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Douglas-Rachford Splitting: Complexity Estimates and Accelerated
Variants

Panagiotis Patrinos and Lorenzo Stella and Alberto Bemporad

Abstract— We propose a new approach for analyzing con-
vergence of the Douglas-Rachford splitting method for solving
convex composite optimization problems. The approach is based
on a continuously differentiable function, theDouglas-Rachford
Envelope (DRE), whose stationary points correspond to the
solutions of the original (possibly nonsmooth) problem. By
proving the equivalence between the Douglas-Rachford splitting
method and a scaled gradient method applied to the DRE,
results from smooth unconstrained optimization are employed
to analyze convergence properties of DRS, to tune the method
and to derive an accelerated version of it.

I. I NTRODUCTION

In this paper we consider convex optimization problems
of the form

minimize F (x) = f(x) + g(x), (1)

where f : IRn → IR and g : IRn → IR are proper
closed convex functions with easily computableproximal
mappings[1]. We recall that for a convex functionh : IRn →
IR and positive scalarγ, the proximal mapping is defined as

proxγh(x) = argmin
z

{

h(z) + 1
2γ ‖z − x‖2

}

. (2)

A well known algorithm for solving (1) is the Douglas-
Rachford splitting (DRS) method [2]. In fact, DRS can be
applied to solve the more general problem of finding the
zero of two maximal monotone operators. In the special case
where the corresponding operators are the subdifferentials of
f andg, DRS amounts to the following iterations

yk = proxγf (x
k), (3a)

zk = proxγg(2y
k − xk), (3b)

xk+1 = xk + λk(z
k − yk), (3c)

where γ > 0 and the stepsizesλk ∈ [0, 2] satisfy
∑

k∈N
λk(2 − λk) = +∞. A typical choice forλk is to

be set equal to1 for all k. If the minimum in (1) is attained
and the relative interiors of the effective domains off and
g have a point in common, then it is well known that
{zk − yk} converges to0, and {xk} converges tox such
that proxγf(x) ∈ argminF [3]–[5]. Therefore{yk} and
{zk} converge to a solution of (1). This general form of
DRS was proposed by [3], [4], where it was shown that
DRS is a particular case of the proximal point algorithm [1].
Thus DRS converges under very general assumptions. For
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example, unlike forward-backward splitting (FBS) [6], it
does not require differentiability of one of the two summands
and parameterγ can take any positive value.

Another well-known application of DRS is for solving
problems of the form

minimize f(x) + g(z), (4)

subject to Ax +Bz = b.

Applying DRS to the dual of problem (4) leads to the
alternating direction method of multipliers (ADMM) [3], [4],
[7]. This method has recently received a lot of attention,
especially because of its properties with respect to separable
objective functions, that make it favorable for large-scale
problems and distributed applications [8], [9].

However, when applied to (1), the behavior of DRS is
quite different compared to standard optimization methods.
For example, unlike FBS, DRS is not a descent method,
in that the sequence of cost values{F (xk)} may not be
monotone decreasing. This is perhaps one of the main
reasons why the convergence rate of DRS has not been
well understood and convergence rate results were scarce,
until very recently. The first convergence result for DRS
appeared in [2]. Translated to the setting of solving (1), under
strong convexity and Lipschitz continuity assumptions for
f , the sequence{xk} was shown to convergeQ-linearly to
the (unique) optimal solution of (1). More recently, it was
shown that iff is differentiable then the squared residual
‖xk − proxγg(x

k − γ∇f(xk))‖2 converges to zero with
sublinear rate of1/k [10]. In [11] convergence rates of
order1/k for the objective values are provided implicitly for
DRS under the assumption that bothf andg have Lipschitz
continuous gradients. Under the additional assumption that
f is quadratic, the authors of [11] give an accelerated
version with convergence rate1/k2. In [12] the authors
show global linear convergence for ADMM under a variety
of scenarios. Translated in the DRS setting, they require
at leastf to be strongly convex with Lipschitz continuous
gradient. In [13]R-linear convergence of the duality gap and
primal cost for multiple splitting ADMM under less stringent
assumptions is shown, provided that the stepsizesλk are
sufficiently small. However, the form of the convergence rate
is not very informative, since the bound on the stepsizes
depends on constants that are very hard to compute. In [14]
it is shown that ADMM converges linearly for quadratic
programs with the constraint matrix being full rank. However
explicit complexity estimates are only provided for the
(infrequent) case where the constraint matrix is full row rank.
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Convergence rates of DRS and ADMM are analyzed under
various assumptions in the recent paper [15].

A. Our contribution

In this paper we follow a new approach to the analysis of
the convergence properties and complexity estimates of DRS.
We show that whenf is twice continuously differentiable,
then problem (1) is equivalent to computing a stationary
point of a continuously differentiable function, theDouglas-
Rachford Envelope (DRE). Specifically, DRS is shown to be
nothing more than a (scaled) gradient method applied to the
DRE. This kind of interpretation is similar to the one offered
by the Moreau envelope for the proximal point algorithm
and paves the way for deriving new algorithms based on the
Douglas-Rachford splitting approach.

A similar idea has been exploited in [16], [17] in order
to express another splitting method, the forward-backward
splitting, as a gradient method applied to the so-called
Forward-Backward Envelope (FBE). There the purpose was
use the FBE as a merit function on which to perform Newton-
like methods with superlinear local convergence rates to
solve non differentiable problems. Here the purpose is in-
stead to analyze the convergence rate properties of Douglas-
Rachford splitting by expressing it as a gradient method.
Specifically, we show that iff is convex quadratic (butg
can still be any convex nonsmooth function) then the DRE
is convex with Lipschitz continuous gradient, provided that
γ is sufficiently small. This covers a wide variety of prob-
lems such as quadratic programs,ℓ1 least squares, nuclear
norm regularized least squares, image restoration/denoising
problems involving total variation minimization norm, etc.
This observation makes convergence rate analysis of DRS
extremely easy, since it allows us to directly apply the
well known complexity estimates of the gradient method.
Furthermore, we discuss the optimal choice of the parameter
γ and of the stepsizeλk defining the method, and devise
a method with faster convergence rates by exploiting the
acceleration techniques introduced by Nesterov [18], [19,
Sec. 2.2].

The paper is structured as follows. In Section II we define
the Douglas-Rachford envelope and analyze its properties,il-
lustrating how DRS is equivalent to a scaled gradient method
applied to the DRE. Section III discusses the convergence of
Douglas-Rachford splitting in the particular but important
case in whichf is convex quadratic, where the DRE turns
out to be convex. Section IV considers the application of
accelerated gradient methods to the DRE to achieve faster
convergence rates. Finally, Section V shows experimental
results obtained with the proposed methods.

II. D OUGLAS-RACHFORD ENVELOPE

We indicate byX⋆ the set of optimal solutions to prob-
lem (1), which we assume to be nonempty. Thenx⋆ ∈ X⋆

if and only if [5, Cor. 26.3]x⋆ = proxγf(x̃), wherex̃ is a
solution of

proxγg(2 proxγf(x) − x)− proxγf(x) = 0. (5)

Let X̃ be the set of solutions to (5). Our goal is to find a
continuously differentiable function whose set of stationary
points is equal toX̃.

Given a functionh : IRn → IR, consider itsMoreau
envelope

hγ(x) = inf
z

{

h(z) + 1
2γ ‖z − x‖2

}

.

It is well known thathγ : IRn → IR is differentiable (even
if h is nonsmooth) with(1/γ)-Lipschitz continuous gradient

∇hγ(x) = γ−1(x− proxγh(x)). (6)

By using (6) we can rewrite (5) as

∇fγ(x) +∇gγ(x− 2γ∇fγ(x)) = 0. (7)

From now on we make the extra assumption thatf is
twice continuously differentiable, withLf -Lipschitz contin-
uous gradient. We also assume thatf has strong convexity
modulus equal toµf ≥ 0, i.e., function f(x) − µf

2 ‖x‖2
is convex. Notice that we allowµf to be equal to zero,
including also the case wheref is not strongly convex. Due
to these assumptions we have

‖∇2f(x)‖≤ Lf , for all x ∈ IRn. (8)

Moreover, from [20, Prop. 4.1, Th. 4.7] the Jacobian of
proxγf and the Hessian offγ exist everywhere and are
related to each other as follows:

∇ proxγf(x) = (I + γ∇2f(proxγf (x)))
−1, (9)

∇2fγ(x) = γ−1(I −∇ proxγf (x)). (10)

Using (8)-(10) one can easily show that for anyd ∈ IRn

µf

1+γµf
‖d‖2≤ d′∇2fγ(x)d ≤ Lf

1+γLf
‖d‖2. (11)

In other words, iff is twice continuously differentiable with
Lf -Lipschitz continuous gradient then the eigenvalues of the
Hessian of its Moreau envelope are bounded uniformly for
everyx ∈ IRn.

Next, we premultiply (7) by(I − 2γ∇2fγ(x)) to obtain
the gradient of what we call theDouglas-Rachford Envelope
(DRE):

FDR
γ (x) = fγ(x)−γ‖∇fγ(x)‖2+gγ(x−2γ∇fγ(x)). (12)

If (I − 2γ∇2fγ(x)) is nonsingular for everyx, then every
stationary point ofFDR

γ is also an element of̃X, and vice
versa. From (11) we obtain

1−γLf

1+γLf
‖d‖2≤ d′(I − 2γ∇2fγ(x))d ≤ 1−γµf

1+γµf
‖d‖2. (13)

Therefore wheneverγ < 1/Lf or γ > 1/µf (in case where
µf > 0), finding a stationary point of the DRE (12) is
equivalent to solving (5).

It is convenient now to introduce the following notation:

Pγ(x) = proxγf(x),

Gγ(x) = proxγg(2Pγ(x) − x),

Zγ(x) = Pγ(x)−Gγ(x),



so that condition (5) is expressed asZγ(x) = 0. By (10) we
can rewriteI − 2γ∇2fγ(x) = 2∇Pγ(x) − I, therefore the
gradient of the DRE can be expressed as

∇FDR
γ (x) = γ−1(2∇Pγ(x)− I)Zγ(x). (14)

The following proposition is instrumental in establishing
an equivalence between problem (1) and that of minimizing
the DRE.

Proposition 1: The following inequalities hold for any
γ > 0 andx ∈ IRn:

FDR
γ (x) ≤ F (Pγ(x)) − 1

2γ ‖Zγ(x)‖2, (15a)

FDR
γ (x) ≥ F (Gγ(x)) +

1−γLf

2γ ‖Zγ(x)‖2. (15b)
Proof: See Appendix.

The following fundamental result shows, under the as-
sumption ofγ being sufficiently small, that minimizing the
DRE, which is real-valued and smooth, is completely equiv-
alent to solving the nonsmooth problem (1). Furthermore,
the set of stationary points of the DRE, which may not be
convex, coincide with the set of its minimizers.

Theorem 1:If γ ∈ (0, 1/Lf) then

inf F = inf FDR
γ ,

argmin F = Pγ(argmin FDR
γ ).

Proof: By [5, Cor. 26.3] we know thatx⋆ ∈ X⋆ if and
only if x⋆ = Pγ(x̃), for somex̃ ∈ X̃, i.e., with Pγ(x̃) =
Gγ(x̃). Puttingx = x̃ in (15a), (15b) one obtains

FDR
γ (x̃) = F (x⋆).

Whenγ < 1/Lf , Eq. (15b) implies that for allx ∈ IRn

FDR
γ (x) ≥ F (Gγ(x)) ≥ F (x⋆) = FDR

γ (x̃), (16)

where the last inequality follows from optimality ofx⋆.
Therefore the elements of̃X are minimizers ofFDR

γ and
inf F = inf FDR

γ . They are indeed the only minimizers, for
if x /∈ X̃ thenZγ(x) 6= 0 in (15b), and the first inequality
in (16) is strict.

A. DRS as a variable-metric gradient method

In simple words, Theorem 1 tells us that under suitable
assumptions onγ, one can employ whichever smooth un-
constrained optimization technique for minimizing the DRE
and thus solve (1). The resulting algorithm will of course
bear a close relationship to DRS since the gradient of the
DRE, cf. (14), is inherently related to a step of DRS, cf. (3).

In particular, from the expression (14) for∇FDR
γ , one

observes that Douglas-Rachford splitting can be interpreted
as a variable-metric gradient method for minimizingFDR

γ .
Specifically, we have that thex-iterates defined by (3)
correspond to

xk+1 = xk − λkD
k∇FDR

γ (xk), (17)

where
Dk = γ(2∇Pγ(x

k)− I)−1. (18)

We can then exploit all the well known convergence results
of gradient methods to analyze the properties of DRS or
propose alternative schemes of it.

B. Connection between DRS and FBS

The DRE reveals an interesting link between Douglas-
Rachford splitting and forward-backward splitting, that has
remained unnoticed at least to our knowledge. Let us first
derive an alternative way of expressing the DRE. Since
Pγ(x) = argminz{f(z) + 1

2‖z − x‖2} satisfies

∇f(Pγ(x)) + γ−1(Pγ(x)− x) = 0, (19)

the gradient of the Moreau envelope off becomes

∇fγ(x) = γ−1(x− Pγ(x)) = ∇f(Pγ(x)). (20)

Using (19), (20) in (12) we obtain the following alternative
expression for the DRE

FDR
γ =f(Pγ(x))− γ

2‖∇f(Pγ(x))‖2+gγ(2Pγ(x)−x), (21)

Next, using the definition ofgγ in (21), it is possible to
express

FDR
γ (x) = min

z∈IRn
{f(Pγ(x)) +∇f(Pγ(x))

′(z − Pγ(x))

+ g(z) + 1
2γ ‖z − Pγ(x)‖2}. (22)

Comparing this with the definition of the forward-backward
envelope (FBE) introduced in [16]

FFB
γ (x) = min

z∈IRn
{f(x)+∇f(x)′(z−x)+g(z)+ 1

2γ ‖z−x‖
2},

it is apparent that the DRE atx is equal to the FBE evaluated
at Pγ(x):

FDR
γ (x) = FFB

γ (Pγ(x)).

Let us recall here that iteratesxk+1 of FBS are obtained by
solving the optimization problem appearing in the definition
of FBE for x = xk. Therefore, it can be easily seen that
an iteration of DRS corresponds to a forward-backward step
applied toproxγf(x

k) (instead ofxk, as in FBS).

III. D OUGLAS-RACHFORD SPLITTING

In casef is convex quadratic,i.e.,

f(x) = 1
2x

′Qx+ q′x,

with Q ∈ IRn×n symmetric and positive semidefinite and
q ∈ IRn, we have

Pγ(x) = (I + γQ)−1(x− γq), (23)

∇Pγ(x) = (I + γQ)−1. (24)

We now haveµf = λmin(Q) andLf = λmax(Q). It turns
out that in this case, under the already mentioned assumption
γ < 1/Lf , the DRE is convex.

Theorem 2:Suppose thatf is convex quadratic. Ifγ <
1/Lf , thenFDR

γ is convex withLFDR
γ

-Lipschitz continuous
gradient and convexity modulusµFDR

γ
given by

LFDR
γ

=
1− γµf

1 + γµf
γ−1, (25)

µFDR
γ

= min

{

(1− γµf)µf

(1 + γµf)2
,
(1− γLf)Lf

(1 + γLf)2

}

. (26)



Proof: Using (14), (24), (13) and Lemma 2 in the
Appendix, we obtain

‖∇FDR
γ (x1)−∇FDR

γ (x2)‖ ≤ γ−1‖2(I + γQ)−1 − I‖
· ‖Zγ(x1)− Zγ(x2)‖

≤
(

2
1+γµf

− 1
)

γ−1‖x1 − x2‖.

Next, due to the form ofPγ , cf. (23) it is evident that
f(Pγ(x)) − γ

2‖∇f(Pγ(x))‖2 is quadratic with Hessian

H = (I + γQ)−1(I − γQ)Q(I + γQ)−1.

The eigenvalues ofH are given by (1−γλi)λi

(1+γλi)2
, whereλi,

i = 1, . . . , n are the eigenvalues ofQ. Consider the function

ψ(λ) = (1−γλ)λ
(1+γλ)2 .

If γ < 1/Lf , ψ is concave and its minimum is attained
in one of the two endpoints of the interval[µf , Lf ]. The
minimum eigenvalue off(Pγ(x))− γ

2‖∇f(Pγ(x))‖2 is then
given by (26). On the other hand,gγ(x − 2γ∇fγ(x)) is
convex as the composition of the convex functiongγ with
an affine map. Therefore, the DRE as expressed by (21),
is the sum of two functions, one of them being (strongly)
convex with modulusµFDR

γ
and the other convex. Hence it

is (strongly) convex with modulusµFDR
γ

.
Therefore, under the assumptions of Theorem 2, we can

exploit the well known results on the convergence of the
gradient method for convex problems. To do so, note that
whenf is quadratic,Pγ is linear and the scaling matrixDk

defined in (18) is constant,i.e.,

Dk ≡ D = γ(2(I + γQ)−1 − I)−1.

Consider the linear change of variablesx = Sw, whereS =
D1/2. Note that

λmin(D) = γ
1 + γµf

1− γµf
, λmax(D) = γ

1 + γLf

1− γLf
, (27)

so if γ < 1/Lf ≤ 1/µf then matrixD is positive definite
andS is well defined.

In the new variablew, the scaled gradient iterations (17)
correspond to the (unscaled) gradient method applied to the
preconditioned problem

minimize h(w) = FDR
γ (Sw).

Indeed, the gradient method applied onh is

wk+1 = wk − λk∇h(wk) (28)

Multiplying by S and using∇h(wk) = S∇FDR
γ (Swk), we

obtain
xk+1 = xk − λkD∇FDR

γ (xk).

Recalling (14), this becomes

xk+1 = xk − λkZγ(x
k),

which is exactly DRS, cf. (3). From now on we will indicate
by w̃ a minimizer ofh, so thatw̃ = Sx̃ for somex̃ ∈ X̃.
From Theorem 2 we know that ifγ < 1/Lf thenFDR

γ is

convex with Lipschitz continuous gradient, and so ish. In
particular,

µh = λmin(D)µFDR
γ
, (29)

Lh = λmax(D)LFDR
γ

=
1 + γLf

1− γLf
. (30)

Theorem 3:For convex quadraticf , if γ < 1/Lf and

λk = λ = (1− γLf )/(1 + γLf) (31)

then the sequence of iterates generated by (3a)-(3c) satisfies

F (zk+1)− F⋆ ≤ 1

(2γλ)k
‖x0 − x̃‖2.

Proof: Douglas-Rachford splitting (3) corresponds to
the gradient descent iterations (28). So by settingλ = 1/Lh

one has:

h(wk)− h(w̃) ≤ Lh

2k
‖w0 − w̃‖2,

see for example [21, Prop. 6.10.2]. Applying the substitution
x = Sw, and considering that

λ−1
max(D)‖x‖2≤ ‖x‖2D−1≤ λ−1

min(D)‖x‖2, ∀x ∈ IRn (32)

one obtains

FDR
γ (xk)− FDR

γ (x̃) ≤ Lh

2k
‖x0 − x̃‖2D−1

≤ 1

2k

1 + γLf

(1− γLf)

1

λmin(D)
‖x0 − x̃‖2

=
1

2k

1 + γLf

γ(1− γLf)
‖x0 − x̃‖2,

where the last equality holds considering (27). The claim
follows by zk = Gγ(x

k), Theorem 1 and inequality (15b).

From Theorem 3 we easily obtain the following optimal
value ofγ:

γ⋆ = argmin
γ

1 + γLf

γ(1− γLf)
=

√
2− 1

Lf
. (33)

For this particular value ofγ⋆ the stepsize becomes equal to
λk =

√
2− 1. In the strongly convex case we instead obtain

the following stronger result.
Theorem 4:If µf > 0 and λk = λ ∈ (0, 2/(Lh + µh)]

then

‖yk − x⋆‖2≤
λmax(D)

λmin(D)

(

1− 2λµhLh

µh + Lh

)k

‖x0 − x̃‖2.
Proof: Just like in the proof of Theorem 3, iteration (28)

is the standard gradient method applied toh. If f is strongly
convex then we have, using (26) and (29), that alsoh is
strongly convex. From [19, Th. 2.1.15] we have

‖wk − w̃‖2≤
(

1− 2λµhLh

µh + Lh

)k

‖w0 − w̃‖2.

Applying the substitutionx = Sw we get

‖xk − x̃‖2D−1≤
(

1− 2λµhLh

µh + Lh

)k

‖x0 − x̃‖2D−1 .



The thesis follows considering (32) and that

‖yk − x⋆‖2= ‖proxγf (xk)− proxγf(x̃)‖2≤ ‖xk − x̃‖2,
where the equality holds sincex⋆ = proxγf(x̃), and the
inequality by nonexpansiveness ofproxγf .

IV. FAST DOUGLAS-RACHFORD SPLITTING

We have shown that DRS is equivalent to the gradient
method minimizingh(w) = FDR

γ (Sw). In the quadratic
case, since forγ < 1/Lf we know thatFDR

γ (x) is convex,
we can as well apply the optimal first order methods due
to Nesterov [18], [19, Sec. 2.2] to the same problem. This
way we obtain afast Douglas-Rachford splittingmethod.
The scheme is as follows: givenu0 = x0 ∈ IRn, iterate

yk = proxγf(u
k), (34a)

zk = proxγg(2y
k − uk), (34b)

xk+1 = uk + λk(z
k − yk), (34c)

uk+1 = xk+1 + βk(x
k+1 − xk). (34d)

We have the following estimates regarding the convergence
rate of iterations (34a)-(34d), whose proofs are based on [19].

Theorem 5:For convex quadraticf , if γ < 1/Lf , λk are
given by (31) and

βk =

{

0 if k = 0,
k−1
k+2 if k > 0,

then the sequence of iterates generated by (34a)-(34d) satis-
fies

F (zk)− F⋆ ≤ 2

γλ(k + 2)2
‖x0 − x̃‖2.

Proof: The iterations correspond to the optimal method
described in [21, Sec. 6.10.2], applied toh. By [21, Prop.
6.10.3] the iterates satisfy

h(wk)− h(w̃) ≤ 2Lh

(k + 2)2
‖w0 − w̃‖2.

Switching to the variablex = Sw we get

FDR
γ (xk)− FDR

γ (x̃) ≤ 2Lh

(k + 2)2
‖x0 − x̃‖2D−1

≤ 1

λmin(D)

2Lh

(k + 2)2
‖x0 − x̃‖2

=
λmax(D)

λmin(D)

2LFDR
γ

(k + 2)2
‖x0 − x̃‖2

=
1 + γLf

γ(1− γLf)

2

(k + 2)2
‖x0 − x̃‖2.

Sincezk = Gγ(x
k), the result follows by invoking inequal-

ity (15b) and Theorem 1.
The optimal choice forγ is againγ⋆ = (

√
2− 1)/Lf . We

similarly obtain complexity bounds for the strongly convex
case, as described in the following result.

Theorem 6:If f is strongly convex quadratic,γ < 1/Lf ,
λk are given by (31) and

βk =
1−

√

µh/Lh

1 +
√

µh/Lh

,

then the sequence of iterates generated by (34a)-(34d) satis-
fies

F (zk)− F⋆ ≤ Lh

λmin(D)

(

1−
√

µh

Lh

)k

‖x0 − x⋆‖2.
Proof: The proof proceeds similarly to the previous

one. The algorithm corresponds to iterations [19, Eq. 2.2.9]
applied toh, and [19, Th. 2.2.3] tells us that

h(wk)− h(w̃) ≤ Lh

(

1−
√

µh

Lh

)k

‖w0 − w̃‖2.

The latter is equivalent to

FDR
γ (xk)− FDR

γ (x̃) ≤ Lh

(

1−
√

µh

Lh

)k

‖x0 − x̃‖2D−1

≤ Lh

λmin(D)

(

1−
√

µh

Lh

)k

‖x0 − x̃‖2.

Again, zk = Gγ(x
k), Theorem 1 and inequality (15b)

complete the result.

V. SIMULATIONS

A. Box-constrained QP

We tested our analysis against numerical results obtained
by applying the considered methods to the following box-
constrained convex quadratic program

minimize 1
2x

′Qx+ q′x

subject to l ≤ x ≤ u,

whereQ ∈ IRn×n is symmetric and positive semidefinite,
while q, l, u ∈ IRn. The problem is expressed in composite
form by setting

f(x) = 1
2x

′Qx+ q′x, g(x) = δ[l,u](x),

where δC is the indicator function of the convex setC.
As it was pointed out in Section III, the proximal mapping
associated withf is linear

proxγf(x) = (I + γQ)−1(x− γq).

The proximal mapping associated withg is simply the pro-
jection onto the[l, u] box,proxγg(x) = Π[l,u](x). Tests were
performed on problems generated randomly as described
in [22]. In Figure 1 we illustrate the performance of DRS
for different choices of the parameterγ. Figure 2 compares
the standard DRS and the accelerated method (34a)-(34d).

B. Sparse least squares

The well known ℓ1-regularized least squares problem
consists of finding a sparse solution to an underdetermined
linear system. The goal is achieved by solving

minimize 1
2‖Ax− b‖22+ρ‖x‖1,

where A ∈ IRm×n and b ∈ IRm. The regularization
parameterρ modulates between a low residual‖Ax − b‖22
and a sparse solution. In this case the proximal mapping
with respect tof is

proxγf (x) = (A′A+ γ−1I)−1(A′b+ γ−1x),
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Fig. 2: Comparison between DRS and its accelerated variant,
for γ = γ⋆, applied to a randomly generated box-constrained
QP with n = 500.

while proxγg is the followingsoft-thresholdingoperator,
[

proxγg(x)
]

i
= sign(xi) ·max{0, |xi|−γρ}, i = 1, . . . n.

Random problems were generated according to [23], and the
results are shown in Figure 3 and 4, where we compare dif-
ferent choices forγ and the fast Douglas-Rachford iterations.

VI. CONCLUSIONS& FUTURE WORK

In this paper we dealt with convex composite minimiza-
tion problems. We introduced a continuously differentiable
function, namely the Douglas-Rachford Envelope (DRE). Its
minimizers, under suitable assumptions, are in a one-to-one
correspondence with the solutions of the original convex
composite optimization problem. We observed how the DRS
iterations, for finding zeros of the sum of two maximal mono-
tone operatorsA andB, are equivalent to a scaled uncon-
strained gradient method applied to the DRE, whenA = ∂f
andB = ∂g andf is twice continuously differentiable with
Lipschitz continuous gradient. This allowed us to to apply
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Fig. 3: Comparison of different choices ofγ for a random
ℓ1 least squares problem, withm = 100, n = 1000.
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Fig. 4: DRS and its accelerated variant, withγ = γ⋆,
applied to a random sparse least squares problem of size
m = 100, n = 1000.

well-known results of smooth unconstrained optimization to
analyze the convergence of DRS in the particular case of
f being convex quadratic. Moreover, we have been able to
apply and analyze optimal first-order methods and obtain a
fast Douglas-Rachford splitting method. Ongoing work on
this topic include exploiting the illustrated results to study
convergence properties of ADMM.
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APPENDIX

We provide here all the proofs and technical lemmas
omitted in the article.

Proof of Proposition 1:First we will need the following
lemma.

Lemma 1:Suppose thath : IRn → IR is proper, closed,
convex. Then for ally ∈ IRn, z ∈ IRn

h(z) + 1
2γ ‖z − y‖2 ≥ h(proxγh(y)) +

1
2γ ‖proxγh(y)− y‖2

+ 1
2γ ‖z − proxγh(y)‖2.

Proof: Let us denote, for brevity,yγ = proxγh(y).
Functionφ(z) = 1

2γ ‖z−y‖2 is strongly convex with modulus

γ−1. For anyv ∈ ∂h(yγ) we have, by strong convexity of
h(z) + φ(z),

h(z) + φ(z) = h(z) + 1
2γ ‖z − y‖2

≥ h(yγ) +
1
2γ ‖yγ − y‖2

+ (v + 1
γ (yγ − y))′(z − yγ)

+ 1
2γ ‖z − yγ‖2.

The result follows by consideringv = 1
γ (y−yγ), which is an

element of∂h(yγ) by the optimality condition forproxγh(y).

Now we can proceed with the proof of Proposition 1. Due
to (22), an alternative expression for the DRE is the following

FDR
γ (x) = f(Pγ(x)) + g(Gγ(x)) +

1
2γ ‖Gγ(x) − Pγ(x)‖2

+ γ−1(Gγ(x)− Pγ(x))
′(x− Pγ(x)). (35)

In order to obtain (15a), apply Lemma 1 forh = g, y =
2Pγ(x) − x. We have that for allz ∈ IRn

g(z) + 1
2γ ‖z − (2Pγ(x)− x)‖2

≥ g(Gγ(x)) +
1
2γ ‖Gγ(x) − (2Pγ(x) − x)‖2

+ 1
2γ ‖z −Gγ(x)‖2.

Puttingz = Pγ(x) in the above,

g(Pγ(x)) +
1
2γ ‖x− Pγ(x)‖2

≥ g(Gγ(x)) +
1
2γ ‖Gγ(x) − Pγ(x) + x− Pγ(x)‖2

+ 1
2γ ‖Pγ(x)−Gγ(x)‖2

= g(Gγ(x)) +
1
2γ ‖Gγ(x) − Pγ(x)‖2

+ 1
2γ ‖x− Pγ(x)‖2

+ γ−1(Gγ(x)− Pγ(x))
′(x− Pγ(x))

+ 1
2γ ‖Pγ(x)−Gγ(x)‖2.

Therefore,

g(Pγ(x)) ≥ g(Gγ(x)) +
1
2γ ‖Gγ(x)− Pγ(x)‖2

+ γ−1(Gγ(x)− Pγ(x))
′(x− Pγ(x))

+ 1
2γ ‖Pγ(x)−Gγ(x)‖2.

Adding f(Pγ(x)) to both sides,

F (Pγ(x)) ≥ f(Pγ(x)) + g(Gγ(x)) +
1
2γ ‖Gγ(x) − Pγ(x)‖2

+ γ−1(Gγ(x) − Pγ(x))
′(x − Pγ(x))

+ 1
2γ ‖Pγ(x) −Gγ(x)‖2.

We obtain the result by recalling (35). Inequality (15b) is

http://www.mia.uni-saarland.de/Publications/goldstein-cam12-35.pdf


obtained as follows,

F (Gγ(x)) = f(Gγ(x)) + g(Gγ(x))

≤ f(Pγ(x)) + g(Gγ(x))

+∇f(Pγ(x))
′(Gγ(x) − Pγ(x))

+
Lf

2 ‖Gγ(x)− Pγ(x)‖2

= f(Pγ(x)) + g(Gγ(x))

+ γ−1(Gγ(x) − Pγ(x))
′(x − Pγ(x))

+
Lf

2 ‖Gγ(x)− Pγ(x)‖2

= FDR
γ (x) − 1−γLf

2γ ‖Gγ(x)− Pγ(x)‖2,

where the first inequality follows from the Lipschitz conti-
nuity of ∇f and the last equality from (35). �

The next basic result is used in the proof of Theorem 2.
Lemma 2:MappingZγ : IRn → IRn is nonexpansive.

Proof: We can expressZγ as

Zγ(x) =
1
2 (x− T (x)),

where T = Rγ∂g ◦ Rγ∂f and Rγ∂f , Rγ∂g are called
reflected resolvent[5, Chap. 23] of∂f and∂g, respectively.
Reflected resolvents of maximal monotone mappings (such
as the subdifferential of a convex function) are known to be
nonexpansive [5, Cor. 23.10], and so is their compositionT .
Then we have

‖T (x1)− T (x2)‖≤ ‖x1 − x2‖,

for all x1, x2 ∈ IRn, or

‖−2(Zγ(x1)− Zγ(x2)) + (x1 − x2)‖≤ ‖x1 − x2‖.
Using the reverse triangle inequality

2‖Zγ(x1)− Zγ(x2)‖−‖x1 − x2‖≤ ‖x1 − x2‖,

or
‖Zγ(x1)− Zγ(x2)‖≤ ‖x1 − x2‖,

i.e., Zγ is nonexpansive.


	I Introduction
	I-A Our contribution

	II Douglas-Rachford Envelope
	II-A DRS as a variable-metric gradient method
	II-B Connection between DRS and FBS

	III Douglas-Rachford Splitting
	IV Fast Douglas-Rachford splitting
	V Simulations
	V-A Box-constrained QP
	V-B Sparse least squares

	VI Conclusions & Future Work
	References
	Appendix

