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Abstract—The rapidly changing landscapes of modern op-
timization problems require algorithms that can be adapted
in real-time. This paper introduces an Adaptive Metaheuristic
Framework (AMF) designed for dynamic environments. It is
capable of intelligently adapting to changes in the problem
parameters. The AMF combines a dynamic representation of
problems, a real-time sensing system, and adaptive techniques
to navigate continuously changing optimization environments.
Through a simulated dynamic optimization problem, the AMF’s
capability is demonstrated to detect environmental changes and
proactively adjust its search strategy. This framework utilizes
a differential evolution algorithm that is improved with an
adaptation module that adjusts solutions in response to detected
changes. The capability of the AMF to adjust is tested through
a series of iterations, demonstrating its resilience and robustness
in sustaining solution quality despite the problem’s development.
The effectiveness of AMF is demonstrated through a series of
simulations on a dynamic optimization problem. Robustness and
agility characterize the algorithm’s performance, as evidenced by
the presented fitness evolution and solution path visualizations.
The findings show that AMF is a practical solution to dynamic
optimization and a major step forward in the creation of
algorithms that can handle the unpredictability of real-world
problems.

Index Terms—Adaptive Metaheuristics, Dynamic Optimiza-
tion, Real-Time Algorithm Adaptation, Evolutionary Computa-
tion, Optimization in Changing Environments.

I. INTRODUCTION

The field of computational optimization is constantly evolv-
ing and dynamic. With the availability of many new applica-
tions, there is a need for algorithms that can adapt to changing
environments. Traditional optimization techniques that have
been designed mainly for static situations are not suitable for
dynamic settings where parameters, constraints, and objectives
are subject to continuous changes [1]. This has led to a
greater focus on developing adaptive metaheuristic algorithms
that respond to evolving problem landscapes in real-time.
Metaheuristic algorithms are known for their flexibility and
robustness, which makes them suitable for many complex
optimization problems. However, their application in dynamic
environments requires an additional layer of adaptability. The
main challenge with adaptive metaheuristics is their ability to
detect environmental changes and adjust their search strategies
accordingly. The ultimate goal is to enable these algorithms
to find optimal solutions and maintain or regain optimality as
the problem evolves.

Recent advances in this field have been significant. Boks
and Wang [2] established a framework for the dynamic con-
figuration of operators and parameters in Differential Evo-
lution (DE). The research focused on combined fitness- and
diversity-driven adaptation methods. Vakhnin, Sopov, and Se-
menkin [3] proposed an approach that combines multiple ideas
from state-of-the-art algorithms, implementing Coordination
of Self-adaptive Cooperative Co-evolution algorithms with
Local Search (COSACC-LS1) for large-scale optimization
problems. Martins et al. [4] conducted a comparative analysis
of metaheuristics applied to adaptive curriculum sequenc-
ing, demonstrating the effectiveness of Differential Evolution
(DE) in this context. Penas et al. [5] presented a parallel
metaheuristic for large mixed-integer dynamic optimization
problems with applications in computational biology that show
the scalability and efficiency of these methods. It is clear
from the literature that the development and application of
these sophisticated algorithms have been largely designed
to address specific types of optimization challenges. This
specificity highlights the need for adaptive algorithms that
not only are designed to work within particular application
domains, but also show a degree of generalization that current
solutions may lack. However, the purpose of such adaptiveness
shows a critical gap in optimization problem solving, which is
the absence of a universal framework capable of dynamically
adjusting its components, be they operators, parameters, or
problem-solving strategies, to suit a wide array of problem
types without sacrificing efficiency or effectiveness.

Building upon these insights, this paper introduces the
Adaptive Metaheuristic Framework (AMF), specifically de-
signed for dynamic optimization problems. The AMF frame-
work is designed to adjust its search process to any alterations
in the problem environment smartly, with a variable problem
representation that reflects the ever-changing nature of real-
world issues. This is complemented by a real-time sensing
mechanism that detects shifts in the problem environment and
then prompts an adaptive response from the algorithm. The
innovation of the AMF lies in its integration of a differential
evolution algorithm with an adaptation module, which fine-
tunes solutions in response to detected environmental changes.
This ensures the relevance and efficacy of solutions in dynamic
contexts. To avoid the specificity of this framework for a
special domain, the performance of the framework is evaluated

ar
X

iv
:2

40
4.

12
18

5v
1 

 [
cs

.A
I]

  1
8 

A
pr

 2
02

4



through simulations of a dynamic optimization problem. The
evaluation shows its ability to maintain high-quality solu-
tions despite frequent and unpredictable changes. Moreover,
the evaluation also shows the algorithm’s performance and
detailed insights into the fitness evolution and the solution’s
trajectory through the search space.

The paper makes several significant contributions to dy-
namic optimization. The AMF is a robust and flexible strategy
designed to adapt to changing environments, a critical feature
for real-world optimization scenarios. It has a unique sensing
mechanism and an adaptation strategy that allows it to detect
environmental changes and adjust its search process accord-
ingly. In addition, it incorporates advanced techniques, such as
differential evolution and local search strategies, to react ef-
fectively to the evolving nature of optimization problems. The
superior performance, scalability, and efficiency of the frame-
work are demonstrated here through extensive experimental
evaluations compared to traditional metaheuristic approaches.
Another contribution of this work is its advances in the
theoretical understanding of adaptive optimization strategies
and its practical insights and tools for tackling complex and
dynamic problems across various domains.

The rest of this paper is organized as follows to provide
a comprehensive understanding of the AMF framework and
its applications in dynamic optimization. Following the intro-
duction, Section II discusses Related Work, offering a critical
review of the existing literature and highlighting advances and
gaps in the field. Section V gives an overview of the framework
and elaborates on its core principles, structure, and operational
dynamics. Section V discusses the specific mechanisms that
allow the AMF to adapt effectively to changing environments.
Section VI is dedicated to a detailed empirical assessment
of the AMF. A series of experiments are designed to test
the framework and the results are discussed in detail. The
paper concludes with Section VII, in which it summarizes the
findings and reflects on the implications of this research and
suggests future work directions in this exciting and evolving
domain.

II. RELATED WORK

Metaheuristic optimization has been steadily evolving, es-
pecially in dynamic contexts. Much effort has been put into
adapting these algorithms to the ever-changing real-world
scenarios. This development is evidenced by the numerous
innovative techniques and applications presented in recent
studies.

Valdez, Castillo, and Melin [6] investigated using bioin-
spired algorithms to optimize fuzzy clustering. Their findings
demonstrate the effectiveness of nature-inspired optimization
techniques in addressing complex problems, a concept re-
flected in many areas where traditional algorithms are inad-
equate. Similarly, Oladipo, Sun, and Wang [7] studied the
optimization of PID controllers with metaheuristic algorithms
for DC motor drives, illustrating the practical applications of
these algorithms in industrial settings, such as robotics and
automotive engineering. Zitouni et al. [8] further demonstrate

a practical approach by introducing the Archerfish Hunting
Optimizer, a novel metaheuristic algorithm that exhibits ro-
bustness and successful convergence in global optimization
tasks. In this paper, multiobjective optimization is also used
to deal with PID tuning problems in which multiobjectives are
used to deal with the change in parameter tuning [9]. However,
increasing the objectives with significant dynamic problems
will not lead to a scalable solution. In addition, there is a
need to adjust the objective manually with the availability of
new conditions.

Osaba et al. [10] have created a thorough tutorial on
the design and utilization of metaheuristics for real-world
optimization issues. The tutorial emphasizes the necessity of
accuracy and openness in algorithm development, which is
essential for the advancement of the field. Uzor et al. [11]
also highlighted the significance of real-world assessments
over artificial benchmarks by introducing an adaptive-mutation
compact genetic algorithm evaluated using dynamic optimiza-
tion problems.

Rajwar, Deep, and Das [12] comprehensively examined
metaheuristic algorithms, tracking around 540 of them, provid-
ing a comprehensive taxonomy, and discussing their uses and
difficulties. This extensive review highlights the rapid growth
and broad use of metaheuristics in various areas, emphasiz-
ing the need for new and effective optimization techniques.
Similarly, Game, Vaze, and Emmanuel [13] discussed the
importance of bioinspired optimization algorithms to tackle
complex real-world problems, particularly large-scale indus-
trial and engineering issues. Their insights into the adaptability
and efficiency of these algorithms in avoiding local optima
and finding global solutions are essential to understanding the
potential of metaheuristics in practical applications.

Kumar, Das and Zelinka [14] made a notable contribu-
tion to the field of optimization with their new variant of
the Spherical Search (SS) algorithm. This version of the
algorithm features a self-adaptation structure, which greatly
improves its performance. The algorithm was tested on 57 real-
world optimization problems, showing its effectiveness and
efficiency in tackling complex, non-convex optimization tasks.
The success of this self-adaptive SS algorithm is a testament to
the increasing sophistication and specialization in the design of
metaheuristic algorithms. It reflects the trend towards creating
more intelligent and responsive optimization tools, which can
handle the complexities of real-world applications.

Yi [15] has demonstrated the potential of hybrid metaheuris-
tic algorithms in intelligent architectural design decisions by
integrating them into adaptive real-time optimization. This ap-
proach to parametric shading design, which combines wireless
data transfer equipment and a parametric visual programming
language, is an example of the innovative uses of these
algorithms beyond traditional optimization problems.

This paper contributes to the field of metaheuristic optimiza-
tion algorithms by introducing the AMF Framework. Unlike
other studies in the literature that introduce algorithms for
special application domains, this paper introduces a framework
that is designed to be adaptive, allowing it to sense and



respond to real-time changes, giving a better understanding
of the algorithm’s behavior in dynamic environments. The
framework uses a dynamic simulation of ever-changing ap-
plications, which is not tied to specific applications and guar-
antees its generalizability for many applications in a changing
environment. This paper adds to the growing consensus that
metaheuristic optimization algorithms must be adaptive and
capable of handling the complexities of real-world problems.

III. OVERVIEW OF THE ADAPTIVE METAHEURISTIC
FRAMEWORK (AMF)

The AMF framework provides a mathematical formulation
for dynamic optimization problems (DOPs) that captures the
changing nature of real-world scenarios. A DOP is character-
ized by an objective function f(x, t), where x is the vector of
decision variables and t is the time or state of the environment,
reflecting the dynamic nature of the problem. This objective
function is not static, but instead changes over time, reflecting
the ever-changing nature of real-world challenges.

In addition to the objective function, the DOP includes a
set of constraints g(x, t) ≤ 0 and h(x, t) = 0 where g and
h represent inequality and equality constraints, respectively.
These constraints are also dependent on the state of the
environment, making the problem even more complex. The
decision variables x are usually confined within a feasible
search space, which is determined by lower and upper bounds
x(min) and x(max). This bounded search space guarantees
that the solutions remain practical and within the boundaries
of real-world applicability.

The goal of the AMF framework is to identify the optimal
solution x∗ through its optimization algorithm. The optimal
solution maximizes or minimizes the objective function f(x, t)
while satisfying the constraints g(x, t) and h(x, t) in all time
periods or states. To achieve optimal results, the framework
must be able to identify and produce high-quality solutions
and modify and customize them over time as the problem at
hand undergoes changes. This involves continuously monitor-
ing and analyzing the effectiveness of existing solutions and
then applying the necessary modifications and improvements
to ensure continued success. Only by adapting to evolving
challenges and circumstances can the framework deliver con-
sistent and sustainable outcomes. The dynamic nature of the
objective function and the constraints implies that the optimal
solution x∗ at one time point may not remain optimal as the
environment evolves. Therefore, the optimization algorithm
within the AMF continually modifies its search strategies in
response to these changes, guaranteeing that the solutions
remain pertinent and effective.

The AMF framework is a significant achievement in com-
putational optimization, particularly when resolving issues
caused by dynamic environments or testing which optimization
algorithm performs better in changing environments. It has
been specifically designed to adapt to real-time changes in
the optimization landscape, guaranteeing the relevance and
efficiency of its results. The AMF is made up of several

important elements, all of which are crucial for its adaptability.
These fundamental components are as follows.

1) Dynamic Problem Representation: AMF utilizes a
dynamic problem representation model at its core, which
can replicate the constantly changing nature of real-
world issues. This model accurately reflects the varying
constraints, objectives, and parameters of the problem.
By capturing the core of dynamic conditions, AMF can
be used to show how quickly the used algorithm can
adapt to modifications and ensure that the optimization
process remains in sync with the current state of the
problem.

2) Real-Time Sensing Mechanism: The AMF has a real-
time sensing system constantly monitors the environ-
ment for any changes. This system can detect any
alterations or variations in the parameters and restric-
tions. Whenever a shift is identified, the sensing system
triggers the adaptive response of the framework, which
ensures that the optimization approach remains optimal
in the new circumstances.

3) Adaptive Optimization Algorithms: At the heart of the
AMF lies a suite of adaptive optimization algorithms.
These algorithms are designed to be highly flexible,
allowing them to adjust their search strategies based on
the data collected by the sensing system. This adapt-
ability is crucial to ensure optimal solutions, even when
the problem environment undergoes frequent and unex-
pected changes. The current paper uses the Differential
Evolution (DE) algorithm for optimization. However, the
algorithm can be replaced with other suitable algorithms
for testing in the framework.

4) Adaptation Module: The framework is a unique system
that combines the optimization algorithm (DE algorithm
here) with an adaptation module. This module adjusts
the solutions to any environmental changes, ensuring
that the solutions remain effective and applicable. The
DE algorithm is renowned here for its dependability and
effectiveness, and with the addition of adaptive capa-
bility, it is especially suitable for dynamic optimization
tasks.

5) Performance Evaluation: Simulations of dynamic op-
timization problems are used to evaluate the effective-
ness and robustness of the AMF. These simulations are
crucial to demonstrate that the framework can produce
high-quality solutions despite the dynamic nature of the
problems. Based on the performance evaluation results
of these simulations, the framework is improved to
ensure its performance and dependability.

The AMF framework workflow is illustrated in Figure 1.
The problem generator creates optimization problems with
various parameters, constraints, and objectives. This ensures
that the optimizer produces optimized solutions that cater
to varying requirements. The optimizer utilizes the gener-
ated problem to produce an optimized solution. The sensing
mechanism module is responsible for the ongoing monitoring
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Fig. 1. AMF framework workflow

of any modifications in the problem generator, allowing for
immediate detection of any changes. Upon detection of a
change, the adaptation trigger is activated, signaling the opti-
mizer to adapt to the revised problem. The adaptation trigger
ensures that the optimizer produces an optimized solution
that caters to the latest problem requirements. Overall, the
AMF framework workflow ensures that the optimizer produces
optimized solutions that cater to varying requirements and
detect any changes in the problem generator in real-time.

IV. DIFFERENTIAL EVOLUTION (DE) ALGORITHM

This paper uses DE as a reliable algorithm within the
framework. DE is a powerful stochastic optimization algo-
rithm widely used to solve complex optimization problems.
It works by maintaining a population of candidate solutions
and iteratively improving them using a set of predefined rules.
DE was first introduced by Storn and Price in 1997 [16] and
has since become popular due to its simplicity, efficiency,
and robustness. It is particularly effective in solving global
optimization problems with many variables, nonlinearity, and
noise.

DE is used within this framework because it has several
advantages over other optimization algorithms. First, it does
not require the objective function to be differentiable, which
makes it suitable for a wide range of problems, such as
dynamic problems. Second, it is computationally efficient and
can handle problems with a large number of variables. Third,
it is robust to noise and outliers, making it suitable for real-
world applications where data may not be perfect.

DE is based on the principle of mutation and crossover.
Mutation is a random perturbation of the candidate solutions
that introduces diversity into the population. Crossover is a
process of combining two or more candidate solutions to create
new ones. The combination is done in such a way that the
resulting solution inherits the best characteristics of its parents.
To this end, the DE algorithm can be formalized as follows:
let P = {x1,x2, . . . ,xN} be the population of candidate
solutions. For each generation g, perform the following steps
for each xi ∈ P:

• Mutation:

vg
i = xg

r1 + F · (xg
r2 − xg

r3)
• Crossover:{

vgij if rand(j) ≤ CR or j = rand(D)

xg
ij otherwise

• Selection:{
ug
i if f (ug

i ) ≤ f (xg
i )

xg
i otherwise

During the initialization phase of the algorithm, a population
of N candidate solutions (vectors) is generated randomly.
Each vector xi = (xi1, xi2, . . . , xiD) for i = 1, 2, . . . , N is
initialized, where D is the dimensionality of the problem.
During the mutation phase, for each vector xi, a mutant vector
vi is generated. The mutation is performed using the formula
vi = xr1 + F · (xr2 − xr3). Here, r1, r2, and r3 are distinct
indices randomly chosen from the population, and F is a
scaling factor. On the other hand, the crossover operation
creates a trial vector ui by mixing the mutant vector vi with
the target vector xi. A crossover rate CR determines the
probability that elements of the mutant vector are passed to the
trial vector. The trial vector ui is evaluated during the selection
phase, and its fitness is compared with the target vector xi. If
ui has equal or better fitness, it replaces xi in the population;
otherwise, xi is retained.

The adaptive framework uses DE as a local search method to
adapt to the changes in the optimization landscape. Whenever
a change is detected in the environment, DE is applied to
quickly find a new, near-optimal solution in the area of the
current solution. This approach benefits from DE’s ability to
efficiently explore and exploit the solution space, making it
an ideal choice for dynamic optimization problems. Integrating
DE into the adaptive framework enhances its ability to respond
to environmental changes, ensuring a consistently high level
of solution quality throughout the optimization process. This
synergy between the adaptive framework and DE’s search
capabilities forms the foundation of the current approach to
addressing dynamic optimization challenges.

V. ALGORITHM ADAPTATION MECHANISM

The Algorithm Adaptation Mechanism is one of the most
advanced features of the AMF framework. It ensures that the
framework can quickly adapt to any changes in the optimiza-
tion landscape, which is critical for efficient and relevant op-
timization processes. The mechanism operates through crucial
steps that enable it to make informed decisions based on real-
time data. First, it identifies any changes in the optimization
landscape, such as the emergence of new challenges or shifts
in the problem environment. Then, it evaluates the impact
of these changes on the optimization process and determines
whether any adjustments are necessary. If adjustments are
required, the mechanism automatically generates new algo-
rithms or modifies existing ones to address the changes in
the landscape. Finally, it tests these new algorithms to ensure
that they are effective and efficient before incorporating them
into the optimization process. The following bullets capture
the essential parts of the algorithm:



• Monitoring and Detection: This mechanism constantly
monitors the issue environment, using real-time sensors
to detect changes in the objective function, constraints,
or other relevant parameters.

• Assessment and Decision Making: When a change is
identified, the system evaluates the type and magnitude
of the change. On the basis of this evaluation, it makes
informed choices about modifying the optimization ap-
proach.

• Adaptation of the Search Strategy: The adaptation
mechanism is based on its ability to adjust the search
strategy of the metaheuristic algorithm. This could in-
clude changing parameters, balancing exploration and
exploitation, or substituting the algorithmic approach if
needed.

• Feedback and Learning: This mechanism includes a
feedback loop in which the results of the adjusted strategy
are examined to guide future modifications. This learning
element is essential to improve the adaptation process in
terms of efficiency and effectiveness over time.

Algorithm 1 shows the necessary steps of the framework.

Algorithm 1 Adaptive Metaheuristic Framework (AMF)
1: Initialize AMF with a population of solutions
2: Define objective function f(x, t)
3: Define constraints g(x, t) ≤ 0 and h(x, t) = 0
4: Set bounds for decision variables xmin and xmax
5: while termination criteria not met do
6: t← getCurrentTime() or getState()
7: for each solution x in population do
8: Evaluate f(x, t) subject to g(x, t) and h(x, t)
9: end for

10: if changeDetected(t) then
11: for each solution x in population do
12: Adapt solution x based on detected change
13: Adjust algorithm parameters if necessary
14: end for
15: end if
16: Apply metaheuristic search strategy to population
17: Update population based on search results
18: if feedbackAvailable() then
19: Learn from feedback and adjust adaptation strategy
20: end if
21: end while
22: return best solution x∗ found

In the beginning, the framework establishes a population of
potential solutions. It defines the objective function f(x, t), the
constraints g(x, t) ≤ 0 and h(x, t) = 0, and the boundaries
for the decision variables xmin and xmax. The algorithm’s main
loop continues until a predetermined termination criterion is
met. During this loop, the current time or state t is determined,
which is essential to address the dynamic aspect of the
problem. The objective function is evaluated under the current
constraints for each solution in the population. If a change is
detected in the problem environment, each solution is adapted

accordingly, and the parameters of the algorithm may be
adjusted to better suit the new conditions. The metaheuristic
search strategy is then applied to the population, followed
by an update of the population based on the results of this
search. Furthermore, suppose that the available feedback is
used to refine and improve the adaptation strategy. In that
case, this process is repeated iteratively, constantly adapting to
changes until the best solution x∗ is found and returned. This
pseudocode encapsulates the adaptive and responsive nature
of the AMF, demonstrating its capacity to dynamically adjust
to changing environments in the pursuit of optimal solutions.

The adaptive optimization Algorithm is designed to tackle
dynamic optimization problems by intelligently adapting to
changing environments, as shown in Algorithm 2.

The algorithm defines the problem’s parameters, such as
its size and the frequency and intensity of environmental
changes, and sets up a sensing system to detect them. It
also prepares various adaptation strategies to respond to the
sensed changes and initiates additional components such as
memory, learning, real-time evaluation, self-adjustment, and
a multi-agent system. The core of the algorithm involves
formulating a dynamic optimization problem with a randomly
initialized solution and an evaluation function that mimics
the changing nature of the problem. The algorithm’s main
loop continually evaluates the current solution, adapting it
when changes are detected, and optionally incorporates learn-
ing and self-adjustment mechanisms to improve its perfor-
mance. Throughout the process, data are collected for post-
optimization analysis and visualization, providing insights
into the algorithm’s effectiveness. Finally, a feedback loop is
established to continuously refine and tune the algorithm based
on its performance, ensuring its adaptability and robustness in
dynamic and complex optimization scenarios.

VI. EXPERIMENTAL EVALUATION AND DISCUSSION

This section attempts to conduct a comprehensive set of
tests to evaluate the performance, flexibility, and scalability of
the AMF framework in dynamic optimization scenarios. These
assessments were crucial in demonstrating the effectiveness of
the AMF and its potential to be utilized in various real-world
situations. The initial experiments examined the effectiveness
of AMF in a simulated dynamic optimization task. It was
observed that the framework could adjust to alterations in the
problem landscape, maintaining high-quality solutions despite
frequent and unpredictable changes in the problem parameters.
This adaptability was further demonstrated through visualiza-
tions that showed the evolution of fitness and the path of the
solution through the search space. These visualizations pro-
vided proof of the AMF’s ability to manage the complexities
of dynamic environments effectively.

The AMF was compared with other population-based opti-
mization algorithms to assess its performance. It was found
to be superior in terms of the quality of the solutions it
produced and its ability to adapt to changing conditions. This
comparison highlighted the AMF’s superior design for dealing



Algorithm 2 Adaptive Optimization for Dynamic Optimization
1: Initialize:
2: Define a dynamic optimization problem with dimensions, change frequency, and change severity.
3: Create a sensing mechanism to detect changes in the environment.
4: Set up adaptation strategies for responding to environmental changes.
5: Initialize other components such as memory incorporation, learning component, real-time evaluation, self-adjustment, and

multi-agent approach.
6: Define the Dynamic Optimization Problem:
7: Initialize the optimal solution x∗ at random.
8: Define an evaluation function f(x, t) that changes the optimal solution at specified intervals (change frequency).
9: Sensing Mechanism:

10: Implement a function to evaluate the current solution x and detect environmental changes.
11: Adaptation Strategy:
12: Define a strategy to adapt to the sensed changes, such as re-initializing part of the population or performing a local search

around the current solution.
13: Main Loop (for a specified number of iterations):
14: while termination criteria not met do
15: Evaluate the current solution x using the sensing mechanism.
16: if change detected (based on change frequency) then
17: Adapt the current solution x using the adaptation strategy.
18: end if
19: end while
20: Visualization and Analysis:
21: Collect data for visualization (e.g., fitness over time, solution path).
22: After optimization, visualize the fitness evolution, solution path, and other relevant metrics.
23: Feedback and Fine-tuning:
24: Implement a feedback loop to fine-tune the algorithm’s behavior based on performance.

Fig. 2. Comparison of Fitness function evaluation over time with iteration
increase

with dynamic optimization problems, distinguishing it from
traditional methods.

The evaluation begins by showing how the fitness function
is adjusted over time and compares the fitness function evalu-
ation with the increase in iterations. Figure 2 shows the result
of this evaluation.

The results in Figure 2 is a line graph that tracks the fitness
of the best solution found in each iteration of the optimization
process. The line plot represents the change in fitness over
time. Each point on the line corresponds to the fitness of the
best solution in a particular iteration. The figure tracks the

change in a fitness value over a series of iterations, from
0 to 1000. In the graph, it is clear that there is a sharp
decrease in fitness from the first iteration, suggesting that the
optimization method found a significantly better solution early
on. The dynamic problem generator changes the nature of the
problem by altering the parameters and constraints, as well
as the objective function, in each 200 iterations. It is clear
from the graph that the sensing mechanism can detect this
change, and the optimization algorithm adapts to the change
and changes the fitness function accordingly. To better show
how the framework operates with different problem dimen-
sions, 10 problem dimensions have been defined and how the
algorithm effectively adapts and deals with each dimension.
Figure 3 shows the result of these different dimensions of the
problem and the performance of the algorithm. The x-axis,
labeled ”Iteration,” shows the progression of the optimization
algorithm over time, and the y-axis, labeled ”Optimal Solution
Value,” represents the quality of the solution found.

Figure 3 presents the evolution of the optimal solution val-
ues in ten different dimensions over a series of iterations (from
0 to 4000). Each line represents one of the ten dimensions,
each color corresponding to a different dimension. The lines
show how the value of the optimal solution for each dimension
changes as the optimization process progresses. The graph
shows that different dimensions stabilize at different levels of
optimal values, indicating that the search space is complex and
that each dimension is being optimized to a different degree.



Fig. 3. Evaluation of how the fitness function of the problem change over
time

Fig. 4. Optimal Solution Changes over time

To evaluate how the dynamic optimization problem gen-
erator generates problems effectively, Fitgure 4 displays the
change in the components of the optimal solution over several
iterations. The x-axis represents different solution components
in a multidimensional optimization problem, while the y-axis
represents discrete time steps simulated as iterations in the
optimization process.

In Figure 4, the intensity of the color represents the value
of the optimal solution components, with the scale shown
on the right side of the heat map ranging from 0 to 0.9.
The colors change from yellow (higher values) to dark purple
(lower values), suggesting a gradient of values for the optimal
solution at each component over time. For instance, earlier
iterations (toward the top of the heatmap) show higher values
(yellow), and as time progresses (moving downward), the
values for each component either remain constant or change.

To fully understand the workings of the adaptation algorithm
with the fitness function and how it adapts to the problem gen-
erator, three different aspects of fitness are comprehensively
compared. These aspects include fitness in each iteration, the
best fitness over time, and the average fitness over time. The
analysis was carried out from iteration 0 to 1000. This analysis
was designed to gain a deeper understanding of how the
algorithm interacts with the fitness function at different stages

Fig. 5. Fitness History of the Adaptive Algorithm

of the optimization process. The results of the analysis are
presented in Figure 5.

The results in Figure 5 show the fitness at each iteration
in the solid blue line. This line shows the fitness of the
potentially best solution found in each iteration. A steep drop
in initial iterations indicates that the algorithm quickly found
a much better solution early on. After this drop, the fitness
value fluctuates slightly but remains low overall, suggesting
that the algorithm is refining the solution. The best fitness
over time is also shown in the figure with a dashed orange
line. This line represents the best solution found at each point
in time. It flattens out after a rapid improvement initially,
indicating that the algorithm did not find a better solution
than the initial one as the iterations progressed. The average
fitness over time is shown in the dashed green line. This
line tracks the average fitness of all solutions considered over
time. The average fitness drops quickly at the beginning, along
with the best fitness, and then remains relatively constant,
indicating that, on average, the population of solutions does not
improve much after the initial iterations. Based on the graph,
it can be observed that the adaptive metaheuristic algorithm
utilized efficiently found a good solution quickly. However, it
encountered challenges in obtaining substantial improvements
after the initial stages. The proximity of the best and average
fitness lines after the initial decline implies that the algorithm
maintains a stable population of solutions with comparable
fitness values.

The fitness function was monitored with the interaction to
show how the algorithm reaches each solution over time with
the dimension of the problem. Figure 6 shows the results of
this evaluation.

The results in Figure 6 show the trajectory of the current
solution through the search space throughout the optimization.
The scatter plot with a connected line shows the path the solu-
tion has taken through the search space. Each point represents
the solution in a specific iteration, with lines connecting them
to show the path over time. The Red ’X’ Marker Indicates
the final optimal solution found at the end of the optimization
process. The X-axis (’Dimension 1’) and Y-axis (’Dimension
2’) represent the values of the first two dimensions of the
solution space.



Fig. 6. The trajectory path of the solution

These graphs give a comprehensive view of the optimization
process. The left graph provides a macro view of the overall
improvement in solution quality over time, while the right
graph offers a micro view of the specific trajectory through
the solution space to arrive at the best solution found by the
algorithm. This is an indicative that the algorithm balances
exploration and exploitation to navigate towards the optimum
in a multi-dimensional landscape.

To further show the optimization process in one instance of
a problem with various aspects, Figure 7 shows the result of
this analysis. These graphs provide a comprehensive overview
of the behavior of the optimization algorithm. The first graph
shows how solution quality evolved over time, the second
graph shows where the algorithm searched and what it focused
on, and the third graph indicates the variety and distribution
of solutions’ fitness values encountered throughout the opti-
mization process. These results are useful in understanding the
efficiency and characteristics of the optimization algorithm,
including its exploratory behavior and convergence patterns.

The ”Fitness Evolution with Smoothing” graph depicts
fitness values over iterations, with a decreasing trend in fitness
indicating improvement in the solution quality over time with
the change of the problem environment behavior provided
by the problem generator. The graph shows sharp declines
in fitness at specific iterations due to the algorithm finding
significantly better solutions at those points. The overall down-
ward trend suggests that the optimization algorithm effectively
reduces fitness, typically desired in optimization problems.

The ”Density of Solution Visits” is a contour plot represent-
ing the frequency of the algorithm’s visits to different solutions
in a two-dimensional space defined by Dimensions 1 and
2. Darker areas indicate a higher visitation density, meaning
that the algorithm has explored and utilized solutions in these
regions more frequently. The red ’X’ marks the final optimal
solution found in one of the high-density areas, implying
that the algorithm converged on this region as the search
progressed.

The ”Fitness Distribution” graph is a histogram overlaid
with a smooth curve, representing a kernel density estimation
showing the distribution of fitness values the algorithm has
encountered. The x-axis represents the fitness values, and the
y-axis shows how often these fitness values were observed.
The distribution of fitness values has several peaks, indicating
that the algorithm encountered multiple promising regions in
the search space with similar fitness values.

To further analyze the performance of the DE algorithm
with different settings, two different adaptation strategies were
implemented and evaluated to assess their effectiveness in re-
sponding to dynamic changes in the optimization environment.
These strategies are designed to modify the current solution in
response to detected changes, aiming to maintain or improve
the solution’s fitness in the altered landscape.

Strategy 1: Partial Re-initialization
An effective strategy for optimizing solutions is ”Partial Re-

initialization”. This approach is simple but effective. Whenever
the environment changes, this strategy randomly re-initializes
a portion of the current solution. Specifically, 10% of the
solution’s components are reset with new random values. This
method introduces fresh genetic material into the solution,
which can help avoid local optima and explore new regions of
the search space. The effectiveness of this strategy is due to its
ability to find a balance between exploration and exploitation.
Only a small part of the solution is altered, while the rest of
the structure of the solution is preserved.

Strategy 2: Local Search with Increased Mutation Rate
The second strategy, named ”Local Search with Increased

Mutation Rate,” adopts a more refined approach by utilizing
the DE algorithm with a key modification: an increased
mutation rate. The higher mutation rate is intended to intensify
the search process, allowing for a more detailed exploration
of the solution space surrounding the current solution. This
strategy employs the ’best1bin’ approach of DE [17] with a
mutation factor range of 0.7 to 1.2, which is higher than the
standard settings. This approach is particularly useful in dy-



Fig. 7. Comprehensive Analysis of Optimization Algorithm Performance

Fig. 8. Comparative Performance of Adaptation Strategies in Dynamic
Optimization

namic environments where the landscape changes frequently,
enabling the algorithm to adapt more aggressively to new
conditions.

A series of experiments were conducted on the same dy-
namic optimization problem to evaluate the effectiveness of
different strategies. The fitness of each strategy’s solutions
was measured over a set number of iterations to determine
their performance. A visual comparison was made by plotting
the fitness history of each strategy. The results provide insights
into how each strategy copes with environmental changes. The
performance of Strategy 1 reflects its ability to introduce vari-
ability while retaining the structure of the solution. In contrast,
the performance of Strategy 2 indicates its ability to explore
the solution space aggressively. This can be advantageous in
rapidly changing environments. Figure 8 shows the detail of
this evaluation for both strategies.

The results in Figure 8 show that Strategy 1 (re-
initialization) has a pattern of sharp declines in fitness followed
by gradual increases. The sharp declines correspond to the
points where the strategy re-initializes part of the solution,
which can quickly lead to improvements if the new random
components are closer to the new optimal solution. However,

Fig. 9. Comparison of Hybrid DE Strategy, Dual Annealing, and Basinhop-
ping Techniques over 1000 Iterations

the gradual increases in fitness suggest that this strategy strug-
gles to maintain good solutions as the environment continues
to change, possibly due to a lack of directed search after
re-initialization. As for Strategy 2 (Local Search with High
Mutation), the figure shows that it exhibits a more stable and
consistent decline in fitness over time. The increased mutation
rate allows the strategy to explore the search space more
broadly, which is effective in finding and maintaining good so-
lutions even as the environment changes. The smoother curve
suggests that this strategy is more robust to environmental
changes, likely due to its ability to explore new areas of the
search space effectively.

The final evaluation is the comparison of the algorithm
within the framework with other similar algorithms as shown
in Figure 9 shows these evaluation results.

The results in Figure 9 show the performance of three
different optimization algorithms over a series of iterations,
from 0 to 1000. The y-axis measures fitness, presumably
with lower values indicating better solutions. The ”Hybrid DE
Strategy” represents the solid blue line and displays the most
fluctuation, suggesting a more exploratory search that occa-
sionally finds better solutions. The Hybrid DE Strategy line



plot provides insight into how the algorithm’s fitness evolves
over time, reflecting its adaptability to the dynamic problem.
In contrast, the horizontal lines for Dual Annealing and
Basinhopping indicate their respective best-found solutions,
offering a benchmark for comparison. The ”Dual Annealing”
method, indicated by the dashed orange line, quickly finds
a low fitness value and maintains it steadily throughout the
iterations, indicating rapid convergence and a potential lack of
further exploration after finding a good solution. ”Basinhop-
ping,” shown with the dashed-dot green line, demonstrates the
best performance with the lowest fitness values throughout,
suggesting consistent and stable convergence to an optimal
solution. However, the static nature of the Dual Annealing
and Basinhopping results provides a baseline for evaluating the
effectiveness of more dynamic approaches such as the Hybrid
DE Strategy. The static nature of these algorithms makes them
unsuitable for dynamic optimization problems, which shows
the effectiveness of the current approach.

VII. CONCLUSION

This paper presents the Adaptive Metaheuristic Framework
(AMF), a novel approach to tackling the complexities of
dynamic optimization problems. The AMF, which combines
differential evolution (DE) and a sophisticated adaptation
module, significantly advances computational optimization.
Its dynamic problem representation and real-time adaptation
abilities allow it to optimize where problem parameters, con-
straints, and objectives constantly change. The AMF frame-
work is unique for detecting changes in an ever-changing
environment and adapting its search techniques accordingly.
This adaptability increases the effectiveness of the frame-
work and ensures that the solutions provided are relevant
and useful in continuously evolving scenarios. Empirical tests
conducted on dynamic optimization problems have shown that
the AMF performs remarkably well, especially in preserving
high-quality solutions in the face of frequent and unpredictable
changes.

The AMF framework is an example of the potential of adap-
tive algorithms in metaheuristic optimization that combines
with the adaptation components. This framework is a signifi-
cant step forward in following algorithms focused on finding
solutions and is also adaptive, robust, and capable of handling
the complexities of real-world optimization problems. Further
research can be done in this direction to refine the adaptation
mechanisms, investigate the use of AMF in different indus-
trial and real-world contexts, and broaden its capabilities to
solve multi-objective and constrained optimization problems.
Simply, the dynamic optimization problem generator can be
replaced with any dynamic optimization use case.
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