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Abstract— In this article we introduce a variational approach
to collision avoidance of multiple agents evolving on a Rieman-
nian manifold and derive necessary conditions for extremals.
The problem consists of finding non-intersecting trajectories of
a given number of agents, among a set of admissible curves, to
reach a specified configuration, based on minimizing an energy
functional that depends on the velocity, covariant acceleration
and an artificial potential function used to prevent collision
among the agents. The results are validated through numerical
experiments on the manifolds R2 and S2.

I. INTRODUCTION

Path planning and collision avoidance of multiple agents
have been areas of significant interest in the past few
decades due to its broad applications in power networks,
biological networks, social networks, mechanical networks
and so on. Finding trajectories that take a set of agents from
one configuration to another while avoiding collisions and
minimizing some quantity like energy or time has been an
important problem with applications in a variety of domains
[15]. Distributed protocols were proposed for various agent
networks, including general linear dynamical networks, non-
linear system networks, and mobile robotic networks in the
last years [6]. Nevertheless there still exist some gaps in the
literature in the bridge of knowledge between multi-agent
systems and geometric mechanics.

Calculus of variations in the large, as presented in Milnor
[16], has been exploited in the past for various applications.
In Crouch and Silva Leite [11] the authors have used it
to develop a theory of generalized cubic polynomials for
dynamic interpolation problems on Riemannian manifolds.
More recently, Bloch, Camarinha and Colombo [3] have
used these variational methods to solve obstacle avoidance
problems on Riemannian manifolds. In this article, inspired
by the recent work [3], we seek to extend this method to
find necessary conditions for optimal trajectories of multiple
agents on a Riemannian manifold that seek to achieve
a specified configuration while avoiding collisions among
themselves. Specifically, the problem studied in this paper
consists of finding non-intersecting trajectories of a given
number of agents, among a set of admissible curves, to
reach a specified configuration and minimizing an energy
functional that depends on the velocity, covariant acceleration
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and an artificial potential function used to prevent collision.
To solve the problem, we employ techniques from calculus
of variations on Riemannian manifolds taking into account
that the problem under study can be seen as a higher order
variational problem [4], [8], [10], [14].

The article is organized as follows. In section 2, we
introduce some concepts from Riemannian geometry relevant
to the rest of the article. In the next section, we define
the variational collision avoidance problem on Riemannian
manifolds and derive necessary conditions for the existence
of extrema. In the following section we extend our analysis
to Lie groups endowed with a left-invariant metric. We show
how to apply the results of this work in particular examples:
two agents moving on a Euclidean space, the sphere, and the
collision avoidance of multiple rigid bodies on SO(3).

II. PRELIMINARIES

A. Preliminaries on Riemannian Geometry

Let M be a smooth (C∞) Riemannian manifold with
Riemannian metric denoted by < ·, · > : TxM × TxM → R
at each point x ∈ M , where TxM is the tangent space of
M at x. The length of a tangent vector is determined by its
norm, ||vx|| = 〈vx, vx〉1/2 with vx ∈ TxM , for each point
x ∈M .

A Riemannian affine connection ∇ on M , is a map that
assigns to any two smooth vector fields X and Y on M a
new vector field, ∇XY , called the covariant derivative of Y
with respect to X satisfying

∇fXY = f∇XY, and ∇X(fY ) = X(f)Y + f∇XY

for all vector fields X,Y ∈ X(M) and f ∈ C∞(M),
where X(M) denotes the set of vector fields on M . For the
properties of ∇, we refer the reader to [5], [7], [16].

Consider a vector field W along a curve x on M . The
n-th order covariant derivative of W along x is denoted by
DnW

dtn
with n ≥ 1. We denote by

Dn+1x

dtn+1
the n-th order

covariant derivative along x of the velocity vector field of x,
n ≥ 1.

Given vector fields X , Y and Z on M , the vector field
R(X,Y )Z given by

R(X,Y )Z = ∇X∇Y Z −∇Y∇XZ −∇[X,Y ]Z (1)

defines the curvature tensor of M , where [X,Y ] denotes the
Lie bracket of the vector fields X and Y . R is trilinear in
X , Y and Z and a tensor of type (1, 3). Hence for vector
fields X,Y, Z,W on M the curvature tensor satisfies ([16],
p. 53)

〈R(X,Y )Z,W 〉 = 〈R(W,Z)Y,X〉. (2)
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Let S be a submanifold of M and Ω ⊂ M be the set of
all C1 piecewise smooth curves x : [0, T ] → M such that
x(0), dx

dt (0) and x(T ) ∈ S are fixed, and dx
dt (T ) ∈ Tx(T )S.

The set Ω is called the admissible set. For the class of curves
in Ω we introduce the C1 piecewise smooth one parameter
admissible variation of a curve x ∈ Ω by α : (−ε, ε) ×
[0, T ] → M ; (r, t) 7→ α(r, t) = αr(t) that satisfy α0 = x
and αr ∈ Ω, for each r ∈ (−ε, ε).

The variational vector field associated to an admissible
variation α is a C1-piecewise smooth vector field X along
x defined by

X(t) =
D

∂r

∣∣∣
r=0

α(r, t) ∈ Tx(t)Ω

verifying the boundary conditions

X(0) = 0, X(T ) = 0

DX

dt
(0) = 0,

DX

dt
(T ) ∈ Tx(T )M

where the tangent space of Ω at x is the vector space TxΩ of
all C1 piecewise smooth vector fields X along x verifying
the former boundary conditions.

Lemma 2.1 ([16], p.52): The one parameter variation sat-
isfies

D

∂r

D2α

∂t2
=
D2

∂t2
∂α

∂r
+R

(∂α
∂r
,
∂α

∂t

)∂α
∂t
.

Next, assume that M is an n-dimensional complete Rie-
mannian manifold. In this context the Riemannian distance
between two points in M can be defined by means of the
Riemannian exponential on M , that is,

d(q, p) = ‖exp−1q p‖.

We need to guarantee that the exponential map expq is a
local diffeomorphism, so we assume that the point p must
belong to a convex open ball around q. If we consider the
geodesic from p to q given by γp,q(s) = expp(s exp−1p q),

s ∈ [0, 1], then, because
∥∥∥dγp,q
ds

(s)
∥∥∥ is independent of s, we

can write

d2(p, q) =

∫ 1

0

∥∥∥dγp,q
ds

(s)
∥∥∥2 ds.

The proof of the following lemmas can be found in [13].
Lemma 2.2: Let M be a complete smooth Riemannian

manifold. Then d(p, q) = ‖exp−1p q‖2 is well defined ∀p, q ∈
M .
Moreover, if α : (−ε, ε)→M is a smooth curve,

∂

∂r
d(p, α(r))

∣∣∣
r=0

= −
〈∂α
∂r

(0), exp−1α(0)p
〉

Lemma 2.3: If Xi(t) is smooth vector field along xi(t) ∈
Ωi, such that

Xi(T ) = 0 and
dXi

dt
(T ) ∈ Txi(T )S

then α(r, t) = exp(rXi(t)) is an admissible variation of
xi(t) whose variational vector field is Xi.

III. THE VARIATIONAL COLLISION AVOIDANCE PROBLEM
ON RIEMANNIAN MANIFOLDS

Let M be a complete smooth Riemannian manifold. Let
T , n and k be positive real numbers. Consider n agents
evolving on M , and (pi0, v

i
0), with i = 1, 2..., n, points in

TM corresponding to the initial positions and velocities of
the agents.

For each i = 1, . . . , n, consider the set Ωi ⊂M of all C1

piecewise smooth curve on M , xi : [0, T ] → M verifying
the boundary conditions

xi(0) = pi0,
dxi
dt

(0) = vi0

xi(T ) = piT ∈ S,
dxi
dt

(T ) ∈ Txi(T )S

(the n agents reach a specified point on the submanifold S
with velocity tangent to S) and define the functional J on
Ώ = Ω1×...×Ωn

J(x1, x2, ..., xn) =
1

2

n∑
i=1

∫ T

0

(∥∥∥D2xi
dt2

(t)
∥∥∥2 + k

∥∥∥dxi
dt

(t)
∥∥∥2

+

n∑
j=1,j 6=i

F (‖exp−1xj(t)
xi(t)‖2)

)
dt

where expx : V0 ⊂ TxM → M is the geodesic exponential
map, which is a smooth diffeomorphism of some open set
around 0 ∈ TxM onto an open set around x, F : R→ R∗ is
a smooth function from the reals to the extended reals such
that F (0) = +∞. The functional is constructed as the sum
of a combination of the velocity and covariant acceleration
of the individual trajectories regulated by a parameter k and
a function that penalizes collisions between the agents.

Problem: The variational collision avoidance problem
involves minimizing the functional J among Ώ.

In order to minimize the functional J among the set Ώ we
want to find curves x ∈ Ώ such that J(x) ≤ J(x̃), for all
admissible curves x̃ in a C1 neighborhood of x.

Remark 3.1: Note that the factor 1
2 multiplying

n∑
j=1,j 6=i

F (‖exp−1xj(t)
xi(t)‖2) is to not count twice the

same potential function for two agents to avoid collision
between them.

Theorem 3.1: Let xi ∈ Ωi. If α is an admissible variation
of xi with variational vector field Xi, then

0 =
d

dr
J(αr)

∣∣∣
r=0

=

∫ T

0

(〈
Xi,

D4xi
dt4

− kD
2xi
dt2

+R
(D2xi
dt2

,
dxi
dt

)dxi
dt

−
n∑

j=1,j 6=i

F ′(‖exp−1xi(t)
xj(t)‖2)exp−1xi(t)

xj(t)
〉)

dt

+

l∑
i=1

[〈DXi

dt
,
D2xi
dt

〉
+
〈
Xi, k

dxi
dt
− D3xi

dt3

〉]t−i
t+i−1

.



Proof: If α is an admissible variation of xi ∈ Ωi with
variational vector field Xi, then

d

dr
J(αr) =

∫ T

0

(〈D
dr

D2α

dt2
,
D2α

dt2

〉
+ k
〈D2α

∂r∂t
,
∂α

∂t

〉
+

n∑
j=1,j 6=i

F ′(‖exp−1xj(t)
α(t)‖2)

∂

∂r
‖exp−1xj(t)

αr(t)‖2
)
dt.

By lemma 2.2

∂

∂r
‖exp−1xj(t)

αr(t)‖2 = −
〈

exp−1αr(t)
xj(t),

∂

∂r
αr(t)

〉
By lemma 2.1 and the previous equation

d

dr
J(αr) =

∫ T

0

(〈D2

dt2
∂α

∂r
,
D2α

dt2

〉
+
〈
R
(∂α
∂r
,
∂α

∂t

)∂α
∂t
,
D2α

∂t2

〉
+ k
〈D2α

∂r∂t
,
∂α

∂t

〉
−

n∑
j=1,j 6=i

F ′(‖exp−1xj(t)
αr(t)‖2)

〈∂αr(t)
∂r

, exp−1αr(t)
xj(t)

〉)
dt.

Integrating the first term by parts twice and the third term
once, and applying Lemma 2.1 to the second term, we obtain
that

d

dr
J(αr) =

∫ T

0

(〈∂α
∂r
,
D4α

dt4
+R

(D2α

dt2
,
∂α

∂t

)∂α
∂t
− kD

2α

dt2

−
n∑

j=1,j 6=i

F ′(‖exp−1xj(t)
α(t)‖2)

〈 ∂
∂r
αr(t), exp−1αr(t)

xj(t)
〉)

dt

+

l∑
i=1

[〈D
dt

∂α

∂r
,
D2α

dt2

〉
+
〈∂α
∂r
, k
∂α

∂t
− D3α

∂t3

〉]t−i
t+i−1

where the interval [0, T ] is partitioned as 0 = t0 < t1 <
... < tl = T such that in each subinterval xi is smooth.
Taking r = 0 in the last equation,

d

dr
J(αr)

∣∣∣r = 0 =

∫ T

0

(〈
Xi,

D4xi
dt4

+R
(D2xi
dt2

,
∂xi
∂t

)∂xi
∂t
− kD

2xi
dt2

−
( n∑
j=1,j 6=i

F ′(‖exp−1xj(t)
xi(t)‖2).exp−1xi(t)

xj(t)
)〉)

dt

l∑
i=1

[〈DXi

dt
,
D2xi
dt2

〉
+
〈
Xi, k

dxi
dt
− D3xi

dt3

〉]t−i
t+i−1

.

�
Theorem 3.2: If x́ ∈ Ώ is a local minimizer of J , then

∀i ∈ 1, 2..., n

1)

D4xi
dt4

+R
(D2xi
dt2

,
dxi
dt

)dxi
dt
− kD

2xi
dt2

=

n∑
j=1,j 6=i

F ′(‖exp−1xj(t)
xi(t)‖2).(exp−1xi(t)

xj(t))

2) xi is smooth on [0, T ]

3) D2xi

dt2 (T ) ⊥ Txi(T )S

Proof: Assume x́ ∈ Ώ is a local minimizer of J . Con-
sider a variation of x́, άr,i(t) := (x1(t), .., αr,i(t), ..., xn(t)),
where αr,i(t) is an admissible variation of Ωi with variational
vector field Xi. Then d

drJ(αr,i)
∣∣∣
r=0

= 0 ∀i ∈ 1, 2, ...n.
Let us consider Xi defined as

f
[D4xi
dt4

+R
(D2x

dt2
,
dx

dt

)dx
dt
− kD

2x

dt2

−
( n∑
j=1,j 6=i

F ′(‖exp−1xi(t)
xj(t)‖2).(exp−1xi(t)

xj(t))
)]

where f is a smooth real valued function on [0, T ] such that
f(ti) = f ′(ti) = 0 and f(t) > 0, t 6= ti, i = i, ..., l. So, we
have

0 =
d

dr
J(αr)

∣∣∣
r=0

=

∫ T

0

(
f‖D

4xi
dt4

+R
(D2xi
dt2

,
dxi
dt

)dxi
dt
− kD

2xi
dt2

−
n∑

j=1,j 6=i

F ′(‖exp−1xi(t)
xj(t)‖2)exp−1xi(t)

xj(t)‖2
)
dt

Since f(t) is greater then zero outside a set of measure zero,∥∥∥D4xi
dt4

+R
(D2xi
dt2

,
dxi
dt

)dxi
dt
− kD

2xi
dt2
−( n∑

j=1,j 6=i

F ′(‖exp−1xi(t)
xj(t)‖2)exp−1xi(t)

xj(t)
)∥∥∥ = 0

from which statement 1 follows.
Now, choose Xi ∈ Txi

Ωi such that

Xi(tj) =
D3xi
dt3

(t+j )− D3xi
dt3

(t−j ) ∀j = 1, .., l − 1

DXi

dt
(tj) =

D2xi
dt2

(t−j )− D2xi
dt2

(t+j ) ∀j = 1, .., l − 1

Xi(T ) =
DXi

dt
(T ) = 0

Therefore,

0 =
d

dr
J(αr)

∣∣∣r = 0 =

l−1∑
i=1

∥∥∥D2xi
dt2

(t−j )− D2xi
dt2

(t+j )
∥∥∥2

+
∥∥∥D3xi
dt3

(t+j )− D3xi
dt3

(t−j )
∥∥∥2 = 0

which implies that

D2xi
dt2

(t−j ) =
D2xi
dt2

(t+j )
D3xi
dt3

(t+j ) =
D3xi
dt3

(t−j )

Since xi is a C1 curve with continuous covariant derivatives
up to order 3, xi is C3 on [0, T ]. But, we have shown that xi
is the solution of a fourth order smooth ODE, which means
the fourth derivative can be expressed as a smooth function
of derivatives upto order 3. The kth order derivative can
be expressed as a smooth function of derivatives upto order



k − 1, and so by induction, xi is smooth on [0, T ]. Hence,
statement 2 follows.

When Xi(T ) = 0, DXi

∂t (T ) = dXi

dt (T ). Now, choose Xi ∈
Txi

Ωi such that

Xi(T ) = 0, and
DXi

dt
(T ) = ΠTxi(T )S

(
D2xi
∂t2

(T )

)
where ΠTxi(T )SV is the orthogonal projection onto Txi(T )S

of V ∈ Txi(T )M . Since Xi(T ) = 0, dXi

dt (T ) = DXi

∂t (T ) ∈
Txi(T )S. By lemma 2.3, Xi is the variational vector field of
an admissible variation. Therefore,

d

dr
J(αr)

∣∣r = 0 =
〈

ΠTxi(T )S

(
D2xi
∂t2

(T )

)
,
D2xi
∂t2

(T )
〉

= 0

=⇒ ΠTxi(T )S

(
D2xi
∂t2

(T )

)
= 0

Hence statement 3 holds. �
Remark 3.2: We now make some remarks on the previous

result for the following scenarios:
• If M is an n-dimensional manifold and S is an m-

dimensional submanifold, with m < n, then the condi-
tions x(0) and dx

dt (0) being fixed gives 2n independent
boundary conditions, the condition x(T ) being fixed
gives another n independent boundary conditions, and
dx
dt (T ) ∈ Tx(T )S gives yet another n − m boundary
conditions. Theorem 3.2 (3) gives an additional m
boundary conditions. The fourth order boundary value
problem given by Theorem 3.2 (1) along with the 4n
boundary conditions forms a well posed problem.

• If we were to change the endpoint boundary condition
to be dxi

dt (T ) = vi (i.e dxi

dt (T ) is a fixed vector), then
it easily follows that conditions (1) and (2) of Theorem
3.2 still hold, but condition (3) does not hold. This still
results in 4n boundary conditions.

• If we consider endpoint boundary conditions xi(T ) ∈ S
(i.e xi(T ) is not fixed, but can be any element in S)
and dxi

dt (T ) ∈ Txi(T )S, all the conditions in Theorem
3.2 still hold. But, in this case, we have 2n initial
conditions, the endpoint conditions x(T ) ∈ S gives
n − m conditions, and dx

dt (T ) ∈ Tx(T )S gives n − m
boundary conditions. These 4n− 2m conditions, along
with the m conditions given by Theorem 3.2 (3) gives
only 4n − m boundary conditions. We expect to find
another m conditions, similar to Theorem 3.2 (3), in
this case. We explore such an extension of Theorem
3.2 to this situation in a future work as we comment in
Section V.

A. Example: Planar agents on an Euclidean space

We consider the case of 2 agents evolving on M = R2

endowed with the Euclidean Riemannian metric. At time
T = 0, the first agent (agent blue in Figure 1) is at
p10 = (0, 0) with velocity v10 = (1, 0), and the second
agent (agent green in Figure 1) is at p20 = (1, 0) with
velocity v20 = (0, 1). At time T = 1 the first agent is at
p11 = (1, 1) with velocity v11 = (0, 1), and the second agent
is at p21 = (0, 1) with velocity v21 = (0, 1). At time T = 2

the first agent is at p12 = (0, 2) with velocity v12 ∈ Tp12S1, and
the second agent is at p22 = (1, 2) with velocity v22 ∈ Tp22S2.
Here, S1 = {(z1, z2) ∈ R2| ‖(z1, z2) − (0.2, 2)‖2 = 0.2},
and S2 = {(z1, z2) ∈ R2| ‖(z1, z2) − (1, 1.8)‖2 = 0.2}.
Note that in this particular example, S (the submanifold in
Theorem 3.2) is the disjoint union of the two circles shown
in Figure 1. Here we have taken F : (0,∞) → (0,∞)

given by F (x) =
1

x
, and the value of k = 0. Note that at

time T = 1, the boundary conditions are that mentioned in
Remark 3.2. In this particular case, the argument of F is
the usual Euclidean distance between two points. We show
in Figure 1 some simulations of the trajectories given by
Theorem 3.2. Note that the trajectories exhibit the usual S-
shape of cubic polynomials.
On R2 endowed with the Euclidean metric,

exp−1x1
(x2) = x2 − x1.

We denote by (xi(t), yi(t)) the trajectory of the i-th agent.
The conditions of Theorem 3.2 (1) translate to

x′′′′1 =
x1 − x2

((x2 − x1)2 + ((y2 − y1)2)2
,

y′′′′1 =
y1 − y2

((x2 − x1)2 + ((y2 − y1)2)2
,

x′′′′2 =
x2 − x1

((x2 − x1)2 + ((y2 − y1)2)2
,

y′′′′2 =
y2 − y1

((x2 − x1)2 + ((y2 − y1)2)2
.

Theorem 3.2 (3) gives

y′′1 (2) = 0, x′′2(2) = 0.

along with the conditions

x1(0) = 0, y1(0) = 0, x2(0) = 1, y2(0) = 0,

x′1(0) = 1, y′1(0) = 0, x′2(0) = 0, y′2(0) = 1,

x1(1) = 1, y1(1) = 1, x2(1) = 0, y2(1) = 1,

x′1(1) = 0, y′1(0) = 1, x′2(1) = 0, y′2(0) = 1,

x1(2) = 0, y1(2) = 2, x2(2) = 1, y2(2) = 2.

x′1(2) = 0, y′2(2) = 0.

B. Example: Agents on a 2-Sphere

In this example, we consider 2 agents evolving on the
2-sphere S2 = {x ∈ R3 | ‖x‖2 = 1} endowed with the
induced Riemannian structure from R3. We have taken fixed
position and velocity conditions

p10 = (0.7, 0.3, 0.648), v10 = (1, 0,−1.08),

p11 = (−0.7, 0.3, 0.648), v11 = (1, 0, 1.08),

p20 = (0.7, 0.6, 0.3873), v20 = (0,−1, 1.55),

p21 = (−0.7, 0.6, 0.3873), v21 = (0, 1,−1.55).

As before, we have taken F : (0,∞) → (0,∞) given

by F (x) =
1

x
, and the value of k = 0. Figure 2 shows

the trajectories satisfying Theorem 3.2 followed by the
agents. Agent 1 and 2 follow the blue and brown trajectories
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Fig. 1. Optimal Path traced by two agents evolving on R2.

respectively in 2.
For x, y ∈ S2,

exp−1x (y) = cos−1(〈x, y〉) y − 〈x, y〉x√
1− 〈x, y〉2

,

‖exp−1x (y)‖ = cos−1(〈x, y〉).

For the purpose of computation, we parametrize S2 with
the (θ, φ) coordinates as

x = (sinθsinφ, sinθcosφ, cosθ)

If (θ(t), φ(t)) is the coordinate representation of the curve
x(t), it can be shown that

D4x

dt4
=
(
θ′′′′ + (5sin2θ)θ′2φ′2 + (1− 7cos2θ)θ′′φ′2

+ (5− 17cos2θ)θ′φ′φ′′ − (3sinθcosθ)φ′′2

− (2sin2θ)φ′φ′′′ + (sinθcos3θ)φ′4
) ∂
∂θ

+(
φ′′′′ − 7θ′θ′′φ′ − 5θ′2φ′′ + (4cotθ)θ′′′φ′

+ (6cotθ)θ′′φ′′ + (4cotθ)φ′′′θ′

+ (sin2θ − cotθ(5cos2θ − 1))θ′φ′3

− (6cos2θ)φ′2φ′′ − (2cotθ)φ′θ′3
) ∂

∂φ
,

R
(D2x

dt2
,
dx

dt

)dx
dt

= 0.

If (θi(t), φi(t)) denote the coordinate representation of the
trajectory of the i-th agent, then 3.2 in local coordinates gives
a 2 point boundary value problem in the variables (θi, φi),
which can be solved to obtain the optimal trajectories.

IV. VARIATIONAL COLLISION AVOIDANCE PROBLEM ON
LIE GROUPS

On a Lie group G, we can give an explicit notion of
geodesic exponential.

Let e be the identity element on G, and g denotes the
Lie algebra associated with G, that is, g = TeG. A vector
field X ∈ X(G) is called left-invariant if ThLg(X(h)) =

−1 −0.5 0 0.5 1
−1

−0.5

0

0.5

1

Fig. 2. Optimal Path traced by two agents evolving on S2.

X(Lg(h)) = X(gh) for all g, h ∈ G. In particular for h =
e this means that a vector field X is left-invariant if ġ =
X(g) = TeLgζ for ζ = X(e) ∈ g. Note that if X is a left
invariant vector field, then ζ = X(e) = TgLg−1 ġ.

Given ζ ∈ g, we denote by Xζ the left-invariant vector
field defined as Xζ(g) = TeLg(ζ),∀g ∈ G. Let φζt denote
the flow of Xζ . Let U be some neighborhood of 0 ∈ g,
the exponential function exp : U ⊂ g → G is defined as
exp(ζ) = φζ1(e).

If G is equipped with a Riemannian structure, it is not in
general true that the 2 notions of an exponential coincide.
Geodesics on a Lie group are not generally the flow of a
left-invariant vector field on G. A connection on G for which
geodesics are flows of left-invariant vector fields is called a
Cartan connection.

Any inner product on g induces a left invariant Riemannian
metric on G (see [7] p. 271). The restriction of such a
Riemannian metric to g will be denoted by ∇̃ : g× g → g.
A Riemannian metric which is both left and right invariant
is called bi-invariant. Unfortunately, the Riemannian met-
ric being left-invariant does not guarantee the Levi-Civita
connection it induces will be a Cartan connection. It can
be shown that the Levi-Civita connection induced by a bi-
invariant Riemannian metric on G is also a Cartan connection
(see [19] p. 156). In fact, on a connected Lie group, the
converse of the statement is also true, i.e. if the Levi-Civita
connection induced by a left-invariant Riemannian metric
is also a Cartan connection, then the Riemannian metric
is bi-invariant. In the following discussion, we exclusively
deal with the case where G is endowed with a left-invariant
Riemannian metric such that the Levi-civita connection it
induces is also a Cartan connection.

Therefore, assume that G endowed with a left-invariant
Riemannian metric 〈·, ·〉, with I : g×g→ R the correspond-
ing inner product on the Lie algebra g, a positive-definite
symmetric bilinear form in g. The inner product I defines the
metric 〈·, ·〉 completely via left translation (see for instance
[7] pp. 273).

Let x : I ⊂ R → G be a smooth curve on G. The
body velocity of x is the curve v : I ⊂ R → g defined



by v(t) = Tx(t)Lx(t)−1

(
dx

dt
(t)

)
.

Let {e1, . . . , en} be a basis of g. We denote by uL the
left-invariant vector field associated with u ∈ g. The body

velocity of x on the given basis is described by v =

n∑
i=1

viei,

where v1, . . . , vn are the so-called pseudo-velocities of the
curve x with respect to the given basis. The velocity vector
can be written in terms of the pseudo-velocities as follows

dx

dt
(t) = TeLx(t)v(t) =

n∑
i=1

vi(t)(ei)L(x(t)). (3)

When the body velocity is interpreted as a control on the
Lie algebra, equations (3) give rise to the so called left-
invariant control systems discussed in [9]. Therefore our
analysis also includes this class of kinematic control systems.

To write the equations determining necessary conditions
for existence of extrema in the variational collision avoidance
problem, we must use the following formulas (see [1],
Section 7 for more details).

∇̃vv =

n∑
i,j=1

vivj∇̃ejei, exp−1x y = TeLx(exp−1e (x−1y)),

D2x

dt2
= TeLx

(
v′ + ∇̃vv

)
,

D3x

dt3
= TeLx

(
v′′ + ∇̃v′v + 2∇̃vv′ + ∇̃v∇̃vv

)
,

D4x

dt4
= TeLx

(
v′′′ + ∇̃v′′v + 3∇̃v′v′ + 3∇̃vv′′ + ∇̃v′∇̃vv

+ 2∇̃v∇̃v′v + 3∇̃vv′ + ∇̃vv
)
,

R
(D2x

dt2
,
dx

dt

)dx
dt

= TeLx

(
R̃(v′, v)v + R̃(∇̃vv, v)v

)
,

where R̃ denotes the curvature tensor associated with ∇̃.
Thus, as a consequence of Theorem 3.2 (1) we have the
following result

Corollary 4.1: The equations giving necessary conditions
for the existence of minimizers in the variational collision
avoidance problem where agents are defined on a Lie group
G are

0 =v′′′i + ∇̃v′′i vi + 3∇̃v′iv
′
i + 3∇̃viv′′i + ∇̃v′i∇̃vivi

+ 2∇̃vi∇̃v′ivi + 3∇̃viv′i + ∇̃vivi + R̃(v′i, vi)vi

+ R̃(∇̃vivi, vi)vi − k
(
v′i + ∇̃vivi

)
−
( n∑
j=1,i6=j

F ′(‖exp−1e (x−1j xi)‖2)exp−1e (x−1i xj)
)
.

A. Example: Collision avoidance of rigid bodies on SO(3)

We clarify the notion of collision avoidance on SO(3) as
follows: The idea is to ensure that n agents, each evolving
on the manifold SO(3), do not attain the same orientation
at any given instant of time. In this particular example, we
consider a collision avoidance problem for the motion of
three rigid bodies in the space where the configuration space
of each agent is the Lie group G = SO(3).

Denote by t→ Ri(t) ∈ SO(3) a curve for the ith agent,
i = 1, 2, 3 and let I be the (3 × 3)-identity matrix. The
columns of the matrix Ri(t) represent the directions of the
principal axis of the ith body at time t with respect to some
reference system. Let so(3) = TISO(3) be the Lie algebra of
the Lie group SO(3), that is, the set of 3×3 skew-symmetric
matrices,

so(3) = {Ṙ(0)|R(t) ∈ SO(3), R(0) = I}
= {Ω̂ ∈ R3×3|Ω̂ is skew-symmetric}.

It is well know that (see [2] for instance) so(3) ' R3 using
the isomorphism

Ω̂i(t) =

 0 −Ω3
i (t) Ω2

i (t)
Ω3
i (t) 0 −Ω1

i (t)
−Ω2

i (t) Ω1
i (t) 0

 ' (Ω1
i ,Ω

2
i ,Ω

3
i )

where Ωi = (Ω1
i ,Ω

2
i ,Ω

3
i ) ∈ R3.

We consider the basis of so(3) represented by the canon-
ical basis of R3 denoted by {e1, e2, e3} and endow SO(3)
with the left-invariant metric defined by the inner product

I =

3∑
k=1

J ike
k ⊗ ek where J ik are the elements of the diagonal

matrix defining the kinematics structure of the rigid body,
the inertia moments, with k = 1, 2, 3 for each i = 1, 2, 3
and {e1, e2, e3} the dual basis of {e1, e2, e3}.

The Levi-Civita connection ∇ induced by 〈·, ·〉 determined
by the inner product is completely determined by its restric-
tion to so(3) and given by (see for instance [7] p. 281)

∇̃vz =
1

2
v × z +

1

2

(
I−1(v × (Iz) + w × (Iv)

)
where v = (v1, v2, v3) ∈ R3 and z = (z1, z2, z3) ∈ R3.

For simplicity in the exposition we consider the case of a
symmetric rigid body with J ik = 1 with i, k = {1, 2, 3}.
Then the formula above for the Levi-Civita connection
reduces to ∇̃vz =

1

2
(v × z). By using equation (2), the

restriction of the curvature tensor to so(3) is defined by

R̃(v, z)w = −1

4
(v × z)× w where v, z, w ∈ R3.

For the collision avoidance problem we consider F :
R+ → R+ as F (x) = 1

x where the argument of F is the
usual Euclidean distance between two elements on so(3) '
R3, that is, F (‖exp−1Q R‖2) = 1

‖exp−1
Q R‖2 with R,Q ∈

SO(3) and where exp : so(3) → SO(3) representing the
matrix exponential on SO(3).

By Corollary 4.1 the necessary conditions for the normal
extremals for the variational collision avoidance problem are
determined by the solutions of the equation

v′′′i =v′′i × vi + kv′i +
3

4
(v′i × vi)× vi +

3

2
v′i × vi

+

3∑
j=1,i6=j

exp−1(R−1j Ri)

‖exp−1(R−1i Rj)‖4
.

together with the equation Ṙi = Rivi, and the boundary
conditions R0 = Ri0, Ri(T ) = RiT , vi(0) = vi0 and vi(T ) =
viT for i = 1, 2, 3.



V. CONCLUSIONS AND FUTURE WORK

We discussed the problem of collision avoidance of multi-
agent systems on a complete Riemannian manifold and
derived, from the point of view of calculus of variations,
necessary conditions for the existence of extrema in the
problem. We have shown how the main result can be applied
for the particular case of a compact Lie group, a Euclidean
space, and a non Lie group example, i.e., the 2-sphere, S2.

The study of these necessary conditions on symmetric
spaces and reduction theories for variational problems has
attracted considerable interest and has been carried out
systematically by several authors. In future work we intend
to extend the main results presented in this paper to this
setting and explore numerical results for three dimensional
agents as well as explore extensions of Theorem 3.2 as we
commented in Remark 3.2.
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