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Power Regulation in High Performance Multicore Processors’
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Abstract— This paper presents, implements, and evaluates
a power-regulation technique for multicore processors, based
on an integral controller with adjustable gain. The gain is
designed for wide stability margins, and computed in real
time as part of the control law. The tracking performance
of the control system is robust with respect to modeling
uncertainties and computational errors in the loop. The main
challenge of designing such a controller is that the power
dissipation of program-workloads varies widely and often
cannot be measured accurately; hence extant controllers are
either ad hoc or based on a-priori modeling characterizations
of the processor and workloads. Our approach is different.
Leveraging the aforementioned robustness it uses a simple
textbook modeling framework, and adjusts its parameters in
real time by a system-identification module. In this it trades
modeling precision for fast computations in the loop making it
suitable for on-line implementation in commodity data-center
processors. Consequently, the proposed controller is agnostic
in the sense that it does not require any a-priori system char-
acterizations. We present an implementation of the controller
on Intel’s fourth-generation microarchitecture, Haswell, and
test it on a number of industry benchmark programs which
are used in scientific computing and datacenter applications.
Results of these experiments are presented in detail exposing
the practical challenges of implementing provably-convergent
power regulation solutions in commodity multicore processors.

I. INTRODUCTION

For decades, scaling of transistors to decreasing geome-
tries was the primary source of increased processor perfor-
mance. This was accompanied by the corresponding scaling
of device power thereby keeping power densities roughly
constant on a processor die. However, this behavior known as
Dennard scaling has ended leading to unsustainable growth
in power consumption in future processors as we increase
the number of transistors on a die. Therefore, to continue to
sustain performance scaling we must seek new and innova-
tive advances in power management in multicore processors.
Such advances are central to the effective operation of all
modern processors in platforms ranging from mobile devices
to data centers and high-performance computing (HPC)
machines that drive national initiatives in key areas such as
science, finance, and defense [1], [2].

In multicore processors, the relationships between work-
loads, power dissipation, resulting thermal fields, and their
interaction with the leakage current present new and un-
resolved power and thermal management challenges. For
example, application workloads exhibit time-varying com-
putation and memory access behaviors resulting in spatially
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and temporally varying power dissipation and non-uniform
thermal fields. The cross-chip variations in temperature cou-
ples to circuit leakage and delay, increases full-chip leakage
power, reduces peak throughput, degrades chip/package reli-
ability, and increases cooling/packaging costs. Thus, effective
control of power dissipation is critical to the reliable and high
performance operation of multicore processors. This paper
describes a novel and effective power regulation technique
and the results of an evaluation of its implementation on a
commodity multicore processor.

Modern multicore processors are organized into several
voltage islands where each island may comprise of one
or more processing cores. Each voltage island can operate
at one of several discrete power states each defined by
an operational voltage-frequency pair. A general technique
for controlling power and temperature is based on setting
the appropriate power state of each voltage island. This is
commonly referred to as Dynamic Voltage/Frequency Scal-
ing, or DVFS. The development of effective controls based
on DVFS faces several challenges. First, the relationship
between the clock frequency and core power is complicated
by other factors such as the coupling between temperature
and leakage power. Second, application workloads have time-
varying compute and memory system behaviors requiring a
robust, adaptive control strategy to manage power dissipa-
tion. Third, distinct cores in a voltage island execute distinct
instruction streams with distinct behaviors but may share a
common clock and hence frequency. For example, the Intel
Haswell processor tested in this paper has four cores sharing
a single voltage island and executing eight hardware threads
(subprograms) at the same frequency [3].

A number of DVFS heuristics have been proposed to
control power dissipation. Prominent are heuristics for clock
gating [4], thread migration [5][6], prediction [7] and voltage
scaling [8]. However, heuristics are limited in their scope
and robustness. Consequently, several efforts have applied
feedback control theory as an effective way to improve
performance and robustness [9], [10], [11]. Generally, such
controllers relied on off-line analysis of anticipated work-
loads [10], [1] or empirical approaches [12], [13] to derive
control parameters. This includes efforts to limit operation
below a maximum power constraint [14], [15]. However, all
of these approaches are applied to applications that have been
profiled a priori to derive the control parameters.

This paper concerns a control law that is not based on
any off-line profiling (hence said to be agnostic), and it es-
timates the model-parameters on line by least-square system
identification. The control law is comprised of a standalone
integrator with adaptive gain. Now it is well-known that an



integral control can have poor stability margins and oscilla-
tions in the system’s response, hence it is often supplemented
by proportional and derivative elements in order to form the
PID control [16]. We use a different approach, consisting
of a standalone integrator with a variable gain, designed
for fast convergence, wide stability margins, and reduced
oscillations as compared to fixed-gain integrators. Moreover,
its tracking performance and stability are quite robust to
modeling variations and computing errors in the loop, and
hence we need not worry about precise model parameters.
Furthermore, we can speed up the computations in the loop
at the expense of precision if needed

The controller described in the sequel was first designed
for regulating the dynamic power in computer cores in Ref.
[17]. Subsequently it has been analyzed in an abstract setting
in [18], where its convergence, stability, and robustness
were proved. Its performance was tested via simulation on
instruction-throughput regulation [19], [20], then on through-
put of abstract Discrete Event Dynamic Systems (DEDS)
such as queues, Petri nets and transportation networks [21].
Lately the controller has been implemented on Intel’s fourth-
generation micro-architecture, Haswell [22], where it was
tested on instruction-throughput regulation.

This paper concerns an implementation of the controller
on a Haswell machine and evaluations of its application to
power regulation. It makes the following specific contribu-
tions: 1). It is the first to present an implementation of an
integral control for power regulation in multicore processors.
2). It is agnostic, and adjusts well to workload variations.
3). It is the first (to our knowledge) to use on-line system
identification for estimating a suitable system-model. 4). It
is applied to timely data-center applications. 5). It converges
quite fast.

The rest of the paper is organized as follows. Sec-
tion II describes the problem, system-model, and power-
regulation technique, and recounts established results. Sec-
tion III presents test results of applications of the controller
to industry-benchmarks, and Section IV concludes the paper.

II. POWER REGULATION TECHNIQUE

This section first describes the regulation technique in
the abstract setting considered in [18] in order to highlight
its general salient features. Then it discusses its particular
applications to power control in multicore processors.

Consider the single-input-single-output discrete-time sys-
tem shown in Figure 1, where k =1,2,... represents discrete
time, r € R is a reference input, y; € R is the output, uy is the
control variable, and e; € R is the error signal. Generally the
plant can be nonlinear and time varying, and the objective
of the controller is to have the output y;, k =1,2,..., track
the reference r.

IRefs. [17], [18] argue for the choice of the variable-gain integral control
described in this paper over a PID controller, based on its robustness and
flexibility in implementation. Furthermore, we have tested via simulation
(not reported here) the addition of a proportional element to the integral
controler but found no improvement.

Controller

Fig. 1: Closed Loop Control System

The controller we choose has the form

up = ug—1 +Agep—1, i=12,..., (D

where Ay is the gain at time &, assumed to be positive. If Ay =
A where A > 0 does not depend on time k then we recognize
the controller as an adder, a discrete-time equivalent of an
integrator. Since generally Ay depends on k, we call the
controller a variable-gain integrator. The plant generally
characterizes the relationship between the control signal {u }
and the output process {y;}. Of a particular interest to us is
the partial derivative ai Iz: , which we assume to be nonzero.
For reasons that will become apparent shortly, we would
like to set the controller’s gain to Ay = (%)_1. In this
we assume that the partial derivative % is computable
in real time from suitable measurements of the system, and
hence can play a part in the control law. However, such real-
time computations may be subjected to delays and errors.
Therefore an approximation may have to be used, resulting

in the following definition of the controller’s gain,
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where 7;_; denotes an additive error. To complete the
characterization of the loop we note that the tracking error
is

e =7r—Yk 3)

as is evident from Figure 1. The control law consists of
repeated recursive applications of Equations (2)-(1)-(3).
The rationale behind the choice of Ay in Eq. (2) can be
seen by considering for a moment the case where the plant
is a memoryless nonlinearity, hence described by the relation
yi = g(uy) for a differentiable function g : R — R. In this case

% = .
aﬁi_l. = %(uk_l), and Egs. (1) - (3) result in

(r—g(ux—1)). 4)

1

g =tp_|+—
e %(“k—l)"‘nk—l
We recognize this as the Newton-Raphson method for solv-
ing the equation r — g(u) = 0, where the derivarive term
%(uk,l) is corrupted by the additive error m;_;. There
are well-known convergence results including a geometric
convergence rate, namely the existence of 8 < 1 such that

lr—g(u)| < Olr—glu—1)l, k=12,...; (5

see [23]. In particular, Equation (5) holds under substantial
upper bounds on the relative error &_1 := |Nx—1]/| % (u—1)|,
hence convergence of the Newton-Raphson method is said
to be robust with respect to errors in the derivative %(uk,l ).



These results have been extended to the more-general
setting where the plant-system is dynamic (as opposed to
memoryless), stochastic and time-varying. In such setting the
term Z (ug—1) makes no sense but the term a in Eq. (2)
can be well defined. One cannot expect convergence in the
form of the limit limy_.(r —y¢) = 0 to hold true due to
variations in the system’s characteristics. However, results
of the form limsupy_,.|r —yr| < € were obtained in [18] for
a suitable € > 0 which depends on a measure of the system’s
variability. The geometric convergence expressed in Eq. (5)
is extended as long as |r — yi| is not too small, even for fairly
large errors |N;_1|. These last two results imply fast approach
of the tracking algorithm towards its target r (though not its
convergence exactly to r), and its robustness with respect to
computational errors of the derivative term zi - i

In the context of computer processors, this technique was
applied to regulate instructions’ throughput. The plant is
modelled as a discrete event dynamic system controlled
by the processor’s clock rate (frequency), whose output is
the average instruction-throughput measured over short time
frames. The technique was verified by both simulation [19],
[20] and implementation on a Haswell machine [22]. In sim-
ulation the derivative term gf k-1 js estimated by Infinitesimal
Perturbation Analysis [24], [25], and in implementation a
cruder but faster approximation is used. This paper concerns
power regulation which poses a different set of challenges,
and it uses a system characterization as described in the
following paragraphs.

The power dissipated in a core has two major components,
static power and dynamic power, respectively denoted by P
and P;; Thus

P=P+P,. (6)

The dynamic power is due to the switching activities at
the gates of the core. It depends on the supply voltage
V, clock rate (frequency) ¢, core’s capacitance C, and the
program-workload « representing the switching activities in
the core’s transistor gates. This dependence is represented by
the equation

Py =aCV?%¢; (7

see [26]. Generally C is a constant which can be assessed
empirically, but & = a(t) varies rapidly with the program
load and cannot be measured. The relationship between
frequency and voltage often is affine, namely V = a + m¢.
In this case, and in light of Eq. (7), P; can be expressed
as a third-degree polynomial in ¢. However, it may be
impossible to empirically determine the coefficients of this
polynomial due to rapid variations of o(¢). Furthermore,
often it is impossible to measure the dynamic power but only
the total power P. Consequently we are unable to compute
the coefficients of the polynomial function relating frequency
to dynamic power. As a matter of fact, earlier attempt to
apply the regulation algorithm on Haswell with various fixed
polynomial coefficients determined off line failed to yield the
desired tracking.

The static power depends on the supply voltage and
temperature, while the temperature depends on the total
power (see [26]). This circular relationship between power
and temperature precludes the existence of a simple model
relating frequency to static power. Moreover, the temperature
may vary during program execution, further complicating the
prospects of a frequency-to-power tractable model that can
be used in a real-time control.

As mentioned in the introduction, the Haswell machine
which serves as the implementation platform consists of
four cores processing eight concurrent threads. All of the
cores reside in the same voltage island, hence we cannot
control each one of them separately but rather control them
jointly by a common frequency, the processor frequency.
The controlled quantity is the average power among the four
cores, called the processor power. In the setting of Figure 1,
we partition the time horizon into equally-spaced contiguous
intervals called control cycles and denoted by Gy, k=1,2,..;
uy, is the processor frequency applied during Cy, and yy is the
average among the cores of the mean spatial and temporal
power measured during C; at each core. A key question is
how to obtain an estimate of the derivative term 3y L= ‘, in
Equation (2). This requires knowledge of some parameters
of the plant model relating u; to yg, but such a model is
only partly available. In fact, we mentioned that there in no
analytic model for the static power, and while there is an
adequate third-degree polynomial for the dynamic power, its
coefficients change with time at a high rate.

We overcome these problems by the following approach.
First, we search for a third-order polynomial for estimating
the relation between the applied frequency and the total
processor power. This of course can fit the dynamic power
but not the static power. However, in computing applications
at the frequency range considered in this paper, the static
power comprises 20% - 30% of the total power, and therefore
we feel confident leveraging the aforementioned robustness
of the performance of the tracking controller with respect
to errors in computing a”‘ L. Second, to cope with the
rapid variations in the coefﬁments of this polynomial due
to changes in o(t), we use a system identification module
run concurrently, in real time, along the program-executions
by the processor.

Let us denote by pi(9) := ar¢® + br9? + cr¢ + d
the estimator polynomial during Cj, then its derivative
de 1(¢k 1) = 3ar_ 1¢k | T 2bj_1¢x—1 + cx—1 is the term

% +Nx—1 in Equation (2). A system identification module,

comprised of a standard recursive least-square estimator
(e.g., [27]), is used to compute the coefficient-vector x; :=
(ak,bk,ck,dk) during Ckfl-

It must be pointed out that performance of the power
regulator is affected by several practical considerations. First,
the rate at which energy and power can be measured is
determined by the processor vendor, which in this case is
Intel. The model specific registers are updated at approxi-
mately 1 ms intervals but no timestamp is provided so it is
not possible to know when the measurement interval began.




Consequently, mapping measurements to application code is
difficult and can cause larger deviations in regulated power
than the model would otherwise achieve. Second, the current
manner in which the frequency is changed is via file I/O
incurring substantial latency relative to the execution time
of instructions. If program behavior changes significantly
during this interval, tracking becomes more challenging.
For example, data center programs that possess poor spatial
and temporal reference locality and are memory intensive
will exhibit wide variations in average instruction execution
time due to memory accesses. High latency in setting the
processor frequency will make it difficult to rapidly adapt
to changes in power consumption and consequently will
affect the rate of convergence of the power regulator and
the choice of the duration of the control cycle. Such practical
considerations must be overcome by robustness in the design
of the regulator.

III. RESULTS

The proposed power regulator was tested on various
programs from two suites of industry benchmarks, Splash
2 and GraphBig. Splash 2 is a set of standard benchmark
programs for shared memory cache coherent multiprocessors
[28]. It includes a collection of multithreaded workloads
representing traditional engineering and science applications.
The majority of the benchmarks are from the traditional
high performance computing domain while several are drawn
from signal processing and general engineering computations
such as computer graphics. GraphBIG is a set of benchmark
programs that perform computations over graphs [29], and
was inspired by the IBM System G project, surveyed in the
sequel.

We are witnessing an explosive growth in modern data
science applications executing in data centers that deal with
data that is of the relational form and can be represented
by graph data structures with large numbers of node and
edge properties. These applications have irregular memory
access patterns, exhibit low spatial and temporal locality,
and are characterized by low operation density, i.e., number
of operations per byte of data accessed. Consequently, they
stress the memory system and challenge optimizations for
achieving high processor utilization. To cover major graph
computation types and data sources encountered in such data
center applications, GraphBIG incorporates representative
data structures, workloads and data sets from 21 real-world
use cases from multiple application domains. As a comple-
ment to traditional science and engineering applications rep-
resented by the Splash-2 benchmarks, GraphBIG represents
the relational computation driving commercial sectors such
as retail forecasting, data analytics, finance, and banking.

We implemented the
C++ program to the

controller by loading a
Haswell processor via the

PAPI interface [30] The Haswell processor has
a finite set of 16 frequencies, namely Q :=
{0.8,1.0,1.1,1.3,1.5,1.7,1.8,2.0,2.2,2.4,2.5,2.7,2.9,3.1,
3.2,3.4} in GHz. Therefore, we augmented Eq. (1) by
projecting its Reft-Hand Side (RHS) onto Q. That is, with
Po(u) := argmin{|v —u| : v € Q} for u € R (with v < u if
the argmin is not unique), we replace (1) by the following
equation,

ug = Po(ux—1 +Ayex—1). ®)

The control algorithm consists of a recursive application of
Egs. (2)-(8)-(3).

The control cycles of the algorithm can be chosen ac-
cording to performance considerations such as settling times,
subject to hardware constraints. At the end of each control
cycle, first the model parameters are recomputed by the sys-
tem identification module and then the operating frequency
is assigned to the processor for the next period. In the
Haswell processor that we use, energy consumption values
are provided at a sampling interval of 1 ms. Hence we pick
control cycles that are multiples of this intervalE] We test the
control algorithm at two different rates associated with the
control cycles of 10 ms and 30 ms, and we depict graphs
of power as function of time during the first 4,000 ms of
program executions.

A. Splash-2 benchmark programs

We tested the controller on two programs: Barnes, and
Ocean-nc. Barnes is a compute intensive application with un-
der 10% of memory-access instructions. In contrast, Ocean-
nc is a memory-intensive program with memory-bound in-
structions in the 30% — 50% range for typical applications.
In both cases we set the power-target value to 10 W.

Consider first Barnes. For control cycles of 10 ms, results
of an application of the control algorithm are shown in Figure
2 and Figure 3. Figure 2 depicts the graph of power vs. time
for the fist 4,000 ms, corresponding to 400 iterations. The
power rises from an initial value of 6.34 W, and following a
period of transient behavior lasting 720 ms, taking 72 control
cycles, it settles into an oscillatory behavior about the target
value of 10 W. The average power computed over the interval
[720,4000] ms (after the power has settled for the first time
into an oscillation about the target level) is 10.2604 W, which
is 0.2604 W above the target level of 10 W.

The graph of the frequency (clock rate) vs. time is shown
in Figure [3] The larger oscillations in the first 1,400 ms
likely are due to the fact that early in the program there
are more memory instructions than in the last 2,600 ms.
Memory instructions can take one-to-two orders more time
than computational instructions. Therefore memory-intensive

2Modern microprocessors include hardware counters that record the
occurrences of various events during program executions, like completion
of instructions’ executions, cache misses, etc. The Performance Application
Programming Interface (PAPI) is a publicly available software infrastructure
for accessing these performance counters during program execution.

3The power measurements are indirect. Haswell provides an energy
counter, so we can measure the energy in 1 ms and divide the result by
the measurement time to obtain the average power during 1 ms periods.
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Fig. 2: Barnes: power vs. time, control cycle = 10 ms
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Fig. 3: Barnes: clock frequency vs. time, control cycle = 10 ms
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Fig. 4: Barnes: power vs. time, control cycle = 30 ms

periods tend to have greater variability in the program
workload and hence larger changes in frequency and power.
The persistence of the smaller oscillations throughout the
interval [1400,4000] ms likely is due to quantization effects
associated with the fact that the frequency-set Q is finite.
The average frequency in the interval [720 —4000] ms is
1.93 GHz.

For the control cycle of 30 ms, the graph of power vs.
time is depicted in in Figure [d] The power rises from an
initial value of 8.6543 W, and after 720 ms (or 24 control
cycles) it settles around the target value of 10 W. Its average
in the interval [720,4000] ms is 10.4344 W, which is 0.4344
W over the target level of 10 W. The frequency profile is
similar to that of Figure 3 and hence not shown, and its
average in the interval [720,4000] ms is 1.89 GHz.

Table I summarizes the time it takes the power to settle
about its target value for the first time, as well as the absolute
value of the error (difference) between the average power and
the target value of 10 W. The performance of the controller
is similar for the two control cycles, and the indicated minor

TABLE I: Barnes: power error and settling time

[ Control Cycle (ms) | 10 [ 30 |
Error (W) 0.2604 | 0.4344
Settling Time (ms) | 720 720
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Fig. 5: Ocean-nc: power vs. time, control cycle = 10 ms
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Fig. 6: Ocean-nc: clock frequency vs. time, control cycle = 10 ms

differences likely are due to the frequency quantization.

Consider next Ocean-nc. Graphs of power and frequency
vs. time are depicted in Figure [5] and Figure [6] respectively.
The power rises from an initial value of 7.015 W, and
following a period of transient behavior lasting 1,240 ms,
taking 124 control cycles, it settles into an oscillatory be-
havior about the target value of 10 W. The average power
computed over the interval [1240,4000] ms is 10.1269 W,
which is 0.1269 W above the target level of 10 W. The
average frequency is 1.918 GHz.

For 30 ms-control cycles, the graph of power vs. time is
depicted in in Figure [/| while the frequency graph displays
similar characteristics to that in Figure [6] for 10 ms-control
cycles, hence not shown. The power rises from an initial
value of 5.483 W, and after 1,710 ms (or 57 control cycles)
it settles around the target value of 10 W. Its average in the
interval [1710,4000] ms is 9.9298 W, which is 0.0702 W
below the target level of 10 W. The average frequency is 1.86
GHz. The results are summarized in Table II. A comparison
between the results for Barnes and Ocean-nc will be made
in Subsection III.C, below.

B. GraphBig benchmark experiments

We tested the controller on two GraphBig programs:
Breadth-first Search (BFS), and Kcore. BFS is one of the
most fundamental operations of graph computing, while
kCore encompasses topological analysis of graphs and is
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Fig. 7: Ocean-nc: power vs. time, control cycle = 30 ms

TABLE II: Ocean-nc: power error and settling time

[ Control Cycle (ms) | 10 [ 30 |
Error (W) 0.1269 | 0.0702
Settling Time (ms) 1240 1710
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Fig. 8: BFS: power vs. time, control cycle = 10 ms

representative of approaches to the structural analysis of
graphs. Both programs represent large-scale computations
executed over clusters of servers in large data centers.

For both BFS and Kcore the target power is 5 W. The rea-
son it is less that the target for the Splash-2 programs (10 W)
is that a GraphBig program typically has a higher fraction of
memory-access instructions than Splash-2 programs, which
tend to be low-frequency, low-power operations.

Consider first the BFS program. For 10 ms-control cycles,
the results are shown in Figure [§] and Figure 0] The power
vs. time graph is depicted in Figure 8] The power starts
at the initial value of 8.57 W, and following an initial
transient lasting 380 ms (or 38 control cycles) it settles
about the target value of 5 W. The average power in the
interval [380,4000] ms is 5.0542 W, which is 0.0542 W
more than the target level of 5 W. The frequency graph
is depicted in Figure [9] and the average frequency in the
interval [380,4000] ms is 2.59 GHz.

For 30 ms-control cycles, the power graph is shown in
Figure [T0} the frequency-graph displays similar characteris-
tics to that for 10 ms-control cycles depicted in Figure 9,
hence not shown. The power starts at the value of 2.62 W,
and after a transient period of 510 ms (or 17 control cycles),
it settles in a band around 5 W. Its average in the interval
[510,4000] ms is 5.0108 W, which is 0.0108 W more than
the target level of 5 W. The settling time and error for BFS
for the two control cycles are shown in Table III.
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Fig. 9: BFS: clock frequency vs. time, control cycle = 10 ms
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Fig. 10: BFS: power vs. time, control cycle = 30 ms
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Fig. 11: KCore: power vs. time, control cycle = 10 ms

Consider next the results for Kcore. For a 10 ms-control
cycle, the graphs of power and frequency vs. time are shown
in Figure 1] and Figure [12} respectively. The power starts at
the initial value of 7.749 W, and following an initial transient
lasting 400 ms (or 40 control cycles) it settles about the target
value of 5 W. The average power in the interval [400,4000]
ms is 5.0124 W, which is 0.0124 W more than the target
level of 5 W. The frequency graph is depicted in Figure [I2}
and its mean is 2.478 GHz.

For 30 ms control cycles, the power graphs are shown in
Figure [I3] The power starts at the value of 7.23 W, and after
a transient period of 480 ms (or 16 control cycles), it settles
in a band around 5 W. Its average in the interval [480,4000]
ms is 5.1291 W, which is 0.1291 MIPS more than the target

TABLE III: BFS: power error and settling time

[ Control Cycle (ms) | 10 [ 30 ]
Error (W) 0.0542 | 0.0108
Settling Time (ms) 380 510
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Fig. 12: KCore: clock frequency vs. time, control cycle = 10 ms
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Fig. 13: KCore: power vs. time, control cycle = 30 ms

level of 5 W. The frequency graph is not shown since it is
similar to the graph depicted in Figure 12 for the case of
10 ms. The average frequency is 2.608 GHz. These results
are shown in Table [Vl

C. Discussion and comparison of results

The entries in the four tables, namely average error and
settling times, capture the performance of the regulation
algorithm as applied to the four respective programs. The
differences in behavior arise mainly from differences in the
compute vs. memory behavior of the programs. Recall that
the regulation algorithm is being applied to the operation
of the cores on the processor chip - the major source
of power dissipation today. The memory system is off-
chip and operates in a different voltage island and off a
different clock. Specifically, the processor power is directly
controlled by the processor clock-rate, but only indirectly
by the impact of memory instructions. Memory instructions
can take two orders-of-magnitude more time to complete
execution than compute instructions. Therefore the cores can
stall for periods of time while waiting for memory access
operations to complete. During stalls the processor consumes
less power.

Further, consider the execution of a program that is
memory-bound, i.e., its execution time is determined by
how fast memory references can be satisfied. In this case,

TABLE IV: KCore: power error and settling time

[ Control Cycle (ms) | 10 [ 30 ]
Error (W) 0.0124 | 0.1291
Settling Time (ms) 400 480

running the cores in the processor at a higher speed consumes
more power but produces no appreciable improvement in
execution time. Conversely, a compute bound application
consumes more power and takes less time when core fre-
quency is increased. Furthermore, execution time of memory
instructions can be highly variable due to congestion on
the memory bus and queuing delays in the memory system.
These observations help explain some of the results of the
various experiments described in the previous subsections.
We must point out, however, that we have a limited number
of experiments for any sweeping conclusions, and those may
have to wait for larger volume of data to be collected in the
future.

Consider first a comparison between the two Splash-2
programs, Barnes and Ocean-nc. Barnes is compute intensive
and Ocean-nc is memory intensive. Therefore we expect the
power graph of Ocean-nc to display larger variability than
the power graph of Barnes. That indeed can be seen by
comparing the respective graphs in Figure 2 and Figure 5 for
10 ms control cycles, and in Figure 4 and Figure 7 for 30 ms
control cycles. This also explains the larger settling time of
Ocean-nc vs. Barnes, as can be seen in Table I and Table II.
On the other hand, the tables show that the error measure
for Barnes is larger than for Ocean-nc. We explain this by
noting that the frequency fluctuations of Barnes are smaller
than those of Ocean-nc, as expected and also shown in Figure
3 and Figure 6. If the frequency set £ were continuous then
we would expect Barnes to have the smaller error. However,
the fact that Q is a finite set suggests, by Eq. (8), that the
frequency can get trapped at a particular value which leads to
quantization. It is possible that the wider frequency variations
of Ocean-nc makes it easier for the frequency to escape from
a given value thereby reducing the quantization and resulting
in smaller error.

Comparing results of the Splash-2 programs to those
obtained from the GraphBig programs, the main difference
is in the error measures. According to Tables I-IV, the errors
for BFS and Kcore are smaller than for Barnes and Ocean-
nc. Like Ocean-nc, both BFS and Kcore are also sensitive
to the performance of the memory system, although for
different reasons than Ocean-nc. These applications process
large graphs. The ratio of compute instructions to memory
instructions is smaller and the patterns of memory references
are quite irregular - this makes the memory behaviors more
sensitive to memory system latency. This can cause more
frequent stalls by the processor cores. The regulation algo-
rithm takes one step per control cycle and control cycles are
independent of the number and duration of stalls. Therefore,
on average there are less computing activities per control
cycle in BFS and Kcore than in Ocean-nc; also less than
Barnes which is compute intensive. This results in longer
averages per frequency-variable which in turn translates into
more precise computations.

Finally, we mention that for each given program there
is no noticeable difference in performance between the
experiments with the respective control cycles of 10 ms
and 30 ms. We also note that performance of the regula-



tion algorithm on the GraphBig programs is quite good as
indicated in Table III and Table IV, considering that these
are large-scale application programs representative of data
center applications.

IV. CONCLUSION

This paper describes an output-regulation technique in-
spired by Newton-Raphson’s algorithm for solving algebraic
equations. The tracking controller has the form of an inte-
grator with adjustable gain, designed for effective regulation.
The gain is adjusted in real time by simple computations in
the feedback loop. Furthermore, the regulation algorithm is
robust to modeling uncertainties and computing errors in the
loop, hence does not require precise models of the plant.

We implemented the controller on Intel’s commodity
microarchitecture, Haswell, in order to test it on various
industry-benchmark programs. The control variable consists
of the processor’s clock rate, and the controlled quantity is
the spatial and temporal average of the cores’ power. Due
to the lack of adequate models for performance evaluation
of these systems, we programmed and performed a system-
identification algorithm that is executed in real time. We
describe the main technical challenges associated with im-
plementations of the controller. Results of the experiments
are presented and discussed in detail, and they exhibit fast
and effective convergence. To the best of our knowledge, the
paper presents the first implementation of a control law at
the core-level, based on formal control theory, and applied to
application programs that are executed in large datacenters.
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