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Abstract— Cloud applications are often subject to unexpected
events like flash crowds and hardware failures. Without a
predictable behaviour, users may abandon an unresponsive
application. This problem has been partially solved on two
separate fronts: first, by adding a self-adaptive feature called
brownout inside cloud applications to bound response times
by modulating user experience, and, second, by introducing
replicas — copies of the applications having the same function-
alities — for redundancy and adding a load-balancer to direct
incoming traffic.

However, existing load-balancing strategies interfere with
brownout self-adaptivity. Load-balancers are often based on
response times, that are already controlled by the self-adaptive
features of the application, hence they are not a good indicator
of how well a replica is performing.

In this paper, we present novel load-balancing strategies,
specifically designed to support brownout applications. They
base their decision not on response time, but on user expe-
rience degradation. We implemented our strategies in a self-
adaptive application simulator, together with some state-of-the-
art solutions. Results obtained in multiple scenarios show that
the proposed strategies bring significant improvements when
compared to the state-of-the-art ones.

I. INTRODUCTION

Cloud computing has dramatically changed the manage-
ment of computing infrastructures. On one hand, public
infrastructure providers, such as Amazon EC2, allow service
providers, such as Dropbox and Netflix, to deploy their
services on large infrastructures with no upfront cost [9],
by simply leasing computing capacity in the form of Virtual
Machines (VMs). On the other hand, the flexibility offered
by cloud technologies, which allow VMs to be hosted by any
Physical Machine (PM) (or server), favors the adoption of
private clouds [17]. Therefore, self-hosting service providers
themselves are converting their computing infrastructures
into small clouds.

One of the main issues with cloud computing infrastruc-
tures is application robustness to unexpected events. For
example, flash-crowds are sudden increments of end-users,
that may raise the required capacity up to five times [7].
Similarly, hardware failures may temporarily reduce the
capacity of the infrastructure, while the failure is repaired [5].
Also, unexpected performance degradations may arise due to
workload consolidation and the resulting interference among
co-located applications [27]. Due to the large magnitude and
short duration of such events, it may be economically too
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costly to keep enough spare capacity to properly deal with
them. As a result, unexpected events may lead to infra-
structure overload, that translates to unresponsive services,
leading to dissatisfied end-users and revenue loss.

Cloud services therefore greatly benefit from self-
adaptation techniques [35], such as brownout [21, 25]. A
brownout service adapts itself by reducing the amount of
computations it executes to serve a request, so as to maintain
response time around a given setpoint. In essence, some
computations are marked as mandatory — for example,
displaying product information in an e-commerce website
— while others are optional — for example, recommending
similar products. Whenever an end-user request is received,
the service can choose to execute the optional code or not
according to its available capacity, and to the previously
measured response times. Note that executing optional code
directly translates into a better service for the end-user
and more revenue for the service provider. This approach
has proved to be successful for dealing with unexpected
events [21]. However, there, brownout services were com-
posed of a single replica, i.e., a single copy of the application,
running inside a single VM.

In this paper, we extend the brownout paradigm to services
featuring multiple replicas — i.e., multiple, independent
copies of the same application, serving the user the same
data — hosted inside individual VMs. Since each VM can
be hosted by different PMs, this enhances brownout services
in two directions. First, scalability of a brownout application
— the ability for an application to deal with more users
by adding more computing resources — is improved, since
applications are no longer limited to using the resources of
a single PM. Second, resilience is improved: in case a PM
fails, taking down a replica, other replicas whose VMs are
hosted on different PMs can seamlessly take over.

The component that decides which replica should serve
a particular end-user request is called a load-balancer.
Despite the fact that load-balancing techniques have been
widely studied [5, 23, 24, 29], state-of-the-art load-balancers
forward requests based on metrics that cannot discriminate
between a replica that is avoiding overload by not executing
the optional code and a replica that is not subject to overload.
Therefore, the novelty of our problem consists in finding a
brownout-compliant load-balancing technique that is aware
of each replica’s self-adaptation mechanism.

The contribution of this paper is summarized as follows.
• We present extensions to load-balancing architectures

and the required enhancements to the replicas that con-
vey information about served optional content and allow
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to deal with brownout services efficiently (Section III).
• We propose novel load-balancing algorithms that, by

receiving information about the adaptation happening
at the replica level, try to maximize the performance of
brownout services, in terms of frequency of execution
of the optional code (Section IV).

• We show through simulations that our brownout-aware
load-balancing algorithms outperform state-of-the-art
techniques (Section V).

II. RELATED WORK

Load-balancers are standard components of Internet-scale
services [40], allowing applications to achieve scalability and
resilience [5, 18, 41]. Many load-balancing policies have
been proposed, aiming at different optimizations, spanning
from equalizing processor load [37] to managing memory
pools [13, 32], to specific optimizations for iterative al-
gorithms [4]. Often load-balancing policies consider web
server systems as a target [11, 26], where one of the most
important result is to bound the maximum response time that
the clients are exposed to [19]. Load-balancing strategies
can be guided by many different purposes, for example
geographical [2, 33], driven by the electricity price to reduce
the datacenter operation cost [15], or specifically designed
for cloud applications [5, 23, 24].

Load-balancing solutions can be divided into two different
types: static and dynamic. Static load-balancing refers to a
fixed, non-adaptive strategy to select a replica to direct traffic
to [30, 38]. The most commonly used technique is based on
selecting each replica in turn, called Round Robin (RR). It
can be either deterministic, storing the last selected replica, or
probabilistic, picking a replica at Random. However, due to
their static nature, such techniques would not have good per-
formance when applied to brownout-compliant applications
as they do not take into account the inherent fluctuations of
a cloud environment and the control strategy at the replica
level, which leads to changing capabilities of replicas.

On the contrary, dynamic load-balancing is based on
measurements of the current system’s state. One popular
option is to choose the replica which had the lowest response
time in the past. We refer to this algorithm as Fastest Replica
First (FRF) if the choice is based on the last measured
response time of each replica, and FRF-EWMA if the choice
is based on an Exponentially Weighted Moving Average
over the past response times of each replica. A variation
of this algorithm is Two Random Choices (2RC) [28], that
randomly chooses two replicas and assigns the request to the
fastest one, i.e., the one with the lowest maximum response
time.

Through experimental results, we were able to determine
that FRF, FRF-EWMA and 2RC are unsuitable for brownout
applications. They base their decision on response times
alone, which leads to inefficient decisions for brownout
services. Indeed, such services already keep their response-
time at a given setpoint, at the expense of reducing the ratio
of optional content served. Hence, by measuring response-
time alone, it is not possible to discriminate between a replica

that is avoiding overload by not executing the optional code
and a replica that is not subject to overload executing all
optional code, both achieving the desired response times.

Another adopted strategy is based on the pending request
count and generally called Shortest Queue First (SQF),
where the load-balancer tracks the pending requests and
select the replicas with the least number of requests waiting
for completion. This strategy pays off in architectures where
the replicas have similar capacities and the requests are
homogeneous. To account for non-homogeneity, Pao and
Chen proposed a load balancing solution using the remaining
capacity of the replicas to determine how the next request
should be managed [31]. The capacity is determined through
a combination of factors like the remaining available CPU
and memory, the network transmission and the current pend-
ing request count. Other approaches have been proposed that
base their decision on remaining capacity. However, due to
the fact that brownout applications indirectly control CPU
utilization, by adjusting the execution of optional content,
so as to prepare for possible request bursts, deciding on
remaining capacity alone is not an indicator of how a
brownout replica is performing.

A merge of the fastest replica and the pending request
count approach was implemented in the BIG-IP Local Traffic
Manager [6], where the replicas are ranked based on a
linear combination of response times and number of routed
requests. Since the exact specification of this algorithm is
not open, we tried to mimic as follows: A Predictive load
balancer would rank the replicas based on the difference
between the past metrics and the current ones. One of the
solutions proposed in this paper extends the idea of looking
at the difference between the past behavior and the current
one, although our solution observes the changes in the ratio
of optional code served and tries to maximize the requests
served enabling the full computation.

Dynamic solutions can be control-theoretical [20, 42] and
also account for the cost of applying the control action [14]
or for the load trend [12]. This is especially necessary when
the load balancer also acts as a resource allocator deciding
not only where to route the current request but also how
much resources it would have to execute, like in [3]. In these
cases, the induced sudden lack of resources can result in poor
performance. However, we focus only on load-balancing
solutions, since brownout applications are already taking care
of the potential lack of resources [21].

III. PROBLEM STATEMENT

Load-balancing problems can be formulated in many
ways. This is especially true for the case addressed in
this paper where the load-balancer should distribute the
load to adaptive entities, that play a role by themselves in
adjusting to the current situation. This section discusses the
characteristics of the considered infrastructure and clearly
formulates the problem under analysis.

Figure 1 illustrates the software architecture that is de-
ployed to execute a brownout-compliant application com-
posed of multiple replicas. Despite the modifications needed
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Fig. 1. Architecture of a brownout-compliant cloud application featuring
multiple replicas.

to make it brownout-compliant, the architecture is widely
accepted as the reference one for cloud applications [5].

Given the generic cloud application architecture, access
can only be done through the load-balancer. The clients are
assumed to be closed-loop: They first send a request, wait
for the reply, then think by waiting for an exponentially
distributed time interval, and repeat. This client model is
a fairly good approximation for users that interact with web-
sites requiring a pre-defined number of requests to complete
a goal, such as buying a product [16] or booking a flight.
The resulting traffic has an unknown but measurable rate λ .

Each client request is received by the load-balancer, that
sends it to one of the n replicas. The chosen replica produces
the response and sends it back to the load-balancer, which
forwards it to the original client. We measure the response
time of the request as the time spent within the replica,
assuming negligible time is taken for the load-balancer
execution and for the routing itself. Since the responses are
routed back to the load-balancer, it is possible to attach
information to be routed back to aid balancing decisions to
it.

Each replica i receives a fraction λi of the incoming
traffic and is a stand-alone version of the application. More
specifically, each replica receives requests at a rate λi =wi ·λ ,
such that wi≥ 0, and ∑i wi = 1. In this case, the load balancer
simply computes the replica weights wi according to its
load-balancing policy.

Special to our case is the presence of a controller within
each replica [21]. This controller takes care of adjusting the
percentage of requests θi served with the optional compo-
nents enabled, based on the measured response time ti of the
requests served by the replica. The controller for replica i
receives statistics on the replica response times. The average,
95-th percentile, or maximum value can be used, depending
on the requirements of the application. Here we use the 95-th
percentile of response times.

As given by the brownout paradigm, a replica i responds
to requests either partially, where only mandatory content
is included in the reply, or fully, where both mandatory
and optional content is included. This decision is taken
independently for each request, based on a Bernoulli trial,
with probability θi for success. The service rate for a partial
response is µi while a full response is generated with a rate
Mi. Obviously, partial replies are faster to compute than full
ones, since the optional content does not need to be prepared,
hence, µi ≥ Mi. Assuming the replica is not saturated, it
serves requests fully at a rate λiθi and partially at a rate
λi(1−θi).

Many alternatives can be envisioned on how to extend

existing load balancers to deal with brownout-compliant
applications. In our choice, the load-balancer receives in-
formation about θi from the replicas. This solution results in
less computationally intensive load-balancers with respect to
the case where the load-balancer should somehow estimate
the probability of executing the optional components, but
requires additional communication. The overhead, however,
is very limited, since only one value would be reported per
replica. For the purpose of this paper, we assume that to
aid load-balancing decisions, each replica piggy-backs the
current value of θi through the reply, so that this value can
be observed by the load-balancer, limiting the overhead. The
load-balancer does not have any knowledge on how each
replica controller adjusts the percentage θi, it only knows
the reported value.

This allows to completely separate the action of the load-
balancer from the one of the self-adaptive application. The
replica control period is set to 0.5s while the load-balancer
is supposed to act every second. The replica controller’s pole
is set to 0.99.

Given this last architecture, we want to solve the problem
of designing a load-balancer policy. Knowing the values of
θi for each replica i ∈ [1,n], a load-balancer should compute
the values of the weights wi such that

∞

∑
k=0

∑
i

wi(k)θi(k) (1)

is maximized, where k denotes the discrete time. Given
that we have no knowledge of the evolution in time of the
involved quantities, we aim to maximize the quantity ∑i wiθi
in every time instant, assuming that this will maximize the
quantity defined in Equation (1). In other words, the load-
balancer should maximize the ratio of requests served with
the optional part enabled. For that, the aim is to maximize
the ratio of optional components served in any time instant.
In practice, this would also maximize the application owner’s
revenue [21].

IV. SOLUTION

This section describes three different solutions for balanc-
ing the load directed to self-adaptive brownout-compliant
applications composed of multiple replicas. The first two
strategies are heuristic solutions that take into account the
self-adaptivity of the replicas. The third alternative is based
on optimization, with the aim of providing guarantees on the
best possible behavior.

A. Variational principle-based heuristic (VPBH)

Our first solution is inspired by the predictive approach de-
scribed in Section II. The core of the predictive solution is to
examine the variation of the involved quantities. While in its
classical form, this solution relies on variations of response
times or pending request count per replica, our solution is
based on how the control variables θi are changing.

If the percentage θi of optional content served is increas-
ing, the replica is assumed to be less loaded, and more traffic
can be sent to it. On the contrary, when the optional content



decreases, the replica will receive less traffic, to decrease its
load and allow it to increase θi.

The replica weights wi are initialized to 1/n where n is the
number of replicas. The load-balancer periodically updates
the values of the weights based on the values of θi received
by the replicas. At time k, denoting with ∆θi(k) the variation
θi(k)− θi(k− 1), the solution computes a potential weight
w̃i(k+1) according to

w̃i(k+1) = wi(k) · [1+ γP ∆θi(k)+ γI θi(k)] , (2)

where γP and γI are constant gains, respectively related to
a proportional and an integral load-balancing action. As
calculated, w̃i values can be negative. This is clearly not
feasible, therefore negative values are truncated to a small but
still positive weight ε . Using a positive weight instead of zero
allows us to probe the replica and see whether it is favorably
responding to new incoming requests or not. Moreover, the
computed values do not respect the constraint that their sum
is equal to 1, so they are then re-scaled according to

wi(k) =
max(w̃i(k),ε)

∑i max(w̃i(k),ε)
. (3)

We selected γP = 0.5 based on experimental results. Once
γP is fixed to a selected value, increasing the integral gain γI
calls for a stronger action on the load-balancing side, which
means that the load-balancer would take decisions very much
influenced by the current values of θi, therefore greatly im-
proving performance at the cost of a more aggressive control
action. On the contrary, decreasing γI would smoothen the
control signal, possibly resulting in performance loss due to
a slower reaction time. The choice of the integral gain allows
to exploit the trade-off between performance and robustness.
For the experiments we chose γI = 5.0.

B. Equality principle-based heuristic (EPBH)

The second policy is based on the heuristic that a near-
optimal situation is when all replica serves the same per-
centage optional content. Based on this assumption, the
control variables θi should be as close as possible to one
another. If the values of θi converge to a single value, this
means that the traffic is routed so that each replica can
serve the same percentage of optional content, i.e., a more
powerful replica receives more traffic then a less powerful
one. This approach therefore selects weights that encourages
the control variables θi to converge towards the mean 1

n ∑ j θ j.
The policy computes a potential weight w̃i(k+1)

w̃i(k+1) = wi(k)+ γe

(
θi(k)−

1
n∑

j
θ j(k)

)
(4)

where γe is a strictly positive parameter which accounts for
how fast the algorithm should converge. For the experiments
we chose γe = 0.025. The weights are simply modified
proportionally to the difference between the current control
value and the average control value set by the replicas.
Clearly, the same saturation and normalization described in
Equation (3) has to be applied to the proposed solution, to

ensure that the sum of the weights is equal to one and that
they have positive values — i.e., that all the incoming traffic
is directed to the replicas and that each replica receives at
least some requests.

C. Convex optimization based load-balancing (COBLB)

The third approach is to update the replica weights based
on the solution of an optimization problem, where the
objective is to maximize the quantity ∑i wiθi.

In this solution, each replica is modeled as a queuing
system using a Processor Sharing (PS) discipline. The clients
are assumed to arrive according to a Poisson process with
intensity λi, and will upon arrival enter the queue where
they will receive a share of the replicas processing capability.
The simplest queueing models assume the required time for
serving a request to be exponentially distributed with rate µ̃ .
However, in the case of brownout, the requests are served
either with or without optional content with rates Mi and
µi, respectively. Therefore the distribution of service times
Si for the replicas can be modelled as a mixture of two
exponential distributions with a probability density function
fSi(t) according to

fSi(t) = (1−θi) ·µi · e−µi·t +θi ·Mi · e−Mi·t , (5)

where t represents the continuous time and θi is the proba-
bility of activating the optional components. Thus, a request
entering the queue of replica i will receive an exponentially
distributed service time with a rate with probability θi being
Mi, and probability 1−θi being µi. The resulting queueing
system model is of type M/G/1/PS and has been proven
suitable to simulate the behavior of web servers [10].

It is known that for M/G/1 queueing systems adopting
the PS discipline, the mean response times will depend on
the service time distribution only through its mean [22, 34],
here given for each replica by

µ∗i =
1

E[Si]
=

[
1−θi

µi
+

θi

Mi

]−1

. (6)

The mean response times for a M/G/1/PS system them-
selves are given by

τi =
1

µ∗i −λwi
. (7)

The required service rates µ∗i needed to ensure that there is
no stationary error can be obtained by inverting Equation (7)

µ∗i =
1+ τ∗i λwi

τ∗i
(8)

with τ∗i being the set point for the response time of replica
i.

Combining Equation (6) and (8), it is then possible to
calculate the steady-state control variables θ ∗i that gives the
desired behavior

θ ∗i =
Mi · (µiτ∗i −1−λwiτ∗i )
(1+λwiτ∗i ) · (µi−Mi)

=
Ai−Biwi

Ci +Diwi
. (9)

with Ai, Bi, Ci and Di all positive. Note that the values of θ ∗i
are not used in the replicas and are simply computed by the



optimization based load-balancer as the optimal stationary
conditions for the control variables θi. Clearly, one could
also think of using these values within the replicas but in
this investigation we want to completely separate the load-
balancing policy and the replicas internal control loops.

Recalling that θi is the probability of executing the op-
tional components when producing the response, the values
θ ∗i should be constrained to belong to the interval [0,1],
yielding the following inequalities (under the reasonable
assumptions that τ∗i > 1/Mi and µi ≥Mi)

Ai−Ci

Bi +Di
≤ wi ≤

Ai

Bi
. (10)

Using these inequalities as constraints, it is possible to
formally state the optimization problem as

maxwi J = ∑i wiθi = ∑
i

wi
Ai−Biwi

Ci +Diwi

s.t. ∑i wi = 1,
Ai−Ci

Bi +Di
≤ wi ≤

Ai

Bi
.

(11)

Since the objective function J is concave and the constraints
linear in wi, the entire problem is concave and can be
solved using efficient methods [8]. We use an interior point
algorithm, implemented in CVXOPT1, a Python library for
convex optimization problems, to obtain the values of the
weights.

Notice that solving optimization problem (11) guarantees
that the best possible solution is found for the single time
instant problem, but requires a lot of knowledge about
the single replicas. In fact, while other solutions require
knowledge only about the incoming traffic and the control
variables for each replica, the optimization-based solution
relies on knowledge of the service time of requests with
and without optional content Mi and µi that might not be
available and could require additional computations to be
estimated correctly.

V. EVALUATION

In this section we describe our experimental evaluation,
discussing the performance indicators used to compare dif-
ferent strategies, the simulator developed and used to emulate
the behavior of brownout-compliant replicas driven by the
load-balancer, and our case studies.

A. Performance indicators

Performance measures are necessary to objectively com-
pare different algorithms. Our first performance indicator is
defined as the percentage %oc of the total requests served
with the optional content enabled, which is a reasonable
metric given that we assume that users perform a certain
number of clicks to use the application.

We also would like to introduce some other performance
metrics to compare the implemented load-balancing tech-
niques. For this, we use the user-perceived stability σu [2].

1http://cvxopt.org/

This metric refers to the variation of performance as observed
by the users, and it is measured as the standard deviation of
response times. Its purpose is to measure the ability of the
replicas to respond timely to the client requests. The entire
brownout framework aims at stabilizing the response times,
therefore it should achieve better user-perceived stability,
regardless of the presence of the load-balancer. However,
the load-balancing algorithm clearly influences the perceived
response times, therefore it is logical to check whether
the newly developed algorithms achieve a better perceived
stability than the classical ones. Together with the value
of the user-perceived stability, we also report the average
response time µu to distinguish between algorithms that
achieve a low response time with possibly high fluctuations
from solutions that achieve a higher but more stable response
time.

B. Simulator

To test the load-balancing strategies, a Python-based simu-
lator for brownout-compliant applications is used. In the sim-
ulator, it is easy to plug-in new load-balancing algorithms.
The simulator is based on the concepts of Client, Request,
LoadBalancer and Replica.

When a new client is defined, it can behave according
to the open-loop client model, where it simply issues a
certain number of unrelated requests (as it is true for clients
that respect the Markovian assumption), or according to the
closed-loop one [1, 36]. Closed-loop clients issue a request
and wait for the response, when they receive the response
they think for some time (in the simulations this time is
exponentially distributed with mean 1s) and subsequently
continue sending another request to the application. While
this second model is more realistic, the first one is still useful
to simulate the behavior of a large number of clients. The
simulator implements both models, to allow for complete
tests, but we will evaluate our results with closed-loop clients
given the nature of the applications, that requires users to
perform a certain number of clicks.

Requests are received by the load-balancer, that directs
them towards different replicas. The load-balancer can work
on a per-request basis or based on weights. The first case
is used to simulate policies like Round Robin, Random,
Shortest Queue First and so on, that do not rely on the
concept of weights. The weighted load-balancer is used to
simulate the strategies proposed in this paper.

Each replica simulates the computation necessary to serve
the request and chooses if it should be executed with or
without the optional components activated. If the optional
content is served the service time is a random number from
a gaussian distribution with mean φi and variance 0.01, while
if the optional content is not served, the mean is ψi and the
variance is 0.001. The parameters φi and ψi are specified
when replicas are created and can be changed during the
execution. The service rate of requests with the optional
component is Mi = 1/φi while for serving only the mandatory
part of the request the service rate is µi = 1/ψi. The replicas
are also executing an internal control loop to select their

http://cvxopt.org/


control variables θi [21]. The replicas use PS to process the
requests in the queue, meaning that each of the n active
requests will get 1/n of the processing capability of the
replica.

The simulator receives as input a Scenario, which de-
scribes what can happen during the simulation. The scenario
definition supports the insertion of new clients and the
removal of existing ones. It also allows to turn on and off
replicas at specific times during the execution and to change
the service times for every replica, both for the optional
components and for the mandatory ones. This simulates a
change in the amount of resources given to the machine
hosting the replica and it is based on the assumption that
these changes are unpredictable and can happen at the
architecture level, for example due to the cloud provider co-
locating more applications onto the same physical hardware,
therefore reducing their computation capability [39].

With the scenarios, it is easy to simulate different working
conditions and to have a complete overview of the changes
that might happen during the load-balancing and replica
execution. In the following, we describe two experiments
conducted to compare the load-balancing strategies when
subject to different execution conditions.

C. Reacting to client behavior

The aim of the first test is to evaluate the performance
of different algorithms when new clients arrive and existing
clients disconnect.

In the experiment the infrastructure is composed of four
replicas. The first replica is the fastest one and has φ1 = 0.05s
(average time to execute both the mandatory and the optional
components) and ψ1 = 0.005s (average time to compute only
the mandatory part of the response). The second replica is
slower, with φ2 = 0.25s and ψ2 = 0.025s. The third and
fourth replicas are the slowest ones, having φ3,4 = 0.5s and
ψ3,4 = 0.05s.

Clients adhere to the closed-loop model. 50 clients are
accessing the system at time 0s, and 10 of them are removed
after 200s. At time 400s, 25 more clients query the applica-
tion and 25 more arrives again at 600s. 40 clients disconnect
at time 800s and the simulation is ended at time 1000s.

The right column in Figure 2 shows the control variable
θi for each replica, while the left column shows the effective
weights wi, i.e., the weights that have been assigned by
the load-balancing strategies computed a posteriori. Since
solutions like RR do not assign directly the weights, we
decided to compute the effective values that can be found
after the load-balancing assignments.

The algorithms are ordered by decreasing percentage %oc
of optional content served, where EPBH achieves the best
percentage overall, followed by VPBH and by COBLB.

For this scenario, the strategies that are aware of the
adaptation at the replica level achieve better results in terms
of percentage of optional content served. The SQF algorithm
is the only existing one capable of achieving similar (yet
lower) performance in terms of optional content delivered.

To analyze the effect of the load-balancing strategies on
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Fig. 2. Results of a simulation with four replicas and clients entering and
leaving the system at different time instants. The left column shows the
effective weights while the right column shows the control variables for
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the replicas response times, Figure 3 shows box plots of the
maximum response time experienced by the replicas. The
load-balancing strategies are ordered from left to right based
on the percentage of optional code %oc achieved. The bottom
line of each box represents the first quartile, the top line the
third and the red line is the median. The red crosses show the
outliers. In addition to the classical box plot information, the
black dots show for each algorithm the average value of the
maximum response time measured during the experiment,
also considering the outliers.

The box plots clearly show that all the solutions presented
in this paper achieve distributions that have outliers, as
well as almost all the literature ones. The only exception
seems to be SQF, that achieves very few outliers, predictable
maximum response time, with a median that is just slightly
higher than the one achieved by VPBH. EPBH offers the
highest percentage of optional content served, by sacrificing
the response time bound. From this additional information
one can conclude that the solutions presented in this paper
should be tuned carefully if response time requirements are
hard. For example, for certain tasks, users prefer a very
responsive applications instead of many features, hence the
revenue of the application owner may be increased through
lower response times. Notice that the proposed heuristics
(EPBH and VPBH) have tunable parameters that can be used
to exploit the trade-off between response time bounds and
optional content.

This case study features only a limited number of replicas.
However, we have conducted additional tests, also in more
complex scenarios, featuring up to 20 replicas, reporting
results similar to the ones presented herein. In the next
section we test the effect of infrastructural changes to load-
balancing solutions and response times.

D. Reacting to infrastructure resources

In the second case study the architecture is composed of
five replicas. At time 0s, the first replica has φ1 = 0.07s,

TABLE I
PERFORMANCE WITH VARIABLE INFRASTRUCTURE RESOURCES

Algorithm %oc µu σu
COBLB 90.9% 0.78 0.97
EPBH 89.5% 1.06 1.95
VPBH 87.7% 1.02 1.90
SQF 83.3% 0.55 0.40
RR 75,5% 1.11 2.42
Random 72.9% 0.86 2.23
2RC 72.2% 0.74 1.64
FRF 70.4% 1.27 2.03
FRF-EWMA 51.4% 1.44 3.41
Predictive 47.4% 1.66 3.48

ψ1 = 0.001s. The second and third replicas are medium fast,
with φ2,3 = 0.14s and ψ2,3 = 0.002s. The fourth and fifth
replicas are the slowest with φ4,5 = 0.7s and ψ4,5 = 0.01s.

At time 250s the amount of resources assigned to the first
replica is decreased, therefore φ1 = 0.35s and ψ1 = 0.005s.
At time 500s, the fifth replica receives more resources,
achieving φ5 = 0.07s and ψ5 = 0.001s. The same happens
at time 750 to the fourth replica.

Table I reports the percentage %oc, the average response
time and the user-perceived stability for the different algo-
rithms. It should be noted again that our strategies obtain bet-
ter optional content served at the expense of slightly higher
response times. However, COBLB is capable of obtaining
both low response times and high percentage of optional
content served. This is due to the amount of information
that it uses, since we assume that the computation times for
mandatory and optional part are known. The optimization-
based strategy is capable of reacting fast to changes and
achieves predictability in the application behavior. Again, if
one does not have all the necessary information available, it
is possible to implement strategies that would better exploit
the trade-off between bounded response time and optional
content.

VI. CONCLUSION

We have revisited the problem of load-balancing different
replicas in the presence of self-adaptivity inside the appli-
cation. This is motivated by the need of cloud applications
to withstand unexpected events like flash crowds, resource
variations or hardware changes. To fully address these issues,
load-balancing solutions need to be combined with self-
adaptive applications, such as brownout. However, simply
combining them without special support leads to poor per-
formance.

Three load-balancing strategies are described, specifically
designed to support brownout-compliant cloud applications.
The experimental results clearly show that incorporating the
application adaptation in the design of load balancing strate-
gies pay off in terms of predictable behavior and maximized
performance. They also demonstrated that the SQF algorithm
is the best non-brownout-aware solution and therefore it
should be used whenever it is not possible to adopt one of
our proposed solution. The granularity of the actuation of the
SQF load-balancing strategy is on a per-request based and the
used information are much more updated with respect to the
current infrastructure status, which is an advantage compared



to weight-based solutions and helps SQF to serve requests
faster. In future work we plan to investigate brownout-aware
per-request solutions.

Finally, the application model used in this paper assumes
a finite number of clicks per user, therefore the developed
load-balancer strategies maximize the percentage of optional
content served. However, when a different application model
is taken into account, optimizing the absolute number of
requests served with optional content is another possible
goal, that should be investigated in future work.
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