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Abstract— In sparse approximation theory, the fundamental
problem is to reconstruct a signal A ∈ Rn from linear measure-
ments 〈A, ψi〉 with respect to a dictionary of ψi’s. Recently, there
is focus on the novel direction of Compressed Sensing [1] where
the reconstruction can be done with very few—O(k logn)—
linear measurements over a modified dictionary if the signal
is compressible, that is, its information is concentrated in k
coefficients with the original dictionary. In particular, these
results [1], [2], [3] prove that there exists a single O(k logn)×n
measurement matrix such that any such signal can be recon-
structed from these measurements, with error at most O(1) times
the worst case error for the class of such signals. Compressed
sensing has generated tremendous excitement both because of the
sophisticated underlying Mathematics and because of its potential
applications.

In this paper, we address outstanding open problems in
Compressed Sensing. Our main result is an explicit construction
of a non-adaptive measurement matrix and the corresponding
reconstruction algorithm so that with a number of measurements
polynomial in k, logn, 1/ε, we can reconstruct compressible sig-
nals. This is the first known polynomial time explicit construction
of any such measurement matrix. In addition, our result improves
the error guarantee from O(1) to 1 + ε and improves the
reconstruction time from poly(n) to poly(k logn).

Our second result is a randomized construction of
O(k polylog(n)) measurements that work for each signal with
high probability and gives per-instance approximation guarantees
rather than over the class of all signals. Previous work on
Compressed Sensing does not provide such per-instance approx-
imation guarantees; our result improves the best known number
of measurements known from prior work in other areas including
Learning Theory [4], [5], Streaming algorithms [6], [7], [8] and
Complexity Theory [9] for this case.

Our approach is combinatorial. In particular, we use two
parallel sets of group tests, one to filter and the other to
certify and estimate; the resulting algorithms are quite simple
to implement.

I. INTRODUCTION

We study a modern twist to a fundamental problem in sparse
approximation theory, called Compressed Sensing which has
been proposed recently in the Mathematics community.

II. SPARSE APPROXIMATION THEORY BACKGROUND.

The dictionary Ψ denotes an orthonormal basis for Rn, i.e.
Ψ is a set of n real-valued vectors ψi each of dimension n
and ψi ⊥ ψj . The standard basis is the traditional coordinate
system for n dimensions, namely, for i = 1, . . . , n, the vector

ψi = [ψi,j ] where ψi,j = 1 iff i = j.1 A signal vector A in Rn

is transformed by this dictionary into a vector of coefficients
θ(A) formed by inner products between A and vectors from
Ψ. That is, θi(A) = 〈A, ψi〉 and A =

∑
i θi(A)ψi by

the orthonormality of Ψ.2 From now on (for convenience of
reference only), we reorder the vectors in the dictionary so
|θ1| ≥ |θ2| ≥ . . . ≥ |θn|.

In the area of sparse approximation theory [10], one seeks
representations of A that are sparse, i.e., use few coefficients.
Formally, R =

∑
i∈K θiψi, for some set K of coefficients,

|K| = k � n. Clearly, R(A) cannot exactly equal the signal
A for all signals. The error is typically taken as ‖R−A‖2

2 =∑
i(Ri − Ai)2. By the classical Parseval’s equality, this is

equivalently ‖θ(A) − θ(R)‖2
2. The optimal k representation

of A under Ψ, Rk
opt, therefore takes k coefficients with the

largest |θi|’s. The error then is ‖A −Rk
opt‖2

2 =
∑n

i=k+1 θ
2
i .

This is the error in representing the signal A in a compressed
form using k coefficients from Ψ.

In any application (say audio signal processing), one has
a “class” of input signals (A’s) (e.g., sinusoidal waveforms
comprising the audio signal), one chooses an appropriate
dictionary Ψ (say discrete Fourier) so that most of the signals
are “compressible” using that dictionary, and represents the
signal using the adequate number (k � n) of coefficients
(θ1, . . . , θk). There are different notions of a signal being com-
pressible in a dictionary. In the past, e.g., in audio applications,
researchers focused on the α-exponentially decaying case
where the coefficients decay faster than any polynomial. That
is, for some α, |θi| = O(2−αi), for all i. More recently, there is
focus on the p-Compressible case. Specifically the coefficients
have a power-law decay: for some p ∈ (0, 1), and for all i,
|θi| = O(i−1/p). Consequently, ‖A − Rk

opt‖2
2 ≤ Cpk

1−2/p

for some constant Cp. A simplification of these models is
the k-support case, where the signal has at most k non-zero
coefficients, so Rk

opt = A.
Study of sparse approximation problems involves the art of

identifying suitable Ψ so signals from an application are com-
pressible, and studying their mathematical properties. This is a
mature area of Mathematics with many applications to signal
processing, communication theory and compression [10].

1Examples of other basis are discrete Fourier where ψi,j =
1√
n

exp(−2π
√
−1ij/n); and Haar wavelet where every ψi is a scaled and

shifted copy of the same step like function. By applying an appropriate rotation
to the basis and signal vectors, our problem can be thought of in the standard
basis only.

2We refer to θi where A is implicitly clear.



III. COMPRESSED SENSING.

Recently, Donoho posed a fundamental question [1]: Since
most of the information in the signal is contained in only a
few coefficients and the rest of the signal is not needed for
the applications, can one directly determine (acquire) only the
relevant coefficients without reading (measuring) each of the
coefficients? In a series of papers over the past two years, the
following result has emerged:

Theorem 1: [1], [2], [3] There exists a non-adaptive set V
of O(k log(n/k)) vectors in Rn which can be constructed once
and for all from the standard basis. Then, for fixed p ∈ (0, 1)
and any p-compressible signal A in the standard basis, given
only measurements 〈A, vi〉, vi ∈ V , a representation R can
be determined in time polynomial in n such that ‖A−R‖2

2 =
O(k1−2/p).

There are several important points to note. First, since the
worst case error for a p-compressible signal is Cpk

1−2/p, the
representation above is optimal, up to constant factors for
the class of all p-compressible signals, for a fixed p. Second,
even if the signal consisted of precisely k nonzero coefficients
θi1 , . . . , θik

, one needs k measurements 〈A, ψij 〉 for j ∈
[1, k]; hence, the set V of measurements is only a log(n/k)
factor larger than the naive lower bound of measurements
needed. Third, the proof shows existence of V by showing
that a random set of V vectors will satisfy the theorem with
nonzero probability. The proof immediately gives a Monte
Carlo randomized algorithm by using such a random V .

This result has generated much interest, and a sequence
of papers have improved different aspects of the result [1],
[11], [2], [3]; found interesting applications including MR
imaging [12] wireless communication [3] and generated im-
plementations [13]; found mathematical applications to coding
and information theory [14]; and extended the results to noisy
and distributed settings [15]. The interest arises for two main
reasons. First, there is deep mathematics underlying the results,
with interpretations in terms of high dimensional geometry [3],
uncertainty principles [2], and linear algebra [1]. Second, there
are serious applications—for example, in going from analog
to digital representation of the signals, existing hardware chips
can execute measurements 〈A, vi〉 extremely efficiently, so
performing O(k log(n/k)) measurements is significantly more
efficient than measuring each component of the signal (hence
“compressed sensing”). The results have inspired a number of
recent workshops, meetings and talks [12], [16], [17].

IV. OUTSTANDING PROBLEMS AND OUR RESULTS.

There are several outstanding questions in Compressed
Sensing.

The most fundamental issue is to explicitly construct the
non-adaptive measurement set of vectors V (or equivalently,
a transformation matrix T in which T [i, j] = vi[j]) in the
theorem. The existing results first show that if T satisfies
certain conditions, the theorem holds; then they show that T
chosen from an appropriate random distribution suffices. The
necessary conditions are quite involved, such as computing the
eigenvalues of every O(k log n) square submatrix of T [1], and

testing that each such submatrix is an isometry, behaving like
an orthonormal system [2]. No explicit construction is known
to produce T ’s with these properties. Instead, algorithms for
Compressed Sensing choose a random T , and assume that the
conditions are met. Thus, these are Monte Carlo algorithms,
with some probability of failure. This is a serious drawback
for Compressed Sensing applications motivated by hardware
implementations which will sense many, many signals over
time. So it is highly desirable that there be an explicit
construction of T suitable for Compressed Sensing. A natural
approach is to take a random T and test whether it satisfies
the necessary conditions. However, this is much too expensive,
taking time at least Ω(nk log n).

There are several other outstanding questions. For example,
the time to obtain a representation from the measurements
is significantly superlinear in n (it typically involves solving
a Linear Program [1], [2], [3]). For large signals, this cost
is overly burdensome. Since we make a small number of
measurements, it is much better to find algorithms with
running time polynomial in the number of measurements and
hence, sublinear in n. Lastly, the guarantee given by the
above theorem is not relative to the best possible for the
given signal (i.e., per-instance), but to the worst case over
the whole class of p-compressible signals. Clearly per-instance
error guarantees (equivalently, true approximation algorithms)
are preferable.

We address these questions and present the first known
explicit algorithms for Compressed Sensing. Our approach is
combinatorial, and yields a number of technical improvements
such as sublinear time reconstruction, and tolerance to error.
Our main results are twofold.

A. Deterministic Algorithms

We present a deterministic algorithm that in time poly-
nomial in k and n constructs a non-adaptive transformation
matrix T of number of rows polynomial in k log n, and
present an associated reconstruction algorithm in the spirit
of Theorem 1. More specifically, our algorithm outputs a
representation R for a compressible signal A such that ‖R−
A‖2

2 < ‖Rk
opt − A‖2

2 + ε‖Ck
opt‖2. Here, ‖Ck

opt‖2 denotes
the optimal error over the whole class of signals considered.
This is the first explicit construction known for this problem
in polynomial time.

In addition, this result leads to the following improvements:
(a) the reconstruction time is subquadratic in the number of
measurements (and hence sublinear in n), (b) the overall error
is optimal up to 1 + ε of the worst case error ‖Ck

opt‖2 for
p-compressible signals, improving the O(1) approximation
factor in prior results, and (c) the approach applies to other
cases of compressible signals with tighter bounds. For the
exponentially decaying and k-sparse family, the size of T is
only O(k2 polylog(n)). The algorithms are simple and easy to
implement, without linear programming and without running
into precision-issues inherent in the choice of Gaussian ran-
dom T in prior methods. The formal statement of our results
are as follows:



Theorem 2: We can construct a set of measurements for a
signal A in time polynomial in k and n and return a R for
A of at most k coefficients θ̂ under Ψ such that ‖θ̂ − θ‖2

2 =
‖R−A‖2

2 < ‖Rk
opt−A‖2

2 +ε‖Ck
opt‖2

2, and (i) if p < 1
2 , then

the number of measurements is O((kεp)4/(1−2p) log4 n) and
the time to produce the coefficients from the measurements
is O((kεp)6/(1−2p) log6 n). (ii) if the p-compressible case is
tight, i.e. |θi| = Θ(i−1/p) then the number of measurements
is O((kεp)4/(1−p2) log4 n) and the time to find coefficients is
O((kεp)6/(1−p)2 log6 n).

Theorem 3: We can construct a set of O(k2 polylog(n))
measurements in time polynomial in k and n. For any α-
exponentially decaying signal or k-sparse signal, A, from
these measurements of A, we can return a representation
R for A of at most k coefficients θ̂ under Ψ such that
‖θ̂− θ‖2

2 = ‖R−A‖2
2 < ‖Rk

opt−A‖2
2 + ε‖Ck

opt‖2
2. The time

required to produce the coefficients from the measurements is
O(k2 polylog(n))

B. Randomized Algorithms

We address the issue of obtaining per-instance guarantees
for each signal. We present a randomized algorithm that on
any given A, produces a T with O( k

ε2 polylog(n)) rows such
that in time linear in O(k polylog(n)), we can reconstruct a
R with ‖A −R‖2

2 ≤ (1 + ε)‖A −Rk
opt‖2

2, with probability
at least 1− 1

nO(1) .
Notice crucially that this second result does not produce a T

that works for all p-compressible signals, merely, that on any
given signal A, we can produce a good R with high probabil-
ity. In this regime, which is quite different from the regime in
earlier papers on Compressed Sensing where a fixed T works
for all p-compressible signals, many results in the Computer
Science literature apply, in particular, from learning theory [4],
[5], streaming algorithms [7], [6] and complexity theory [9].
Some of these results do not completely translate to our
scenario: the learning theory approaches assume that the signal
can be probed in the light of the results of prior measurements
(this is similar to adaptive group testing). Other results can
be thought of as producing a T with O(k2+O(1) polylog(n))
rows which is improved by our result here. An exception is
the result in [18] which works by sampling (that is, finding
〈A, vi〉 where vi,j = 1 for some j and is 0 elsewhere) for the
Fourier basis, but can be thought of as solving our problem
using O(k polylog(1/ε, log n, log ‖A‖)) measurements. Our
result improves [18] in the term polylog(‖A‖2) which governs
the number of iterations in [18]. Finally, we extend to the
case when the measurements are noisy—an important practical
concern articulated in [19]—and obtain novel results that give
per-instance approximation results. Formally, we show:

Theorem 4: We can construct a dictionary Ψ′ = TΨ of
O( ck log3 n

ε2 ) vectors, in time O(cn2 log n). For any signal A,
given the measurements Ψ′A, we can find a representation
R of A under Ψ such that with probability at least 1 − 1

nc

‖R−A‖2
2 ≤ (1+ε)‖Rk

opt−A‖2
2. The reconstruction process

takes time O( c2k log3 n
ε2 ).

Theorem 5: We can construct a dictionary Ψ′ = TΨ of
O( ck log n

ε2 ) vectors, in time O(cn2 log n). For any signal A,
given the measurements Ψ′A, we can find a representation
R of A under Ψ such that with probability at least 1 − 1

nc

‖R−A‖2
2 ≤ (1+ε)‖Rk

opt−A‖2
2. The reconstruction process

takes time O(cn log n).
Theorem 6: 1. If a fraction ρ = O(1) of the measurements

are chosen at random to be corrupted in an arbitrary fashion,
we can still recover a representation R with error ‖R−A‖2

2 ≤
(1 + ε)‖Rk

opt −A‖2
2 in time O(cn log n).

2. If only a ρ = O(log−1 n) fraction of the measurements
are corrupted we can recover a representation R with error
‖R−A‖2

2 ≤ (1 + ε)‖Rk
opt −A‖2

2 in time O(kc2 log n
ε2 ).

V. TECHNICAL OVERVIEW.

The intuitive way to think about these problems is to
consider combinatorial group testing problems. We have a
set U = [n] of items and a set D of distinguished items,
|D| ≤ k. We identify the items in D by performing group
tests on subsets Si ⊆ U whose output is 1 or 0, revealing
whether that subset contains one or more distinguished items,
that is |Si ∩D| ≥ 1. There exist collections of O((k log n)2)
nonadaptive tests which identify each of the distinguished
items precisely.

There is a strong connection between this problem and
Compressed Sensing. We can treat θi’s as items and the largest
(in magnitude) k as the members of D. Each test set Si can
be written as its characteristic vector χSi of n dimensions.
A difficulty arises in interpreting the outcome of 〈A, χSi〉.
The discussion so far has been entirely combinatorial, but the
outcome of this linear-algebraic operation of inner product
must be interpreted as a binary outcome to apply standard
combinatorial group testing methods. In general, there is no
direct connection between 〈A, χSi

〉 and presence or absence
of the largest k coefficients in Si when the signal is from the
p-compressible class. This is also the reason that prior work on
this problem has delved into the linear-algebraic and geometric
structure of the problem.

Our approach here is combinatorial. Our first results show
that one can focus attention on some k′ > k coefficients, in
order to meet our error guarantees. Then, we show that sep-
arating the k′ coefficients using group testing methods serves
as a filter and subsequently, using a different set of group
tests serves to certify and estimate the largest k coefficients in
magnitude. This use of two parallel sets of group tests is novel.
For the second set of results, combinatorial group testing has
been applied previously in Learning Theory [4], [5], Streaming
Algorithms [6], [7], [8] and Complexity Theory [9]. Here,
our contribution is to adapt the approach from our first set of
results and provide a tighter analysis of the error in terms of
‖Rk

opt−A‖2 rather than in terms of ‖A‖2 as is more typical.

Note. Preliminary versions of these results have appeared as
technical reports [20], which are superseded by the results
here.



VI. CONCLUDING REMARKS

We present a simple combinatorial approach of two sets of
group tests with different separation properties that yields the
first known polynomial time explicit construction of a non-
adaptive transformation matrix and a reconstruction algorithm
for the Compressed Sensing problem. The polynomial depen-
dency is large, but we emphasize that no other construction
with polynomial creation time is known, and the cost may be
improved in future work. Our approach yields other results
including sublinear reconstruction, improved approximation
in error and others. Given the excitement about Compressed
Sensing in the Applied Mathematics community, we expect
many new results soon. The main open problem is to reduce
the number of measurements used by explicit algorithms:
our result here gives a cost polynomial in k, which is not
close to the linear factor k in the existential results of [2],
[1], [3]. For the case of k-sparse signals, (which have no
more than k nonzero coefficients) Indyk recently developed
a set of measurements, near linear in k in number (but has
other superlogarithmic factors in n) [21]. Another outstanding
question is to tease apart other properties of Compressed
Sensing results—such as their ability to measure in one basis
and reconstruct in another—and study their algorithmics.
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