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A Convex Approach to Frisch-Kalman Problem

Di Zhao, Anders Rantzer, and Li Qiu

Abstract— This paper proposes a convex approach to the
Frisch-Kalman problem that identifies the linear relations
among variables from noisy observations. The problem was
proposed by Ragnar Frisch in 1930s, and was promoted
and further developed by Rudolf Kalman later in 1980s.
It is essentially a rank minimization problem with convex
constraints. Regarding this problem, analytical results and
heuristic methods have been pursued over a half century.
The proposed convex method in this paper is shown to be
accurate and demonstrated to outperform several commonly
adopted heuristics when the noise components are relatively
small compared with the underlying data.

I. INTRODUCTION

The identification from noisy data has become an impor-

tant problem of statistics and, via applications, of economet-

rics, biometrics, psychometrics and so on. Among various

problems with different models on the data and noise, the

Frisch-Kalman problem (scheme) [1]–[3], which is rooted

in the work of Charles Spearman [4] in 1904, has attracted

much attention and been investigated since 1930s [1]–[3],

[5]–[9].

Given a finite family of n (random) variables

{ω1, ω2, . . . , ωn} that are linearly dependent, we call

them the true or underlying data, and in general, we have

no direct access to their exact values. Instead, we can

measure or observe their values in a noisy environment.

The observed data {x1, x2, . . . , xn} are corrupted by noise

variables {δ1, δ2, . . . , δn} additively, i.e.,

xi = ωi + δi, i = 1, 2, . . . , n.

One may ask naturally: can we identify the linear relations

among the true data from the observed (noisy) data samples?

For this purpose, what else do we need to know about the

data and noise? A well-established answer to the problems

is given by the Frisch-Kalman scheme.

Denote by Σ the covariance matrix of the observed data

{xi}, which may be obtained from repeated experiments and

measurements. Denote by Ω and ∆ the covariance matrices

of the true data {ωi} and noise {δi}, respectively. The key

assumption in the Frisch-Kalman scheme is that the noise

components are mutually uncorrelated and independent from
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the true data, in which case the following decomposition

holds:

Σ = Ω +∆,

and ∆ is nonnegative and diagonal. Such a decomposition is

called the factor analytic decomposition [6], [10] as is used

in a statistical method — the factor analysis. The Frisch-

Kalman scheme suggests one way to identify the linear

relations via the minimization of the rank of Σ − ∆ over

all possible noise covariance matrices ∆. Regarding this

scheme, a particularly important problem, which aims at

finding the exact class of the observed covariance matrices

Σ such that the maximum corank of Σ − ∆ over all ∆ is

one, has been investigated since 1940s [2], [3], [6], [7], [9],

[11].

The Frisch-Kalman problem is essentially a rank min-

imization problem with convex constraints. It is closely

related to the low-rank matrix completion problem [12]–

[14], where one wishes to complete a partially known matrix

so that its rank is as small as possible. The nuclear norm

minimization [13] has been pursued as a suitable heuristic

for general rank minimization problems. In terms of the

Frisch-Kalman problem, the nuclear norm heuristic reduces

to the well-studied minimum trace factor analysis [5], [6],

[9], [15]. As generalizations to the nuclear norm, a family of

low-rank inducing norms, called the r∗-norms [16], [17] or

spectral r-support norms [18], have been recently proposed,

which improve the performance of the nuclear norm heuristic

for rank minimization problems. In addition to the low-rank

inducing norms, other surrogates have been studied for the

rank function, for example, the logarithm of the determinant

(log-det) [19].

In this paper, we propose a convex approach to the

Frisch-Kalman problem by first reformulating the problem

into a norm minimization problem with a rank constraint,

then relaxing it into a convex problem that is essentially

a semi-definite programming (SDP) [20]. Conditions on

the tight relaxation are developed and demonstrated. The

reformulated Frisch-Kalman problem additionally penalizes

the variances of noise components, which is motivated by

the application scenarios when the noise are well-bounded

with respect to the underlying data. For example, population

census and mapping in developed countries [21], channel

estimations in slow fading channels [22], long-term global

surface temperature measure [23], and so on. Comparisons

with the existing heuristic methods, including the nuclear

norm minimization [13], the r∗-norm minimization [16] and

the log-det heuristic [19], show that the proposed method has

high success rates and strictly outperforms the others when
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the noise components are well bounded with respect to the

underlying data.

The rest of the paper is organized as follows. In Section II,

basic notation and preliminary results are introduced. In Sec-

tion III, the main algorithm is developed. In Section IV, the

conditions on the tight relaxation are obtained. In Section V,

comparisons with the existing heuristic methods are shown

via simulations. Finally, in Section VI, the study is concluded

and future research directions are introduced.

II. PRELIMINARIES

A. Notation

Let R be the real field, and Rn be the linear space of n-

dimensional vectors over R. For x ∈ R
n, its Euclidean norm

is denoted by ‖x‖.

For matrix A ∈ Rm×n, its element in the ith row and jth

column is denoted by [A]ij , i = 1, 2, . . . ,m, j = 1, 2, . . . , n,

its transpose is by AT , its range is by

R(A) := {y ∈ R
m| y = Ax for some x ∈ R

n},
its kernel is by

K(A) := {x ∈ R
n| Ax = 0},

and its kth singular value is by σk(A), k = 1, 2, . . . , l, in a

nonincreasing order, where l = min{m,n}. The largest and

smallest singular values are specially denoted by σ̄(A) :=
σ1(A) and σ(A) := σl(A), respectively. The operator norm

(spectral norm) and the Frobenius norm of A are respectively

denoted by

‖A‖ := σ̄(A) and ‖A‖F :=

√

√

√

√

l
∑

k=1

σ2
k(A).

The r-norm [16] of A, r = 1, 2, . . . , l, is defined via

‖A‖r :=

√

√

√

√

r
∑

i=1

σ2
i (A).

Clearly, ‖A‖F = ‖A‖l. Denote its singular value decompo-

sition (SVD) as

A = USV T =

l
∑

i=1

σi(A)uiv
T
i ,

where U, V are unitary. For A,B ∈ Rm×n, their inner

product is defined via

〈A,B〉 := tr(ATB).

For X ∈ R
n×n, the diagonal matrix that keeps the diagonal

terms of X is denoted by diag(X). For x ∈ Rn, the diagonal

matrix with its ith diagonal term given by xi is denoted by

diag∗(x).
Some frequently used special sets of matrices are as

follows.

• Denote by Sn the set of all symmetric matrices in Rn×n.

• Denote by Sn0 the set of symmetric matrices in Rn×n

with zero diagonals.

• Denote by Sn+ (Sn++, resp.) the set of all positive semi-

definite (definite, resp.) matrices in R
n×n.

• Denote by Dn the set of all diagonal matrices in Rn×n.

• Denote by Dn
+ the set of all nonnegative diagonal

matrices in Rn×n.

B. Standard Low-Rank Approximation

Let A ∈ Rm×n and l = min{m,n}. Consider the

following standard rank approximation problem:

min
B

{‖A−B‖F | rank(B) ≤ r} , (1)

for r = 1, 2, . . . , l. Based on the Schmidt-Mirsky theorem

[24, Chapter IV], all solutions to problem (1) is given by

svdr(A):=

{

r
∑

i=1

σi(A)uiv
T
i

∣

∣

∣

∣

∣

A =

l
∑

i=1

σi(A)uiv
T
i is SVD

}

,

which is called the set of all standard rth order SVD-

approximation to A. Clearly, for every B ∈ svdr(A), it holds

that

rank(B) = r. (2)

When σr(A) > σr+1(A), svdr(A) is a singleton and its only

element is denoted by

[A]r :=

r
∑

i=1

σi(A)uiv
T
i .

The optimal value to the problem is given by

min
B

{‖A−B‖F | rank(B) ≤ r} =

∥

∥

[

σr+1(A) · · · σl(A)
]
∥

∥ =
√

‖A‖2F − ‖A‖2r.

C. Frisch-Kalman Problem

The Frisch-Kalman problem is defined via the following

optimization [1]–[3], [9].

Definition 1. Given Σ ∈ Sn++, determine

mr(Σ) = min
Ω,∆

{rank(Ω)| Σ = Ω +∆,

Ω ∈ S
n
+,∆ ∈ D

n
+}.

(3)

A matrix ∆ is said to be feasible to problem (3), if ∆
is diagonal and Σ ≥ ∆ ≥ 0. A trivial upper bound to the

problem is given by mr(Σ) ≤ n− 1, which can be obtained

by selecting a feasible ∆ = σ(Σ)I . The Frisch-Kalman

problem is, in general, non-convex, and many heuristic

convex approaches have been proposed and investigated [6],

[9], [13], [14].

III. PROPOSED CONVEX APPROACH

In this section, we develop a convex approach to solving

the Frisch-Kalman problem, and further apply the algorithm

to a variant of the Frisch-Kalman problem, called the Shapiro

problem [6].



A. Reformulation and Relaxation

Consider the factor analytic decomposition Σ = Ω + ∆.

In the context of Frisch-Kalman scheme, Ω ∈ Sn+ is the

unknown covariance matrix of some linearly dependent true

data variables, and hence it is expected to have a low rank.

The matrix ∆ is the covariance matrix of an uncorrelated

noise vector, and hence it must be nonnegative diagonal.

Finally, Σ ∈ Sn++, as the sum of Ω and ∆, is the covariance

matrix of the noisy data under the assumption that the data

and noise are independent. In many practical situations, the

variances of the noise may be much smaller than those of the

true data. To take advantage of the additional preknowledge,

we may penalize the “size of noise” as in the following

reformulation of Frisch-Kalman problem.

Given an integer r ∈ [1, n], we reformulate the Frisch-

Kalman problem into the following norm minimization prob-

lem with a rank constraint:

min
Ω

{‖Σ− Ω‖2F | rank(Ω) ≤ r, Σ ≥ Ω ≥ 0,

Σ− Ω ∈ D
n}.

(4)

Here, the object function is simply the sum of squares of

all the entries in the diagonal matrix Σ − Ω. The rank

function is moved from the object function in (3) to the

constraints in (4). If this problem is feasible, then we obtain

immediately mr(Σ) ≤ r. In other words, we can search for

mr(Σ) via solving a sequence of feasibility problems of (4)

with different levels of r ∈ [1, n]. However, the reformulated

problem (4) is still non-convex. To proceed, we develop some

further relaxations in the following.

We introduce a symmetric matrix with zero diagonals,

namely, Λ ∈ Sn0 , as the dual variable. Based on the refor-

mulated Frisch-Kalman problem (4), we have the following

series of equalities and inequalities:

min
Ω

{‖Σ− Ω‖2F | rank(Ω) ≤ r,Σ ≥ Ω ≥ 0,Σ− Ω ∈ D
n}

= min
Ω

max
Λ

{‖Σ− Ω‖2F + 2〈Λ,Σ− Ω〉|
rank(Ω) ≤ r, Σ ≥ Ω ≥ 0,Λ ∈ S

n
0}

≥ max
Λ

min
Ω

{‖Σ− Ω‖2F + 2〈Λ,Σ− Ω〉|
rank(Ω) ≤ r, Σ ≥ Ω ≥ 0,Λ ∈ S

n
0}

≥ max
Λ

min
Ω

{‖Σ+ Λ− Ω‖2F − ‖Σ+ Λ‖2F + 2〈Λ,Σ〉
+ ‖Σ‖2F | rank(Ω) ≤ r,Λ ∈ S

n
0}

= max
Λ

{−‖Σ+ Λ‖2r + 2〈Λ,Σ〉+ ‖Σ‖2F | Λ ∈ S
n
0}, (5)

where the first equality is due to that the maximization over

Λ ∈ Sn0 forces Σ − Ω to be diagonal, the first inequality

follows from the max-min inequality, the last inequality is

due to that the constraint of Σ ≥ Ω ≥ 0 is removed, and the

last equality follows from the standard SVD-approximation

to Σ+ Λ in Section II-B.

Here, the problem (5) is a maximization of a concave

function with convex constraints, hence it is a convex prob-

lem, which is our targeted convex relaxation to the original

non-convex problem. Using similar tricks in [16], we can

equivalently transform (5) into the following SDP:

max
T,Λ,γ

− tr(T )− γ(n− r) + 2〈Λ,Σ〉+ ‖Σ‖2F
s.t. Λ ∈ S

n
0 , T − γI ∈ S

n
+, (6)

[

T Σ+ Λ
Σ+ Λ I

]

∈ S
2n
+ .

B. Proposed Algorithm

Suppose we have solved the SDP in (6) and obtained an

optimal dual variable Λ⋆. What is the most appropriate value

for the primal variable Ω based on the dual optimum? The

following theorem shows how we obtain the optimal primal

variable Ω⋆ when the duality gap is zero, i.e.,

min
Ω

{‖Σ−Ω‖2F | rank(Ω) ≤ r, Σ ≥ Ω ≥ 0, Σ−Ω ∈ D
n}

= max
Λ

{−‖Σ+ Λ‖2r + 2〈Λ,Σ〉+ ‖Σ‖2F | Λ ∈ S
n
0 }. (7)

Theorem 1. Let Σ ∈ Sn++ and equality (7) be true. Then a

solution to (4) satisfies

Ω⋆ ∈ svdr(Σ + Λ⋆), (8)

where Λ⋆ solves (6).

Proof. Since equality (7) is true, all the inequalities above

(5) are actually equalities. Hence a solution to (4) necessarily

solves the following problem:

min
Ω

{‖Σ+ Λ⋆ − Ω‖2F − ‖Σ+ Λ⋆‖2F + 2〈Λ⋆,Σ〉
+ ‖Σ‖2F | rank(Ω) ≤ r}. (9)

By the standard SVD-approximation shown in (1), the solu-

tion to (4) satisfies

Ω⋆ ∈ svdr(Σ + Λ⋆),

which completes the proof.

As we see from the theorem, Ω⋆ may be selected as an

appropriate candidate to test the feasibility of (4). In this

case, we may first obtain an Ω⋆ ∈ svdr(Σ+Λ⋆), then check

whether Ω⋆ is feasible to (4). It is clear that rank(Ω⋆) = r

due to (2), hence it suffices to check whether Σ ≥ Ω⋆ ≥ 0
and Σ− Ω⋆ ∈ Dn.

Based on the above developments, we propose the follow-

ing algorithm involving only convex optimizations to solve

the Frisch-Kalman problem.

Algorithm 1 Proposed Method to Frisch-Kalman Problem

Step 1 Given Σ ∈ Sn++. Set the initial searching rank as

r ∈ [1, n− 1].
Step 2 Compute Λ⋆ via the SDP in (6).

Step 3 Compute an Ω⋆ ∈ svdr(Σ + Λ⋆). Check whether

Σ ≥ Ω⋆ ≥ 0 and Σ−Ω⋆ ∈ Dn. If not, let r := r+1
and go to Step 2.

Step 4 An upper bound of the Frisch-Kalman problem (3)

is obtained as r⋆ := rank(Ω⋆) ≥ mr(Σ).



C. Application to Shapiro Problem

Consider the following variant of the Frisch-Kalman prob-

lem, called the Shapiro problem [6], where the constraint that

∆ is nonnegative is relaxed. Investigation into such a relaxed

problem brings about more direct understanding on how the

off-diagonal entries of Σ affect the minimization of its rank.

Definition 2 (Shapiro Problem). Given Σ ∈ Sn++, determine

mrs(Σ) = min
Ω,∆

{rank(Ω)| Σ = Ω+∆,

Ω ∈ S
n
+,∆ ∈ D

n}.
(10)

Actually, Shapiro and Frisch-Kalman problems share

many similar properties. Naturally, we can apply the above

algorithm to Shapiro problem with slight modifications, i.e.,

replacing Step 3 with

Step 3∗ Compute Ω⋆ ∈ svdr(Σ + Λ⋆). Check whether

Ω⋆ ∈ S
n
+ and Σ − Ω⋆ ∈ D

n. If not, let r := r + 1 and

go to Step 2.

The obtained rank r⋆ satisfies that mrs(Σ) ≤ r⋆.

D. Extension to the Complex-Valued Case

Denote by H+ (H++, resp.) the set of all positive semi-

definite (definite, resp.) matrices in Cn×n. The Frisch-

Kalman problem can be extended to the case with complex-

valued matrices as follows.

Definition 3 (Complex-Valued Frisch-Kalman Problem).

Given Σ ∈ Hn
++, determine

mr(Σ) = min
Ω,∆

{rank(Ω)| Σ = Ω +∆,

Ω ∈ H
n
+,∆ ∈ D

n
+}.

(11)

In this case, we may directly apply Algorithm 1 to

the above problem by suitably replacing all the involved

symmetric matrices with the Hermitian ones.

IV. CONDITIONS ON TIGHT RELAXATION

From the previous developments, we know (5) is a convex

optimization problem and its optimal value is a lower bound

of that of the reformulated Frisch-Kalman problem (4). One

may ask naturally how tight the bound is, or how tight the

convex relaxation is. In general, (5) is not equivalent to

(4), but we will show that within a certain class of Σ, the

solutions to (5) will also solve (4) via Ω⋆ ∈ svdr(Σ + Λ⋆),
hence the duality gap is zero.

We start with the following lemma, where Ω̂ may be

viewed as the covariance of the underlying data. We remove

the requirement that Σ > 0 temporarily.

Lemma 1. Let Σ = Ω̂ ∈ Sn+ and rank(Ω̂) = r. Then the

solutions to (5) solve (4), and equality (7) holds with optima

attained on Λ⋆ = 0 and Ω⋆ = Ω̂.

Proof. Since Ω̂ ∈ Sn+ and rank(Ω̂) = r, it can be unitarily

diagonalized, i.e., Ω̂ = USUT where

S =

[

Sr 0
0 0n−r

]

∈ D
n
+, Sr > 0 and U is unitary.

Let Λ ∈ Sn0 and partition UTΛU conformably with S via

UTΛU =

[

L11 L12

L21 L22

]

.

Hence,

−‖Ω̂ + Λ‖2r + 2〈Λ, Ω̂〉+ ‖Ω̂‖2F
= −‖S + UTΛU‖2r + 2〈UTΛU, S〉+ ‖Ω̂‖2r

= −
∥

∥

∥

∥

[

L11 + Sr L12

L21 L22

]∥

∥

∥

∥

2

r

+ 2〈L11, Sr〉+ ‖Ω̂‖2F

≤ −‖L11 + Sr‖2F + 2〈L11, Sr〉+ ‖Ω̂‖2F
= −‖Sr‖2F − ‖L11‖2F + ‖Ω̂‖2F
≤ −‖Sr‖2F + ‖Ω̂‖2F = 0,

where the first inequality follows from [24, Theorem 4.4]

and the inequalities become equalities when Λ = 0. It is

clear that

0 ≤ min
Ω

{

‖Ω̂− Ω‖2F
∣

∣

∣
rank(Ω) ≤ r,

Ω̂ ≥ Ω ≥ 0, Ω̂− Ω ∈ D
n
}

≤ ‖Ω̂− Ω̂‖2F = 0.

Therefore, equality (7) is true with optima attained on Λ⋆ =
0 and Ω⋆ = Ω̂.

The lemma gives us an intuition that when the low-rank

matrix Ω̂ is slightly perturbed by a diagonal matrix ∆, the

optimum of (5) is very likely to be attained on Λ⋆ that

is close to zero. The underlying reason is that ‖∆‖F is

close to zero, and hence we expect certain “continuity”

properties, considering that a rank function is not continuous

at all. Furthermore, the obtained Λ⋆ might solve (4) via

Ω⋆ ∈ svdr(Σ+Λ⋆). The intuition is not completely true for

the most general case, but the underlying idea helps develop

the following conditions on the tight relaxation.

Given Ω̂ ∈ Sn+ with rank(Ω̂) = r, define a set of diagonal

matrices via

DΩ̂ :=
{

∆ ∈ D
n
+

∣

∣

∣
∃ Λ ∈ S

n
0 , such that

‖∆+Λ‖ < σr(Ω̂), R(∆ + Λ) ⊥ R(Ω̂)
}

. (12)

In correspondence, define the following set of positive defi-

nite matrices

SΩ̂ :=
{

Σ = Ω̂ +∆ > 0
∣

∣

∣
∆ ∈ DΩ̂

}

. (13)

Obviously, 0 ∈ DΩ̂. In addition it is not hard to verify that if

∆ ∈ DΩ̂, we have α∆ ∈ DΩ̂ for all α ∈ [0, 1]. Together with

condition ‖∆+Λ‖ < σr(Ω̂), we know that DΩ̂ characterizes

a neighborhood of diagonal matrices with “small” norms. In

the definition, the condition of R(∆ + Λ) ⊥ R(Ω̂) has the

following implication.

Lemma 2. Let Ω̂ ∈ Sn+ with rank(Ω̂) = r. If X ∈ Sn,

‖X‖ < σr(Ω̂) and R(X) ⊥ R(Ω̂), then

[Ω̂ +X ]r = Ω̂.



Proof. Applying SVD on Ω̂, we obtain

Ω̂ =
r

∑

i=1

σi(Ω̂)uiu
T
i .

Since R(X) ⊥ R(Ω̂), it follows that rank(X) ≤ n − r.

Applying SVD on X , we obtain

X =

n−r
∑

i=1

σi(X)wiv
T
i .

Since X is symmetric, wi = ±vi. Again from R(X) ⊥
R(Ω̂), we know 〈ui, vj〉 = 0 for all i = 1, 2, . . . , r and j =
1, 2, . . . , n− r. As a result, it follows from σ̄(X) < σr(Ω̂)
that

Ω̂ +X =
r

∑

i=1

σi(Ω̂)uiu
T
i +

n−r
∑

j=1

σj(X)wjv
T
j

is an SVD for Ω̂ +X , and

[Ω̂ +X ]r =

r
∑

i=1

σi(Ω̂)uiu
T
i = Ω̂.

This completes the proof.

In general, SΩ̂ is non-empty, as shown in the following

lemma.

Lemma 3. Let Ω̂ ∈ Sn+ with rank(Ω̂) = r < n. Then

SΩ̂ 6= ∅.
Proof. Without loss of generality, we may assume that

Ω̂ =

[

Ω0 0
0 Ω1

]

,

where Ω0 ∈ Dk ∩ Sk++ with 0 ≤ k ≤ r, and Ω1 ∈ S
n−k
+ is a

block diagonal matrix with either zero blocks or irreducible

blocks whose sizes are no less than two. In this case, there

exists

v =

[

0
v1

]

∈ K(Ω̂) \ {0}

where v1 ∈ Rn−k is element-wise nonzero and ‖v‖ <
√

σr(Ω̂). Construct that ∆ = diag(vvT ) ∈ D+ and Λ =

vvT − ∆. It is straightforward to verify that ∆ ∈ DΩ̂ and

[∆]ii = [vvT ]ii > 0 for all i = k + 1, . . . , n. It follows that

Σ := Ω̂ + ∆ =

[

Ω0 0
0 Ω1 + diag(v1v

T
1 )

]

∈ S
n
++,

whereby Σ ∈ SΩ̂.

Given every low-rank matrix Ω̂, we obtain a neighborhood

of noisy covariance matrices Σ ∈ SΩ̂ centered at Ω̂ by the

above lemma. The following result shows that for each Σ
in SΩ̂, the duality gap between optimization problems in (4)

and (5) is zero.

Theorem 2. Let Ω̂ ∈ Sn+ with rank(Ω̂) = r < n and Σ ∈ SΩ̂.

Then the solutions to (5) solve (4), and equality (7) holds

with optima attained on Ω⋆ = Ω̂ and Λ⋆ satisfying

‖Λ⋆ +Σ− Ω̂‖ < σr(Ω̂) and R(Λ⋆ +Σ− Ω̂) ⊥ R(Ω̂).

Proof. Decompose matrix Σ into Σ = Ω̂+∆ with ∆ ∈ DΩ̂.

Then there exists a Λ⋆ ∈ S
n
0 satisfying that R(∆ + Λ⋆) ⊥

R(Ω̂) and that ‖∆+ Λ⋆‖ < σr(Ω̂). Furthermore, it follows

from Lemma 2 that

[Σ + Λ⋆]r = [Ω̂ + Λ⋆ +∆]r = Ω̂.

Again from R(∆ + Λ⋆) ⊥ R(Ω̂), we obtain that

〈Σ− Ω̂ + Λ⋆, Ω̂〉 = 〈∆+Λ⋆, Ω̂〉 = 0.

Using the above equalities, we have

− ‖Σ+ Λ⋆‖2r + 2〈Λ⋆,Σ〉+ ‖Σ‖2F
= −‖Ω̂‖2F − 2〈∆, Ω̂〉+ ‖Σ‖2F = ‖∆‖2F .

Moreover, it follows from the inequalities above (5) that

‖∆‖2F = ‖Σ− Ω̂‖2F
≥ min

Ω
{‖Σ− Ω‖2F |

rank(Ω) ≤ r,Σ ≥ Ω ≥ 0,Σ− Ω ∈ D
n}

≥ max
Λ

{−‖Σ+ Λ‖2r + 2〈Λ,Σ〉+ ‖Σ‖2F | Λ ∈ S
n
0 }

≥ −‖Σ+ Λ⋆‖2r + 2〈Λ⋆,Σ〉+ ‖Σ‖2F = ‖∆‖2F .

As a result, the optima of (4) and (5) are attained on Ω⋆ = Ω̂
and a desired Λ⋆, and equality (7) is true.

This theorem shows that when Σ ∈ SΩ̂, the relaxation

is tight, i.e., the non-convex Frisch-Kalman problem can

be exactly solved by the proposed convex approach in

Algorithm 1.

A. Refined Analysis

The definition of DΩ̂ relies on the existence of a seemingly

irrelevant matrix Λ ∈ Sn0 . A desired characterization of ∆
for the tight relaxation may be given by a neighborhood with

a regular shape, such as a ball or a box in D
n. To achieve

this, we refine the set DΩ̂ in the following.

Let Ω̂ ∈ Sn+ with rank(Ω̂) = r. Let V ∈ Rn×(n−r) be an

isometry onto the kernel space of Ω̂.

Define a linear operator associated with Ω̂ via

E : S
n−r → D

n = X 7→ diag(V XV T ).

Define the following value associated with E via

φ(Ω̂) := inf
∆∈D

n
+
\{0}

‖∆‖F
‖E†(∆)‖ ,

if E is surjective; otherwise, φ(Ω̂) = 0. Here,

E
† = E

∗(EE
∗)−1 : D

n → S
n−r

is the Moore-Penrose pseudoinverse for a surjective linear

operator E, where E
∗ is the adjoint of E.

Since X ∈ Sn−r is symmetric, the linear operator E

is essentially from R(n−r)(n−r+1)/2 to Rn. As a result, a

necessary condition for its surjectivity is that

(n− r)(n− r + 1)

2
≥ n, or r ≤ 2n+ 1−

√
8n+ 1

2
.



In many cases, n is known to be much larger than r because

the covariance matrix of the true data has a low rank, and

hence the above inequality holds in general. On the other

hand, when the inequality is satisfied, the linear operator E is

surjective for almost all low-rank matrices Ω̂, i.e., φ(Ω̂) > 0
in general.

Clearly, E can be non-surjective in terms of some extreme

settings on Ω̂. For example, consider a rank-r matrix

Ω̂ =

[

S 0
0 0

]

∈ S
n
+,

where S ∈ Sr++ and r < n. It is easy to verify that E is not

surjective on Dn since the identity matrix is not in its range,

hence φ(Ω̂) = 0.

With the assist of φ(Ω̂), we have the following lemma,

which simplifies the representation of set DΩ̂ and may refine

the condition on the tight relaxation.

Lemma 4. Let Ω̂ ∈ S
n
+ with rank(Ω̂) = r. Then it holds

D̃Ω̂ :=
{

∆ ∈ D
n
+

∣

∣

∣
‖∆‖F < φ(Ω̂)σr(Ω̂)

}

⊂ DΩ̂.

Proof. Suppose E is surjective; otherwise, the statement is

trivially true. As a result, it follows that for all matrices ∆̃ ∈
D̃Ω̂, there exists a Λ ∈ S

n
0 such that

VE
†(∆̃)V T = Λ+ ∆̃.

It is clear that R(Λ + ∆̃) ⊥ R(Ω̂) since

R(Λ + ∆̃) ⊂ R(V ) = K(Ω̂)

from the above equality. On the other hand, note ‖∆̃‖F <

φ(Ω̂)σr(Ω̂), then we have

‖Λ + ∆̃‖ = ‖E†(∆̃)‖ ≤ sup
∆∈D

n
+
\{0}

‖E†(∆)‖
‖∆‖F

‖∆̃‖F

< sup
∆∈D

n
+
\{0}

‖E†(∆)‖
‖∆‖F

φ(Ω̂)σr(Ω̂) = σr(Ω̂).

Therefore, we can conclude that ‖Λ + ∆̃‖ < σr(Ω̂) as well

as R(Λ + ∆̃) ⊥ R(Ω̂), which shows ∆̃ ∈ DΩ̂.

The set D̃Ω̂ is essentially the intersection of the nonneg-

ative orthant and the open ball centred at 0 with radius

φ(Ω̂)σr(Ω̂) measured by the Euclidean distance in Rn. By

Lemma 4, we obtain the following corollary to Theorem 2

immediately.

Corollary 1. Let φ(Ω̂) > 0. Then for all Σ = Ω̂ + ∆ > 0
with ∆ ∈ D̃Ω̂, the solutions to (5) solve (4) with optimum

attained on Ω⋆ = Ω̂.

B. Case Study

The following example is a case study for the proposed

algorithm and the analysis on the tight relaxation. Consider

the following rank-1 matrix

Ω̂ =





16 8 4
8 4 2
4 2 1



 =





4
2
1





[

4 2 1
]

. (14)

0 5 10 15
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

S
uc

ce
ss

 R
at

es

Fig. 1: Success rates for Algorithm 1 to solve the Frisch-

Kalman problem in (3), where Σ = Ω̂ +∆ > 0, Ω̂ is given

in (14), and ∆ is generated according to (16) for T = 100
times with each level of ‖∆‖F .

We start with the characterization of the set DΩ̂. Through

simple computation, we can represent the kernel space of

Ω̂ = R (V ) where

V :=





0.49 0
−0.78 −0.45
−0.39 0.89





is an isometry. It is clear that for every

∆ = diag∗
([

d1 d2 d3
])

∈ DΩ̂,

there exists a matrix Λ ∈ S30 such that

R(∆ + Λ) ⊂ K(Ω̂) and ‖∆+Λ‖ < σ1(Ω̂).

It is not hard to obtain the following parametrization

∆+Λ = V XV T

=





0.49 0
−0.78 −0.45
−0.39 0.89





[

a b√
2

b√
2

c

]





0.49 0
−0.78 −0.45
−0.39 0.89





T

.

Equating the diagonal terms on both the sides, we have




d1
d2
d3



 =





0.24 0 0
0.61 0.49 0.20
0.15 −0.49 0.80









a

b

c



 =: E





a

b

c



 .

Here, matrix E is invertible, which means for all diagonal

matrices ∆, there exists a Λ ∈ S30 such that

R(∆ + Λ) ⊂ K(Ω̂),

which is equivalent to

R(∆ + Λ) ⊥ R(Ω̂).



Furthermore, we have the following inequalities

‖∆+Λ‖ = ‖V XV T ‖ = ‖X‖ ≤ ‖X‖F

=

∥

∥

∥

∥

∥

∥





a

b

c





∥

∥

∥

∥

∥

∥

≤ ‖E−1‖

∥

∥

∥

∥

∥

∥





d1
d2
d3





∥

∥

∥

∥

∥

∥

= ‖E−1‖‖∆‖F . (15)

As a result, as long as ‖∆‖F < ‖E−1‖−1σ1(Ω̂) = 3.12, it

holds that ‖∆ + Λ‖ < σ1(Ω̂). Due to the norm relaxation

from ‖ · ‖ to ‖ · ‖F in (15), we know

φ(Ω̂) ≥ ‖E−1‖−1,

and further

{∆ ∈ D
3
+| ‖∆‖F < 3.12} ⊂ D̃Ω̂ ⊂ DΩ̂.

When the perturbation ‖∆‖F is bounded by 3.12, Algo-

rithm 1 will solve the Frisch-Kalman problem for all Σ =
Ω̂ +∆ > 0 according to Theorem 2.

We perform repeated simulations based on different values

of ‖∆‖F . Specifically, fixing ‖∆‖F > 0, we generate a

diagonal matrices ∆̃ satisfying

∆̃ =
‖∆‖F
‖d‖ diag∗(d). (16)

Here, vector d ∈ R
3, and its elements di, i = 1, 2, 3, are

independent and identically distributed (i.i.d.), and uniformly

distributed on [0, 1]. Obviously, it holds that ‖∆̃‖F = ‖∆‖F ,

and we repeat the above procedures T times for calculating

success rates.

The success rates for Algorithm 1 to solve the Frisch-

Kalman problem are shown in Fig. 1. When ‖∆‖F < 3.12,

we observe that the relaxations above (5) are indeed tight.

When ‖∆‖F increases, the chance when (5) solves the

Frisch-Kalman problem decreases.

V. COMPARISON WITH EXISTING METHODS

Various heuristic methods have been investigated for solv-

ing rank minimization problems. In this section, we compare

our proposed method with several mostly adopted existing

methods on solving the Frisch-Kalman problem.

A. Nuclear Norm Minimization

In the context of factor analysis, nuclear norm (trace)

minimization has been pursued as a suitable heuristic; see,

for instance, [6], [9]. The nuclear norm of a matrix is defined

as the sum of all its singular values. With this heuristic, the

Frisch-Kalman problem is relaxed into

min
∆

{tr(Σ−∆)| ∆ ∈ D
n
+,Σ ≥ ∆ ≥ 0}. (17)

One way to analyze the corresponding conditions on tight

relaxation, i.e., when the solutions to (17) solve the Frisch-

Kalman problem, is via investigating the restricted isometry

property (RIP) [13] of an associated linear operator. Define

a linear operator L : Rn×n → Rn×n that projects a matrix

X onto its off-diagonal terms, i.e.,

L = X 7→ X − diag(X).

With this linear operator, we equivalently reformulate the

Frisch-Kalman problem as follows. Given Σ ∈ S
n
++, deter-

mine

min
Ω

{rank(Ω)| L(Ω) = L(Σ),Σ ≥ Ω ≥ 0}. (18)

For every integer r ∈ [1, n], define the r-restricted isometry

constant to be the smallest number αr(L) such that

(1 − αr(L))‖X‖F ≤ ‖L(X)‖F ≤ (1 + αr(L))‖X‖F (19)

holds for all matrices X of rank at most r. Existing RIP

conditions for the tight relaxation require that αr(·) < 1 for

some r ∈ [1, n]; see, for instance, [13, Theorems 3.2, 3.3].

However, we can easily verify that

1 ≥ αr(L) ≥ α1(L) = 1, 1 ≤ r ≤ n,

by setting X = I in (19). Therefore, the RIP conditions

are not applicable to the Frisch-Kalman problem. Similar

statements about the applicability of RIP conditions can be

found in [9].

B. Low-Rank Inducing r∗-norm

A series of matrix norms, called the r∗-norms (or spectral

r-support norms) [16]–[18], are defined by

‖M‖l∞,r∗ := max
‖X‖l1,r≤1

〈X,M〉, (20)

where X,M ∈ Rm×n, r = 1, 2, . . . ,min{m,n}, and

‖X‖l1,r :=
r

∑

k=1

σk(X)

is the Ky Fan r-norm. When r = 1, ‖X‖l1,1 reduces to

the spectral norm and its dual norm ‖M‖l∞,1∗ reduces to

the nuclear norm. Therefore, the r∗-norms include the well-

known nuclear norm as a special case. With these low-rank

inducing norms, the Frisch-Kalman problem may be relaxed

into

min
∆

{‖Σ−∆‖l∞,r∗| ∆ ∈ D
n,Σ ≥ ∆ ≥ 0}. (21)

Via similar developments in [17], we can transform (21) into

the following SDP:

min
W,∆,γ

γ

s.t. W ∈ S
n
+, ∆ ∈ D

n
+, Σ−∆ ∈ S

n
+,

[

γI −W Σ−∆
Σ−∆ I

]

∈ S
2n
+ ,

tr(W ) = γ(n− r).

(22)

When applying it to the Frisch-Kalman problem, we search

for the lowest-rank solution by sequentially solving (22) with

r = 1, 2, . . . , n.
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Fig. 2: Success rates for the proposed, the nuclear norm,

r∗-norms and log-det heuristics to solve the Frisch-Kalman

problem in (3), respectively, where Σ is randomly generated

as described in the context with parameters n = 10, r = 5,

and T = 100.

C. Log-Det Heuristic

The logarithm of the determinant has been used as a

smooth approximation for the rank function; see, for in-

stance, [19]. For X ∈ S
n
+, the function log det(X + δI),

where δ > 0, is used as a smooth surrogate for rank(X).
Since log det(X + δI) is actually non-convex in X , local

minimization methods are proposed in [19] by solving trace

minimization problems iteratively. In this case, the Frisch-

Kalman problem is approximately solved via the following

iterations:

∆0 = 0, δ > 0,Wk = (Σ−∆k + δI)−1,

∆k+1 = argmin
∆

{tr(Wk(Σ−∆))| ∆ ∈ D
n,Σ ≥ ∆ ≥ 0}.

D. Simulation Result

We compare the proposed algorithm with the existing

methods, including the nuclear norm, r∗-norms and log-det

heuristics, based on randomly generated data for both Ω̂ and

∆. The detailed randomization is given by the following

steps.

1) Generate matrix X ∈ Rr×n with [X ]ij being standard

i.i.d. Gaussian random variables, i.e., [X ]ij ∼ N(0, 1).
Compute Ω̂ = XTX .

2) Generate ∆̃ with prescribed norm ‖∆̃‖F = ‖∆‖F
according to (16) such that Σ = Ω̂ + ∆̃ > 0.

Given randomly generated matrices Σ ∈ Sn++, we check

whether the heuristic methods will solve the Frisch-Kalman

problem. For each level of ‖∆‖F , we repeat the the above

procedures for T times, and count for the success rates. Here,

the “success rate” refers to the percentage of experiments in

which the recovered rank r⋆ satisfies that r⋆ ≤ r.
It can be seen from Fig. 2 that the success rates for

the proposed method highly depend on the “size of noise”,

namely, the value ‖∆‖F , while those of the other heuristics

do not. When ‖∆‖F is close to zero, the success rate of

Algorithm 1 approaches one. Practically, we may consider a

suitable combination of all these heuristics.

VI. CONCLUSION AND FUTURE WORK

A heuristic convex method is proposed for the century-

old Frisch-Kalman problem. Both analytical and simulation

results show that the method is accurate under the condition

that the noise components are relatively small compared with

the underlying data.

For future research, the proposed method may be improved

via, for example, the combination with other heuristics, pre-

processing on the observed data to remove possible outliers

and so on. Another direction is to apply the method or the

underlying ideas to solve more general rank minimization

problems, such as the low-rank matrix completion, the data

compression and so on.
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