d

dx
g(x)

∣

∣

∣

x=0
= 0 (24)

This is imposed so that the reflection term vanishes in the

Ito formula:

dg(Q(t)) = fg(Q(t), U(t)) dt+ σ(U(t))
d

dx
g(Q(t))dN(t)

with fg(x, u) = Dug (x).
The variance term is selected so that the action of the

differential generator on a smooth function will be similar

to that of the discrete generator. The second order Taylor

series expansion (21) suggests the value:

σ2(u) = E[(u−A(1))2] = u2 − 2αu+m2
A,

where m2
A is the second moment of A(1). We adopt this

form in the remainder of this section.

Further, for the remainder of the section, we restrict to the

case of quadratic cost:

c(x, u) = x+ 1
2u

2, (25)

In this case the minimizer in (23) is given by,

φ∗(x) :=
∇h∗(x) + α∇2h∗(x)

1 + ∇2h∗(x)
(26)

It can be shown that h∗ is convex. Consequently, subject

to the boundary condition (24), it follows that φ∗(x) ≥ 0
for each x. Substituting (26) into (23) gives the fixed point

equation,

x+ α∇h∗ + 1
2m

2
A∇2h∗ − (α∇2h∗ + ∇h∗)2

2(1 + ∇2h∗)
= η∗. (27)

Although the cost function (25) does not satisfy c(0, α) =
0, the TCOE (5) for the fluid model admits the solution,

J∗(x) = αx+ 1
3 [(2x+ α2)3/2 − α3] (28)

Furthermore, the function h◦(x) = J∗(x) + 1
2x approxi-

mately solves the dynamic programming equation for the

diffusion. In fact, it is straightforward to show that h◦(x)
solves the ACOE for the diffusion exactly under a modified

cost function:

c◦(x, u) = c(x, u) +
1

8

(y

y + 1
− 4

σ2
A

y

)

+ η◦,

ThA13.1

3578

5 10 15 20

Initialization:

Initialization: V0 ≡ 0

hn

n

− hn−1

V0 = J
∗

0

50

100

150

200

250

Fig. 1: The convergence of value iteration for the quadratic cost function
(25). The error ‖hn+1 − hn‖ converges to zero much faster when the
algorithm is initialized using the fluid value function.

where σ2
A = m2

A − α2, and y := (2x + α2)
1

2 . The constant

η◦ is again arbitrary. Regardless of its value, the optimal

average cost of c◦ is equal to η◦. It is also easy to see that

|c◦(x, u) − c(x, u)| is uniformly bounded over x and u.

The only issue that remains is the fact that h◦(x) does not

satisfy the boundary condition (24) since

∇h◦(x)
∣

∣

∣

x=0
= 2α+ 1

2 .

This gap is resolved through an additional perturbation.

Specifically, fix ϑ > 0, and introduce the decaying expo-

nential,

h◦◦(x) = h◦(x) − (2α+ 1
2)ϑe−x/ϑ

The gradient vanishes at the origin following this perturba-

tion. This function solves the ACOE for the diffusion for

a function c◦◦ which retains the property that c◦◦(x, u) −
c(x, u) is uniformly bounded.

Based on this form we are motivated to enlarge the basis

to approximate the relative value function with ψ1 = J∗ and

ψ2(x) ≡ x.

V. EXPERIMENTAL RESULTS

In this section we present results from experiments con-

ducted for the speed scaling model described in Section III.

Each of the value function approximations used in these

experiments were based on insights obtained from the fluid

and diffusion models.

In all of the numerical experiments described here the

arrival process A is a scaled geometric distribution,

A(t) = ∆AG(t), t ≥ 1, (29)

where ∆A > 0 and G is geometrically distributed on

{0, 1, . . .} with parameter pA. The mean and variance of

A(t) are given by, respectively,

mA = ∆A
pA

1 − pA
, σ2

A =
pA

(1 − pA)2
∆2
A. (30)

A. Value iteration

We begin by computing the actual solution to the average

cost optimality equation using value iteration. This provides

a reference for evaluating the proposed approach for TD

learning. We restrict to the special case of the quadratic

cost function given in (25) due to limited space. The arrival

process is taken of the form (29), with pA = 0.96 and ∆A

chosen so that the mean mA is equal to unity:

1 = mA = ∆A
pA

1 − pA
and ∆A = 1/24 (31)

The state space is truncated for practical implementation

of value iteration. In the experiments that follow we take

X = {∆Am : m = 0, . . . , Nℓ} with Nℓ = 480. The model

becomes,

Q(t+ 1) = [Q(t) − U(t) +A(t+ 1)], t ≥ 0,

where [·] represents projection to the interval [0, 20], and

U(t) is restricted to non-negative integer multiples of ∆A.

J
∗

h

xn

0 2 4 6 8 10 12 14 16 18 20
0

20

40

60

80

100

120

Approximate relative value function

Fluid value function

0 1 2 3 4 5 6 7 8 9 10
x 10

4
−2

−1

0

1

2

3

4

h
∗

Relative value function

Fig. 2: Simulation results for the dynamic speed scale model with quadratic
cost. The plot on the left shows estimates of the coefficients in the optimal
approximation of h∗ using the basis obtained from the fluid and diffusion

models (see (33)). In the plot on the right the final approximation hr
∗

is
compared to the fluid value function and the relative value function.

Let Vn denote the nth value function obtained. The

approximate solution to the ACOE at stage n is taken to

be the normalized value function hn(x) = Vn(x) − Vn(0),
x ∈ X. The convergence of {hn} to h∗ is illustrated in Fig. 1.

The comparison of J∗ and h∗ shown in Fig. 2 was computed

using this algorithm.

Shown in Fig. 3 is the optimal policy and the (c, J∗)-
myopic policy, φJ(x) = arg min0≤u≤x{c(x, u)+PuJ∗ (x)}.

x
0 2 4 6 8 10 12 14 16 18 20

−20

0

20

40

60

80

100

120

140

160 Stochastic optimal policy

Fluid optimal policy

Di!erence

Fig. 3: The optimal policy compared to the (c, J∗)-myopic policy for the
quadratic cost function (25).

B. TD learning

We are now ready to apply TD learning to approximate

the relative value function in the case of a specific policy.

The policies considered here are taken to be the following

translation of the optimal policy for the fluid model,

φF∗
⋄ (x) = ⌊min(x, φF∗(x))⌋, x ∈ R+ (32)

where here x is restricted to the lattice on which Q evolves,

and ⌊a⌋ indicates the nearest point on this lattice for a ∈ R+.

In the next section we show how to combine TD learning and

policy improvement in order to determine an approximately

optimal solution.

We consider only polynomial costs due to space con-

straints. Additionally, we maintain the arrival distribution

defined by (29), and the specification pA = 0.96 used

ThA13.1

3579

in the previous subsection. We consider several values of

∆A to investigate the impact of variance on the estimation

algorithm.

We take the following as the basis for TD learning

ψ1(x) = J∗(x), ψ2(x) = x, x ≥ 0. (33)

In the special case of quadratic cost, with c(x, u) = x+ 1
2u

2,

this choice is motivated by the diffusion approximations

presented in Sec. IV-B. We begin with results in this special

case. Recall that the case of quadratic costs models the

scenario of speed scaling in microprocessors.

The fluid value function J∗ associated with the quadratic

cost function (25) is given in (28). Fig. 2 shows a result

obtained after 100,000 iterations of the LSTD algorithm. The

initial condition was taken to be r(0) = (0, 0)T. The value

of the coefficient r∗1 corresponding to ψ1 = J∗ was found

to be close to unity. Hence the approximate relative value

function hr
∗

is approximated by J∗, where r∗ is the final

value obtained from the LSTD algorithm. This conclusion is

plainly illustrated in Fig. 2 where a plot of the function hr
∗

is compared to the fluid value function J∗ and the solution

to the ACOE h∗.

C. TD learning with policy improvement

So far, the TD learning algorithm was used to compute an

approximation of the relative value function for the specific

policy given in (32). In this section, we construct a policy

using TD learning and policy improvement.

Average cost at stage n

n
0 5 10 15 20 25

2

3

Fig. 4: Simulation result for TDPIA with the quadratic cost function (25),
and basis {ψ1, ψ2} ≡ {J∗, x}.

The policy iteration algorithm (PIA) is a method to

construct an optimal policy through the following steps.

The algorithm is initialized with a policy φ0 and then the

following operations are performed in the kth stage of the

algorithm:

(i) Given the policy φk, find the solution hk to Pois-

son’s equation Pφkhk = hk − ck + ηk, where ck(x) =
c(x, φk(x)), and ηk is the average cost.

(ii) Update the policy via φk+1(x) ∈ argminu{c(x, u) +
Puh

k (x)}.

In order to combine TD learning with PIA, the TDPIA algo-

rithm considered replaces the first step with an application

of the LSTD algorithm, resulting in an approximation hk
TD

to the function hk. The policy in (ii) is then taken to be

φk+1(x) ∈ argminu{c(x, u) + Puh
k
TD

(x)}.

We illustrate this approach in the case of the quadratic cost

function (25), using the basis given in (33). The initial policy

was taken to be φ0(x) = min(x, 1), x ≥ 0. Fig. 4 shows the

estimated average cost in each of the twenty iterations of the

algorithm. The algorithm results in a policy that is nearly

optimal after just a few iterations.

VI. CONCLUDING REMARKS

The main message of this paper is that idealized models

(fluid and diffusion approximations) are useful for determin-

ing the function class for TD learning. This approach is

applicable for control synthesis and performance approxi-

mation of Markov models in a wide range of applications.

The motivation for this approach is a simple Taylor series

argument that can be used to bound the difference between

the relative value function h∗ and the fluid value function

J∗.

To illustrate the application of this approach for TD learn-

ing, this paper focuses on a power management problem:

dynamic speed scaling. This application reveals that this ap-

proach to approximation yields remarkably accurate results.

In particular, numerical experiments revealed that (i) value

iteration initialized using the fluid approximation results in

much faster convergence, and (ii) policy iteration coupled

with TD learning quickly converges to an approximately

optimal policy when the fluid and diffusion models are

considered in the construction of a basis.

ACKNOWLEDGMENT

Financial support from the National Science Foundation

(ECS-0523620 and CCF-0830511), ITMANET DARPA RK

2006-07284, and Microsoft Research is gratefully acknowl-

edged.1

REFERENCES

[1] Intel Xscale.
[2] Nikhil Bansal, Tracy Kimbrel, and Kirk Pruhs. Speed scaling to

manage energy and temperature. J. ACM, 54(1):1–39, March 2007.
[3] D.P. Bertsekas and J. N. Tsitsiklis. Neuro-Dynamic Programming.

Atena Scientific, Cambridge, Mass, 1996.
[4] Jennifer M. George and J. Michael Harrison. Dynamic control of a

queue with adjustable service rate. Operations Research, 49(5):720–
731, September 2001.

[5] A. Hoorfar and M. Hassani. Inequalities on the lambert w function
and hyperpower function. Journal of Inequalities in Pure and Applied
Mathematics (JIPAM), 9(2), 2008.

[6] S. Mannor, I. Menache, and N. Shimkin. Basis function adaptation
in temporal difference reinforcement learning. Annals of Oper. Res.,
134(2):215–238, 2005.

[7] S. P. Meyn. Control Techniques for Complex Networks. Cambridge
University Press, Cambridge, 2007.

[8] C.C. Moallemi, S. Kumar, and B. Van Roy. Approximate and data-
driven dynamic programming for queueing networks. Submitted for
publication., 2006.

[9] J. N. Tsitsiklis and B. Van Roy. An analysis of temporal-difference
learning with function approximation. IEEE Trans. Automat. Control,
42(5):674–690, 1997.

[10] M. H. Veatch. Approximate dynamic programming for networks: Fluid
models and constraint reduction, 2004. Submitted for publication.

[11] A. Wierman, L. Andrew, and A. Tang. Power-aware speed scaling in
processor sharing systems. In Proc. of INFOCOM, pages 2007–15,
2009.

[12] L. Xie and P. R. Kumar. A network information theory for wireless
communication: scaling laws and optimal operation. IEEE Trans. on

Info. Theory, 50(5):748–767, 2004.

1Any opinions, findings, and conclusions or recommendations expressed
in this material are those of the authors and do not necessarily reflect the
views of NSF, DARPA, or Microsoft.

ThA13.1

3580

