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Air Traffic Complexity based on Dynamical Systems

Daniel delahaye and Stéphane Puechmorel

Abstract— This paper presents a new air traffic complexity
metric based on dynamical systems. Based on a set of radar
observations (position and speed) a vector field interpolating
these data is constructed. Once the field has been obtained,
the Lyapunov spectrum of the associated dynamical system is
computed on points evenly spaced on a spatial grid. The results
of the computations are summarized on complexity maps, with
high values indicating areas to avoid or to carefully monitor.
A first approach based on linear dynamical system enable to
compute an aggregate complexity metric. In order to produce
complexity maps, two extensions of the previous approach have
been developed (one in space and another in space and time).
Finally, an approximation is proposed in order to localize the
computation of the vector field by the mean of Local Linear
Models.

I. INTRODUCTION

The ATM system has to cope with an increasing number

of flights, pushing the capacity to its limits. As an example,

the average daily traffic above Europe was 26286 flights/day,

with a peak traffic demand in excess of 31000 flights [14].

Although delays are kept low, it is expected from the same

reference that capacity has to be extended in the future. Basi-

cally, two strategies can be devised : adapt the demand to ca-

pacity (slot-route allocation, collaborative decision making,

. . . ) or adapt the capacity to the demand (Airspace design,

4D trajectory planning, autonomous aircraft, . . . ). The first

approach can be used in the context of current ATM system,

while innovative future designs will mainly follow the second

strategy. Currently, complexity of the traffic is measured only

as an operational capacity : the maximum number of aircraft

that ATC controllers are willing to accept is fixed on a per-

sector basis and complexity is assessed by comparing the

real number of aircraft with the sector capacity. It must

be noted that under some circumstances, controllers will

accept aircraft beyond the capacity threshold while rejecting

traffic at other times although the number of aircraft is well

below the maximum capacity. This simple fact clearly show

that capacity as a crude complexity metric is not enough

by itself to fully account for the controller’s workload. In

order to better quantify the complexity, geometric features

of the traffic have to be included. As previously stated,

depending on the traffic structure, ATC controllers will

perceive differently situations, even if the number of aircraft

present in the sector is the same. Furthermore, exogenous

parameters like the workload history can be influential on
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the perceived complexity at a given time (a long period of

heavy load will tend to reduce the efficiency of a controller).

Some reviews of complexity in ATC have been completed,

mainly from the controller’s workload point of view [7], [13],

and have recognized that complexity is related to both the

structure of the traffic and the geometry of the airspace. This

tends to prove that controller’s workload has two facets :

• An intrinsic complexity related to traffic structure.

• A human factor aspect related to the controller itself.

While most complexity metrics tend to capture those effects

within a single aggregate indicator, the purpose of this work

is to design a measure of intrinsic complexity only since it is

the most relevant metric for an highly automated ATC system

(no human factors). The first complexity indicator incorpo-

rating structural considerations along with the simple number

of aircraft is the “Dynamic Density” of Laudeman et al. from

NASA [12]. The “Dynamic Density” is a weighted sum of

the traffic density (number of aircraft), the number of heading

changes (> 15 degrees), the number of speed changes (>0.02

Mach), the number of altitude changes (>750 ft), the number

of aircraft with 3-D Euclidean distance between 0-25 nautical

miles, the number of conflicts predicted in 25-40 nautical

miles. These factors are summed together using weighting

factors that were determined by showing different traffic

scenarios to several controllers. B.Sridhar from NASA [15],

has developed a model to predict the evolution of such

a metric in the near future. Efforts to define “Dynamic

Density” have identified the importance of a wide range of

potential complexity factors, including structural considera-

tions. However, the instantaneous position and speeds of the

traffic itself does not appear to be enough to describe the

total complexity associated with an airspace. A few previous

studies have attempted to include structural consideration in

complexity metrics, but have done so only to a restricted

degree. For example, the Wyndemere Corporation proposed a

metric that included a term based on the relationship between

aircraft headings and dominant geometric axis in a sector

[10]. The importance of including structural consideration

has been explicitly identified in work at Eurocontrol. In a

study to identify complexity factors using judgment analysis,

Airspace Design was identified as the second most impor-

tant factor behind traffic volume [11]. Histon, et, al. [8],

[9] investigated how this structure can be used to support

structure-based abstractions that controllers appear to use to

simplify traffic situations. The previous models do not take

into account the intrinsic traffic disorder which is related to

the complexity. The first efforts related with disorder can be

found in [4]. This paper introduces two classes of metrics
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which measure the disorder of a traffic pattern.G.Aigoin has

extended and refined the geometrical class by using a cluster

based analysis [1]. All the previous metrics capture only one

feature of the complexity and are not able to produce an

aggregate metric which can capture all the possible situations

(high-low density, how-low convergence, translation organi-

zation, round about organization etc ...). The work presented

in this paper is based on dynamical systems modeling of

the air traffic. A dynamical system describes the evolution

of a given state vector. If such a vector is given by the

position of aircraft �X = [x, y, z]T , a dynamical system

associates a speed vector �̇X = [vx, vy, vz]
T to each point

in the airspace. The key idea is to find a dynamical system

which models the observed aircraft trajectories. Based on this

dynamical system modeling, a trajectory disorder metric can

be computed.

The first part of this paper will present a linear dynamical

system modeling for which the complexity metric can be

represented into a complex coordinate system. In this system,

it is very easy to identify any speed vector organization

pattern. The second part introduces a non linear extension of

the previous dynamical system modeling that may model any

observed traffic. This extension is done in space only. Such

a non linear modeling can be used to produce maps of traffic

complexity by identifying areas with high(low) complexity.

The third part presents the time extension of the previous

model for which works straightly on the trajectory segments

instead of speed vectors. Finally, the fourth part, propose an

approximation approach based on Local Linear Models for

computation improvement. This last model is also able to

take into account some uncertainties on aircraft positions in

order to improve the robustness of complexity maps.

II. LINEAR DYNAMICAL SYSTEM MODELING

The key idea of this approach is to model a set of aircraft

trajectories by a linear dynamical system which is defined

by the following equation :

�̇X = A. �X + �B (1)

where �X is the state vector of the system :

�X =
[

x y z
]T

(2)

This equation associates a vector speed �̇X to a position in

the space coordinate �X . The eigenvalues of the matrix A

control the evolution of the system. The real part of those

eigenvalues is related with the convergence or the divergence

property of the system in the direction of the eigenvector.

When such a eigenvalue has positive real part, the system

is in expansion mode and when it is negative the system

is in contraction mode. On the other end, the imaginary

part of the eigenvalues are related with the level of curl

organization of the system. Depending of those eigenvalues,

a dynamical system can evolve in contraction, expansion,

rotation or a combination of those three modes. Figure 1

give four typical examples for which the A matrix and

the associated eigenvalues are computed. The eigenvalues
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Fig. 1. Eigenvalues loci for several typical situations.The small squares are
the initial positions of aircraft at a given time(this represents the observation
given by a radar for instance with the associated speed vector).

associated to the matrices A are given on the bottom part of

figure 1. When the relative distances between aircraft remain

unchanged with time (situation 1 and 4), it can be noticed that

the real parts of the eigenvalues of matrix A are zero. When

the norms of the relative distances between aircraft diminish

with time (situation 2) the real part of the eigenvalues are

negatives; finally, when those relative distances increase with

time (situation 3) the real part of the eigenvalue are positive.

The largest those real part are in absolute value, the more

those evolutions are fast. When more aircraft are involved, a

Least Mean Square regression is applied in order to extract

matrix A and vector �B. Based on the observations of aircraft

(positions and speed vectors), the dynamical system has to

be adjusted with the minimum error. This fitting has been

done with a Least Square Minimization method. For each

considered aircraft i, it is supposed that position �Xi =
[xi, yi, zi]

T and speed vector �Vi = [vxi, vyi, vzi]
T are given.

An error criterion between the dynamical system model and

the observations is computed :

E =
i=N
∑

i=1

∥

∥

∥

�Vi −
(

A. �Xi + �B
)∥

∥

∥

2

In order to use matrix forms the following matrices are

introduced.

X =

⎡

⎢

⎢

⎣

x1 ... xN

y1 ... yN

z1 ... zN

1 ... 1

⎤

⎥

⎥

⎦

V =

⎡

⎣

vx1 ... vxN

vy1 ... vyN

vz1 ... vzN

⎤

⎦

C =

⎡

⎣

a11 a12 a13 b1

a21 a22 a23 b2

a31 a32 a33 b3

⎤

⎦

With such matrices, the error criterion E can be written

as : E = ‖V − C.X‖. To minimize E is the same as to

minimize E2 = ‖V − C.X‖2
. The problem is to find the

matrix C which minimize such a criterion. By using the

matrix derivation properties, the gradient of E2 is given by :

∇CE2 = −2.(V −C.X).XT . The gradient is then canceled :
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∇CE2 = 0 ⇔ C.X.XT = V XT . The optimum matrix Copt

is then given by :Copt = V.XT .(X.XT )−1. The expression

XT .(X.XT )−1 is the pseudo inverse of the matrix XT and

can be written as : XT .(X.XT )−1 = LT .S−1.R. where S is

the diagonal matrix of the singular values of the matrix XT .

This singular value decomposition is very helpful in order

to avoid condition troubles. The matrix C is finally given

by :C = V.LT .S−1.R. The matrix A is then extracted from

the matrix C, and the associated eigenvalue decomposition is

given by A = L.D.UT . This first model enables to produce

an aggregate metric associated to any traffic situation and

can recognize any global organization pattern. It gives an

aggregate measure of a given traffic situation but is not able

to identify high (low) complexity areas in the airspace. For

such purpose, we have developed a complexity metric based

on non-linear dynamical system.

III. NON LINEAR EXTENSION IN SPACE

A. Non linear Dynamical System

A non linear dynamical system is summarized by the

following equation :

�̇X(t) = �f( �X) (3)

where �X is the state vector of the system ( �X = [x, y, z]T )

and �f : C2 vector field, describe systems which integral

curves may fit the observed trajectories. This equation asso-

ciates a vector speed �̇X to a position in the space coordinate
�X and then synthesis a particular vector field. Based on

the observations of the aircraft (positions, speed vectors),

the dynamical system has to be adjusted with the minimum

error.This fitting is done with a Least Square Minimization

(LMS) method for which the following criterion is used :

E1 =

i=N
∑

i=1

‖�Vi − �f( �Xi)‖2 (4)

where N is number of observations.

If we consider criterion E1 only, it can be shown that

there is an infinite number of vector fields �f which can be

adjusted to the observations. In order to keep the smoothest

one, another criterion is added which has to be minimized,

the so-called “div-curl” criterion :

E2 =

∫

R3

α‖∇div �f( �X)‖2 + β‖∇curl �f( �X)‖2d �X (5)

with α, β positive weights controlling the smoothness of

the approximation by focusing on constant divergence or

constant curl. In the following, we will consider α = β =
0.5; in such case :

E2 = ‖∆�f( �X)‖2

where ∆�f( �X) is the Laplacian of the vector field �f .

The joint minimization of E1 and E2 induces a unique

optimum vector field [2], [5] :

�f( �X) =
N

∑

i=1

φ(‖ �X − �Xi‖).�ai + A. �X + �B

0

V

γ

γ
0x

x

(t,x )

(t,x)

γD(t,  )

Fig. 2. Time evolution of a reference trajectory and a perturbed trajectory

with �ai parameter vectors (one for each observation),

φ(‖ �X − �Xi‖) = Q(‖ �X − �Xi‖3)

and

Q =

⎡

⎣

γ 0 0
0 γ 0
0 0 γ

⎤

⎦

with γ = ∂2
xx + ∂2

yy + ∂2
zz

The resulting adjustment is done without error (⇒
minE1 = 0).

When α = β = 0.5, the vector spline function φ has the

following structure :

φ(‖ �X − �Xi‖) = 12.‖ �X − �Xi‖

(ri = ‖ �Xi − �X‖). It must be noticed, that farthest obser-

vations has more weight in such calculation. Then, in order

to compute the smoothest vector field which fit exactly the

measures, all observations have to be taken into account in

the computation.

IV. LYAPUNOV EXPONENTS

The metric chosen for complexity computation relies on a

measure of sensitivity to initial conditions of the underlying

dynamical system called Lyapunov exponents. In order to

figure out what Lyapunov exponents are, let consider a point

and look at its evolution when transported by the dynamical

system. Let �x0 be fixed (initial point) and let γ be a point

trajectory of the dynamical system associated to the vector

field �f given by :

γ(t, �x0) = �x0 +

∫ t

0

�f(u, γ(u, �x))du (6)

Assume now that trajectory is disturbed by a small pertur-

bation �ǫ, we have :

γ(t, �x0 + �ǫ) = γ(t, �x0) + ∇�x
�f(γ(t, �x)).�ǫ + o(‖�ǫ‖)

where ∇�x
�f(t, γ(t, �x)) is the differential of the vector field �f

at �x. Divergence to nominal trajectory with respect to time

is thus ‖γ(t, �x0) − γ(t, �x)‖ = D(t, s) (see figure 2). γ(t, �x)
being defined as a flow :

∂γ(t, �x)

∂t
= �f(t, γ(t, �x)) γ(0, �x) = �x

2071



with �f a smooth vector field, it is possible to show that

D(t) satisfies a differential equation also. Given a nominal

trajectory γ(t, �x0), then divergence of nearby trajectories can

be found up to order one in ‖�x − �x0‖ by solving :

∂D(t, �x)

∂t
= ∇�x

�f(t, γ(t, �x)).D(t, �x) D(0, �x) = ‖�x − �x0‖

If the three space dimensions are considered (x, y, z), and

since the previous equation is linear, it can be extended to

the matrix form :

dM(t)

dt
= ∇�x

�f(t, γ(t, �x)).M(t) M(0) = Id

Where each column of the M matrix corresponds to the

divergence associated to the principal coordinate axis. This

equation is called the variational equation of the flow.

The variational equation describes in some sense a lin-

ear dynamical system “tangent” to the original one. Let

U t(t)Σ(t)V (t) = M(t) be the singular value decomposition

of M(t). The Lyapunov exponents are mean values of the

logarithms of the diagonal elements of Σ(t):

κ(s) = − 1

T

∫ T

0

log(Σii(t))dt ∀Σii(t) ≤ 1

When Lyapunov exponents are high, the trajectory of a

point under the action of the dynamical system is very

sensitive to initial conditions (or to the parameters on which

the vector field may depend), so that, situation in the future

is unpredictable. On the other hand, small values of the Lya-

punov exponents mean that the future is highly predictable

(expected to be comfortable for a controller).

So, the Lyapunov exponent map determines the area where

the underlying dynamical system is organized. It identifies

the places where the relative distances between aircraft do

not change with time (low real value) and the ones where

such distance change a lot (high real value).

Let us now describe the practical al-

gorithm for computing complexity maps.

1) Dynamical regression based on radar observa-

tions.

2) The vector field and its associated gradient

is then computed on each point of a cube of

airspace.

3) Lyapunov exponents are computed at each

point of the cube by the mean of a Runge-

Kutta integration.

The figure 3 shows an example of Lyapunov exponents

map for which full organized miles in trail trajectories

(from south west to north east) cross two random traffic

situations. This figure shows clearly a complexity valley on

the miles in trail direction. This organization may have been

detected even if the miles in trail trajectories would have been

structured on a curve trajectory. That is the strong point of

this metric: Lyapunov exponents are able to identify any

kind of trajectory organization (when aircraft follow the

same trajectory at the same speed).

This approach is able to produce a picture of the com-

plexity at a given time. If we want to be able to predict the

Fig. 3. Miles in trail traffic between disordered areas

complexity in a near future, one must be able to take into

account time dimension in the model. This is the topic of

the following section.

V. NON LINEAR EXTENSION IN SPACE AND TIME

The previous extension, is able to model air traffic at a

given time but is not valid for observation with large time

extension.

In such case, the vector field �f has to be time dependent :

�̇X = �f( �X, t)

As before we are looking for a vector field which both

minimize the error criterion E1

minE1 =
i=N
∑

i=1

k=K
∑

k=1

‖�Vi(tk) − �f( �Xi, tk)‖2

and the smoothest criterion E2 :

minE2 =

∫

R3

∫

t

‖∆�f(�x)‖2 + ‖∂ �f

∂t
‖2d�xdt

The differential operator associated with this variational

problem is given by :

P =
∂2

∂t2
− μ∆2

An elementary solution can be found in S ′ as :

fp

(

1√
μ‖ξ‖2

)

e−|t|√μ|ξ|2

where the previous expression is the Fourier transform in

S ′, the space of rapidly decreasing smooth functions, with

respect to the spatial coordinates of the elementary solution

(fp stand for “Finite part” in the Hadamard sense). It turns

out that this distribution is indeed obtained from a L1
loc

(integrable on compact sets) mapping so that the inverse

Fourier transform can be obtained readily by integration as :

p(t, x) =
1

8π3

∫

R3

1√
μ‖ξ‖2

e(−|t|√μ‖ξ‖2)e(i〈x,ξ〉)dξ

by Fubini’s theorem and polar change of variables it be-

comes :

p(t, x) =
1

8π3√μ

∫

R

e(−|t|√μr2

∫

S2

e(i〈x,rs〉)dσ(s)dr
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with dσ the solid angle measure. Using a polar parametriza-

tion of the unit sphere :

p(t, x) =

1

8π3√μ

∫

R

e(−|t|√μr2)

∫ 2π

0

∫ π

0

e(i‖x‖r cos θ) sin θdθdφdr

and finally :

p(t, x) =
1

2π2√μ

∫

R

e(−|t|√μr2) sin ‖x‖r
‖x‖r dr

by Parseval equality :

p(t, x) =
1

4‖x‖π2

√

π

|t|√μ

∫

‖x‖
2π

− ‖x‖
2π

e

“

− π2ω2

|t|√μ

”

dω

so in terms of error function erf :

p(t, x) =
1

4π2‖x‖erf

(

‖x‖
2
√

|t|√μ

)

The exact solution for such joint minimization problem is

given by the following equation :

�f( �X, t) =

N
∑

i=1

K
∑

k=1

ψ(‖ �X(t)− �Xi(tk)‖, |t−tk|).�ai,k+A. �X+ �B

with

ψ(r, t) = diag

(

σ

r.
√

π
.erf

[

r

σ
.

1
√

2 + θ.|t|

])

where σ and θ are some parameters. Furthermore, a close

form of the gradient of the vector field has been identified :

∂ψ(r, t)

∂x
= (α − β).x

with

α =
2.σ

r2.π
.

1
√

2 + θ.|t|
.e

− r2

σ2.(2+θ.|t|) β =
ψ(r, t)

r2

r =
√

x2 + y2 + z2

The algorithm used to produce complexity map is the same

as in the space extension case unless, here, the field and the

associated gradient are time-dependent. As, before, one need

the contribution of all aircraft in order to compute the vector

field and its associated gradient at a given point. When few

observations are involved (≃ 2000) the previous algorithms

are tractable. When more observations are considered, one

can improve the regression phase by the mean of Krylov

spaces trick [6], [3] but the vector field reconstruction and

gradient computation become very slow.

Another limitation of the previous approaches is linked to

the robustness of the produced complexity maps. When such

tools are applied to a given traffic situation, the produced

maps measure the current complexity. When uncertainties

has to be taken into account (uncertainties in the future

position of aircraft or when we want to produce complexity

map for the entire airspace in order to compare different

countries (in such case flight plans are simulated with

relevant noise due to the wind, flight delay, etc...)), one must

use an approximation of the previous exact models for which

local linear models are used.

VI. APPROXIMATION BY LOCAL LINEAR MODELS

In order to speed up the computation of the vector field, we

have developed a local approximation for which only local

observations are needed for the regression. Before applying

such approximation, the observations are first normalized ac-

cording to the global linear model (A. �X + �B) by subtracting

the linear part to the observations :

�vi = �Vi − (A. �Xi + �B)

Then, such approximation will locally update the linear

regression model in order to fit observations.

The first order space-time linear expansion of a vector field
�f(t, �X) is given by the following expression :

�f(t0, �X0) = �f(t, �X) + ∂ �f(t, �X)
∂t

(t0 − t)+

+∂ �f(t, �X)

∂ �X
( �X0 − �X) + O(|t0 − t| + ‖ �X0 − �X‖)

where
∂ �f(t, �X)

∂t
is the time derivative vector of the vector field

f and +∂ �f(t, �X)

∂ �X
is the associated space derivatives matrix.

This equation represents a local linear model of the vector

field �f in the vicinity of (t, �X). This approximation is only

valid near a given point (t, �X). We propose to use this

model in order to compute the vector field base on a given

set of local observations. First, a point (t, �X) in the state

space is considered (a grid point) for which observations are

searched in its vicinity. The field at this point (�f(t, �X)) is

then computed in order to minimize the errors between local

observations �vi(ti, �Xi) and the linear expansion of the vector

field �f at the grid point (t, �X)

�vi(ti, �Xi) ≃ �f(t, �X) + ∂ �f(t, �X)
∂t

(ti − t) + ∂ �f(t, �X)

∂ �X
( �Xi − �X)

= �a +�b.(ti − t) + C.( �Xi − �X)

where �a = �f(t, �X), �b = ∂ �f(t, �X)
∂t

and [C] = ∂ �f(t, �X)

∂ �X

We are seeking vectors �a, �b and matrix [C] which mini-

mize the error criterion J :

min
�a,�b,C

J =
∑N

i=1 ‖�vi( �Xi, ti) −
{

�a +�b(ti − t) + C.( �Xi − �X)
}

‖2.ψi

(7)

where ψi = ψ(ti−t, �Xi− �X) is a space-time weight function

which select the closest observations. If we note

X =

⎡

⎢

⎢

⎢

⎢

⎣

1 ... 1
(t1 − t) ... (tN − t)
(x1 − x) ... (xN − x)
(y1 − y) ... (yN − y)
(z1 − z) ... (zN − z)

⎤

⎥

⎥

⎥

⎥

⎦

V =

⎡

⎣

vx1 ... vxN

vy1 ... vyN

vz1 ... vzN

⎤

⎦ Ψ =

⎡

⎣

ψ1 ... 0
... ... ...

0 ... ψN

⎤

⎦

M =

⎡

⎣

ax bx Cxx Cxy Cxz

ay by Cyx Cyy Cyz

az bz Czx Czy Czz

⎤

⎦
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The criterion J can be written as :

J = ‖Ψ(M.X − V ‖2 = (M.X − V )T .Ψ.(M.X − V )

By differentiating J with respect to M , we find :

Mopt = V.Ψ.XT (X.ΨXT )−1

In order to avoid condition trouble, a singular value decom-

position will be used to compute such matrix. We then pro-

pose the following algorithm to compute complexity maps :

1) Global linear regression (A. �X + �B)

2) Computation of the relative observations (�vi −
(A. �X + �B)).

3) For each grid point �X(t)

a) Compute the Local Linear Model (�a,�b, C)

b) Vector field computation ((A. �X + �B) +�b)

c) Gradient matrix computation A + C

4) Lyapunov exponents computation by time in-

tegration

Step 3 and 4 can be done in parallel in order to speed up

the computation.

A. Stochastic extension

When countries have to be compared in term of airspace,

one must consider many days of traffic with regular flight

plans for which observations are sample of a random process.

In this framework, positions of aircraft on their trajectories

undergo random deviations due to wind, delay, etc ... Even

when one want to predict complexity in a given area, one

must be able to take into account uncertainties of future

positions. For both applications, time shift random process is

the most relevant model, for which the time of observation

ti is replaced by ti − τ̃i, where τ̃i is a random variables (all

random variable will be note with a upper tilde .̃).

Then ti is now a random variable : t̃i = ti − τ̃i We have
�̃Xi = �γ(t̃i), �̃vi = �̇γ(t̃i)−A. �̃Xi + �B and ψ̃i = ψ(t̃i − t, �̃Xi −
�X), where �γ(t) is the aircraft trajectory. The criterion J

becomes a random variable and we are seeking �a, �b, C in

order to minimize the expected value of J :

min
�a,�b,C

E[J̃ ] =
∑N

i=1 E
[

‖�̃vi −
[

�a +�b.(t̃i − t) + C.( �̃Xi − �X)
]

‖2.ψ̃i

]

(8)

If we note E[Ṽ ],E[X̃] and E[Ψ̃] the expected value of the

random matrices Ṽ ,X̃ ,Ψ̃ the criterion E[J̃ ] can be written

as :

E[J̃ ] = ‖E[Ψ̃](M.E[X̃] − E[Ṽ ])‖2

= (M.E[X̃] − E[Ṽ ])T .E[Ψ̃].(M.E[X̃] − E[Ṽ ])

By differentiating E[J̃ ] with respect to M , we find :

Mopt = E[Ṽ ].E[Ψ̃].E[X̃]T (E[X̃].E[Ψ̃]E[X̃]T )−1

The same algorithm as the one propose in the deterministic

case will be used for computing complexity maps.

VII. CONCLUSION

We have presented in this paper a new air traffic complex-

ity metric based on vector field model of air traffic. Most of

the work has been devoted to improvements in interpolating

splines used to fit a vector field to the observation. Unlike

linear models which produce mean complexity indicators,

the non-linear one may give local information, thus pro-

viding a way of displaying maps of complexity. A local

approximation has also been proposed in order to parallelize

the computation and to improve the robustness of the map

produced when time shift noise is included in observations.

In a future work, such a tool will be applied to comparison

of US and Europe airspace by producing complexity map of

USA and Europe for a full day of traffic.
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