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Abstract—Various modern and highly popular applications
make use of user data traces in order to offer specific services,
often for the purpose of improving the user’s experience while
using such applications. However, even when user data is priva-
tized by employing privacy-preserving mechanisms (PPM), users’
privacy may still be compromised by an external party who
leverages statistical matching methods to match users’ traces with
their previous activities. In this paper, we obtain the theoretical
bounds on user privacy for situations in which user traces are
matchable to sequences of prior behavior, despite anonymization
of data time series. We provide both achievability and converse
results for the case where the data trace of each user consists of
independent and identically distributed (i.i.d.) random samples
drawn from a multinomial distribution, as well as the case that
the users’ data points are dependent over time and the data trace
of each user is governed by a Markov chain model.

Index Terms—Anonymization, information theoretic privacy,
Internet of Things (IoT), Markov chain model, statistical match-
ing, Privacy-Preserving Mechanism (PPM).

I. INTRODUCTION

THE Internet of Things (IoT) is an important emerging
technology and is growing at a rapid pace: by 2020,

over 50 billion devices will be connected together as part of
the IoT network [1]. Environmental monitoring, infrastructure
management, energy management, medical and healthcare
systems, building and home automation, and transport systems
are some examples which indicate that IoT devices will affect
nearly every aspect of our daily lives. However, this ubiquity
of impact also raises grave privacy concerns. In particular,
each IoT user in each application is generating a sequence of
data that can be modeled as a random process; for example,
in location-based services, each user is generating location
traces. These sequences of data in IoT systems often contain
sensitive information about users, such as their locations,
health information, and hobbies. As a result, such huge amount
of data generated by IoT devices can critically damage users’
privacy, thereby providing a significant obstacle to the adaption
of IoT applications. Thus, IoT privacy has drawn the attention
of the research community [2]–[4] to investigate effective
privacy-preserving mechanisms (PPMs).

PPMs are used to increase the assurance that private data
is not accessible to third parties. Two promising classes of

This work was supported by National Science Foundation under grants
CCF–1421957 and CNS–1739462.

PPMs are identity perturbation and data perturbation [5]–
[12]. The identity perturbation technique or anonymization is
the process of hiding the true identity of the data owner [5]–
[9]. This technique removes personal identifiers or converts
personally identifiable information into aggregated data. The
data perturbation or obfuscation is the process of hiding the
users’ data by adding noise [10]–[12]. However, perturbation
techniques reduce utility to provide better privacy protection;
thus, obtaining the optimum levels of anonymization and
obfuscation is important.

In [7], [13], a comprehensive analysis of the asymptotic (in
the length of the time series) optimal matching of time series
to source distributions is presented in a non-Bayesian setting,
where the number of users is a fixed, finite value. However,
in [14]–[20], a Bayesian setting was adopted in which the
adversary has accurate prior distributions for user behavior
through past observations or other sources, and the asymptotic
limits of user privacy were obtained.

In addition, Li et al. [21] provide an optimal hypothesis test
in the case where the adversary has training sequences from
the group of users rather than the exact probability distribution.

In this paper, we adopt the same setting as [21]; however,
our work has significantly different flavor than that of [21].
First, [21] finds the optimal test in the non-asymptotic regime
where there exist two users, while here, the asymptotic limits
of user privacy for the case of a large number of users
are obtained. Second, [21] obtains the necessary conditions
for breaking privacy, while here, conditions for both perfect
anonymity and no privacy are obtained. Third, [21] establishes
the optimal test for the case with binary alphabets where each
user’s trace consists of independent and identically distributed
(i.i.d.) samples drawn from a Bernoulli distribution, while
here, we extend our results to the case where each user’s
trace is governed by i.i.d. random samples of a multinoulli
distribution. We also extend our results for a more general
Markov chain model.

The remainder of this paper is organized as follows. Section
II discusses the system model and the metrics used in the
paper. Achievability and converse results for the two-state i.i.d.
model are presented in Section III, and their extensions to the
r-state i.i.d. model are presented in Section IV. In addition,
achievability and converse results for a more general Markov
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chain model are presented in Section V. Section VI provides
some final conclusions and directions for future work.

II. FRAMEWORK

We assume a system with n users. Each user creates a
length-m sequence of data, which is denoted by Xu ,

Xu =
[
Xu(1), Xu(2), · · · Xu(m)

]T
, X = [X1,X2, · · · ,Xn] ,

where Xu(k) is the actual data point of user u at time k. For
each user, there also exists a length-l sequence of its past
behavior which is denoted as Wu ,

Wu =
[
Wu(1),Wu(2), · · ·Wu(l)

]T
, W = [W1,W2, · · · ,Wn] .

where Wu(k) is the observation of the prior behavior of user
u at time k.

The adversary has access to the observations of the prior
users’ behavior and wants to use this knowledge to break
users’ privacy despite the usage of some PPMs. As shown
in Figure 1, an anonymization technique is employed in order
to perturb the users’ identity before the data is provided to the
IoT application. In this figure, Yu(k) is the reported data point
of user u at time k after applying anonymization; hence, the
adversary observes

Yu =
[
Yu(1),Yu(2), · · ·Yu(m)

]T
, Y = [Y1,Y2, · · · ,Yn] .

where Y is the permuted version of X.

Fig. 1: The goal of the adversary: match each sequence of
Wu of user u ∈ {1, 2, · · · , n} to an observed sequence Yu for
u ∈ {1, 2, · · · , n}.

A. Models and Metrics

Data Points Model: We assume there exist r possible values
{0, 1, · · · , r − 1} for each data point. As shown in Figure
1, there exist two traces for each user: one that is termed
"training data" and one that is termed "actual data," which
needs to be protected from a malicious adversary. Remember
that these two traces are generated from the same unknown
probability distribution. In other words, for k ∈ {1, 2, · · · ,m}
and k ′ ∈ {1, 2, · · · , l}, both Xu(k) and Wu(k ′) are drawn from
a user-specific probability distribution denoted as pu . While
all pu’s are unknown to the adversary, each of them is drawn
independently from a continuous density function fP(x), where
for all x in the support of fP(x), we assume

0 < δ1 < fP(x) < δ2 < ∞.

Anonymization Mechanism: As shown in Figure 1, the
mapping between users and data sequences is randomly per-
muted in order to achieve privacy. This random permutation is
chosen uniformly at random among all n! possible permuta-
tions on the set of n users

(
Π : {1, 2, · · · , n} 7→ {1, 2, · · · , n}

)
;

then, Yu = XΠ−1 , YΠ(u) = Xu .

Adversary Model: The adversary tries to match
each sequence in the collection of training data traces
{Wu, u = 1, 2, · · · , n} with the sequence in the observation
data traces {Yu, u = 1, 2, · · · , n} that is drawn from the same
probability distribution, which we term statistical matching.
This is equivalent to finding the permutations of the user
identities between two collections. Note that the adversary
knows the anonymization mechanism; however, he/she does
not know the realization of the random permutation function.

Following [17], the definition of no privacy is as follows:

Definition 1. For an algorithm of the adversary that tries to
estimate the actual data point of user u at time k, define the
error probability as

Pe(u, k) = P
( �Xu(k) , Xu(k)

)
,

where Xu(k) is the actual data point of user u at time k, and�Xu(k) is the adversary’s estimated data point of user u at time
k. Now, define E as the set of all possible estimators of the
adversary. Then, user u has no privacy at time k, if and only
if for large enough n,

P∗e(u, k) = inf
E

P
( �Xu(k) , Xu(k)

)
→ 0.

Hence, a user has no privacy if there exists an algorithm for the
adversary to estimate Xu(k) with diminishing error probability
as n goes to infinity.

In this paper, we also consider the situation in which there
is perfect anonymity.

Definition 2. User u has perfect anonymity at time k if and
only if

lim
n→∞

H
(
Π(1)|W,Y

)
→ +∞,

where H
(
Π(1)|W,Y

)
is the entropy of Π(1) given W and Y.

III. TWO-STATE I.I.D. MODEL

In this section, we assume each user’s trace consists of
samples from an i.i.d. random process and there are only two
possible values for each user data point Xu(k) ∈ {0, 1}. Thus,
both training traces and real data traces are governed by an
i.i.d. Bernoulli distribution with parameter pu , where pu is
probability that user u taking value of a 1, hence,

Wu(k) ∼ Bernoulli
(
pu

)
,

and

Xu(k) ∼ Bernoulli
(
pu

)
, Yu(k) ∼ Bernoulli

(
pΠ(u)

)
.



As discussed in Section II, while pu’s are unknown to the
adversary, they are drawn independently from a known con-
tinuous density function ( fP(x)), where for all x ∈ (0, 1), we
have

0 < δ1 < fP(x) < δ2 < ∞. (1)

A. Perfect Anonymity Analysis

The following theorem states that if m or l are significantly
smaller than n2 in this two-state model, then all users have
perfect anonymity.

Theorem 1. For the above two-state i.i.d. model, if Y is the
anonymized version of X, and W is the past behavior of the
users as defined above, and
• at least one of m or l is less than or equal to cn2−α for

any c, α > 0;
then, user 1 has perfect anonymity at time k.

Proof. First, consider the case m ≤ l. Here, W is considered as
the training set and Y is considered as the observed set; thus,
given Y, W → P → Π(1) forms a Markov chain. According
to the data processing inequality,

I
(
Π(1); W|Y

)
≤ I

(
Π(1); P|Y

)
;

thus,

H(Π(1)|Y) − H
(
Π(1)|W,Y

)
≤ H(Π(1)|Y) − H

(
Π(1)|P,Y

)
,

and

H
(
Π(1)|W,Y

)
≥ H

(
Π(1)|P,Y

)
.

In [15, Theorem 1], it is shown that if m = n2−α,
H

(
Π(1)|P,Y

)
→ +∞, so, we can conclude

H
(
Π(1)|W,Y

)
→ +∞,

as n→∞.
Now, consider the case l ≤ m. By symmetry of the problem

Y can be considered as the training set and W can be
considered as the observed data. Thus, we can similarly prove
the same results. �

B. No Privacy Analysis

The following theorem states that if both m and l are
significantly larger than n2 in this two-state model, then the
adversary can find an algorithm to successfully estimate users’
data points with arbitrarily small error probability, and as a
result break users’ privacy.

Theorem 2. For the above two-state i.i.d. model, if Y is the
anonymized version of X, and W is the past behavior of the
users as defined above, and
• m = cn2+α for any c, α > 0;
• l = c′n2+α for any c′, α > 0;

then, user 1 has no privacy at time k.

Proof. For u ∈ {1, 2, · · · n}, define

Yu =
Yu(1) + Yu(2) + · · · + Yu(m)

m
,

YΠ(u) =
Xu(1) + Xu(2) + · · · + Xu(m)

m
,

and
Wu =

Wu(1) +Wu(2) + · · · +Wu(l)
l

.

We claim that for m = cn2+α, l = c′n2+α and large enough n:

1) P
( ���YΠ(1) −W1

��� ≤ ∆n) → 1,

2) P
(

n⋃
u=2

{ ���YΠ(u) −W1

��� ≤ ∆n}) → 0,

where ∆n = n−(1+
α
4 ). Thus, the adversary can match W1 to

YΠ(1).
First Step: We want to show

P
( ���Xu −Wu

��� ≤ ∆n) → 1.

Note E[Xu(k)] = E[Wu(k)] = pu , so as n→∞,

P
( ���Xu −Wu

��� ≥ ∆n) =P ( ���Xu − pu −Wu + pu
��� ≥ ∆n)

≤ P
( ���Xu − pu

��� +���Wu − pu
��� ≥ ∆n)

≤ P
({ ���Xu − pu

��� ≥ ∆n2 } ⋃ { ���Wu − pu
��� ≥ ∆n2 })

≤ P
( ���Xu − pu

��� ≥ ∆n2 )
+ P

( ���Wu − pu
��� ≥ ∆n2 )

≤ 2e−
m∆2

n
12pu + 2e−

l∆2
n

12pu

= 2e−
cn2+α ·n−2− α

2
12pu + 2e−

c′n2+α ·n−2− α
2

12pu

= 2e−
cn

α
2

12 + 2e−
c′n

α
2

12 → 0, (2)

where the first inequality follows from the fact that |a − b| ≤
|a| +|b|, and as a result, P

(
|a − b| ≥ ∆n

)
≤ P

(
|a| + |b| ≥ ∆n

)
.

The union bound yields the third inequality, and the fourth
inequality follows from Chernoff bounds. Now, for u=1, we
have

P
( ���YΠ(1) −W1

��� ≤ ∆n) → 1,

as n→∞.
Second Step: First, we show as n→∞,

P
©«

n⋃
u=2

{ ��pu − p1
�� ≤ 4∆n

}ª®¬→ 0.

According to (1), for all u ∈ {2, 3, · · · , n}, we have

P
( ��pu − p1

�� ≤ 4∆n
)
≤ 8∆nδ2,

and according to the union bound,

P
©«

n⋃
u=2

{ ��pu − p1
�� ≤ 4∆n

}ª®¬ ≤
n∑

u=2
P

( ��pu − p1
�� ≤ 4∆n

)
≤ 8n∆nδ2

= 8n−
α
4 δ2 → 0,

as n → ∞. Thus, for u ∈ {2, 3, · · · , n}, the distance between
pu and p1 is bigger than 4∆n with high probability.



Next, we show as n→∞,

P
©«

n⋃
u=2

{ ���Wu −W1

��� ≤ 2∆n
}ª®¬→ 0.

Note for all u ∈ {1, 2, · · · , n}, Chernoff bounds yields:

P
( ���Wu − pu

��� ≥ ∆n) ≤ 2e−
l∆2

n
3pu ≤ 2e−

l∆2
n

3 . (3)

As a result, for u = 1, we have

P
( ���W1 − p1

��� ≥ ∆n) ≤ 2e−
c′n

α
2

3 → 0,

as n→∞. In other words, with high probability, the distance
between W1 and p1 is less than ∆n.

Now, given the fact that the distance between all pu’s and
p1 is bigger than 4∆n, and the fact that the distance between
W1 and p1 is less than ∆n, for all u ∈ {2, 3, · · · , n}, we have

P
( ���Wu −W1

��� ≤ 2∆n
)
≤ P

( ���Wu − pu
��� ≥ ∆n)

≤ 2e−
l∆2

n
3 .

Thus,

P
©«

n⋃
u=2

{ ���Wu −W1

��� ≤ 2∆n
}ª®¬ ≤

n∑
u=2
P

( ���Wu −W1

��� ≤ 2∆n
)

≤ 2ne−
l∆2

n
3

= 2ne−
c′n

α
2

3 → 0,

as n→∞.
Now, we claim that given the fact that the distances between

each of the Wu’s and W1 are bigger than 2∆n, we have

P
©«

n⋃
u=2

{ ���Xu −W1

��� ≤ ∆n}ª®¬→ 0.

Note, using (2), we have

P
( ���Xu −W1

��� ≤ ∆n) = P ( ���Xu −Wu

��� ≥ ∆n)
≤ 2e−

cn
α
2

12 + 2e−
c′n

α
2

12 .

Thus, by using union bound, we have

P
©«

n⋃
u=2

{ ���Xu −W1

��� ≤ ∆n}ª®¬ ≤
n∑

u=2
P

( ���Xu −Wu

��� ≥ ∆n)
≤ 2ne−

cn
α
2

12 + 2ne−
c′n

α
2

12 → 0,

as n→∞.
After completing the first and second steps, we can conclude

if m = cn2+α and l = c′n2+α, users have no privacy as n →
∞. �

IV. r -STATE I.I.D. MODEL

In this section, we assume each user’s trace consists of
samples from an i.i.d. random process, and users’ data points
can have r possibilities, where Xu(k) ∈ {0, 1, · · · , r−1}. Thus,
both training traces and real data traces are governed by an
i.i.d. multinoulli distribution with parameter pu , and

pu =
[
pu(1), pu(2), · · · pu(r − 1)

]T
, p =

[
p1, p2, · · · , pn

]
.

where pu(i) is the probability that a datum of user u has value
i.

As discussed in Section II, while pu’s are unknown to
the adversary, they are drawn independently from a known
continuous density function fP(x), where for all x ∈ Rp,

Rp =

{
(x1, x2, · · · , xr−1) ∈ (0, 1)r−1 :

xi > 0, x1 + x2 + · · · + xr−1 < 1, i = 1, 2, · · · , r − 1
}
,

we have

0 < δ1 < fP(x) < δ2 < ∞. (4)

A. Perfect Anonymity Analysis

The following theorem states that if m or l are significantly
smaller than n

2
r−1 in this r-state model, then all users have

perfect anonymity.

Theorem 3. For the above r-state i.i.d. model, if Y is the
anonymized version of X, and W is the past behavior of the
users as defined above, and
• at least one of m or l is less than or equal to cn

2
r−1−α for

any c, α > 0;
then, user 1 has perfect anonymity at time k.

Proof. We can now repeat the similar reasoning as Theorem
1; then, by using [15, Theorem 2], the proof is complete. �

B. No Privacy Analysis

The following theorem states that if both m and l are
significantly larger than n

2
r−1 in this r-state model, then the

adversary can find an algorithm to successfully estimate users’
data points with arbitrarily small error probability, and as a
result break users’ privacy.

Theorem 4. For the above r-state i.i.d. model, if Y is the
anonymized version of X, and W is the past behavior of the
users as defined above, and
• m = cn

2
r−1+α for any c, α > 0;

• l = c′n
2

r−1+α for any c′, α > 0;
then, user 1 has no privacy at time k.

Proof. The proof of Theorem 4 is similar to the proof of
Theorem 2, so we just provide the general idea. We similarly
define the empirical probability that the user with pseudonym
u has data sample i as follows:

Yu(i) =

���{k ∈ {1, 2, · · · ,m} : Yu(k) = i
}���

m
,



and

YΠ(u)(i) =

���{k ∈ {1, 2, · · · ,m} : Xu(k) = i
}���

m
.

We also have

Wu(i) =

���{k ∈ {1, 2, · · · , l} : Wu(k) = i
}���

l
.

The difference from the proof of Theorem 2 is that, for each
u ∈ {1, 2, · · · , n}, Yu and Wu are vectors of length r − 1. In
other words,

Yu =
[
Yu(1),Yu(2), · · · ,Yu(r − 1)

]T
, u ∈ {1, 2, · · · , n},

Wu =
[
Wu(1),Wu(2), · · · ,Wu(r − 1)

]T
, u ∈ {1, 2, · · · , n},

and we claim for m = cn
2

r−1+α, l = c′n
2

r−1+α, and large enough
n,

1) P
( ���YΠ(1) −W1

��� ≤ ∆′n) → 1,

2) P
(

n⋃
u=2

{ ���YΠ(u) −W1

��� ≤ ∆′n}) → 0,

where ∆′n = n−
(

1
r−1+

α
4

)
. �

V. r -STATE MARKOV CHAIN MODEL

In Section III and IV, the data trace of each user is governed
by an i.i.d. random process, while here the data trace of
each user is governed by an irreducible and aperiodic r-state
Markov chain where E is the set of edges. Let us define the
transition probability from state i to state j as:

pu(i, j) = P
(
Xu(k + 1) = j |Xu(k) = i

)
;

thus, (i, j) ∈ E if and only if pu(i, j) > 0.
Here, we assume the same Markov chain structure for all of

the users, but different users have different transition matrices.
Note that a subset of the transition probabilities with size |E |−
r is sufficient for recovering the whole transition matrix. Let
this subset be called pu , so

pu =
[
pu(1), pu(2), · · · pu(|E | − r)

]T
, p =

[
p1, p2, · · · , pn

]
.

where pu(i) is the probability that a datum of user u has
value i. As discussed in Section II, while pu’s are unknown
to the adversary, they are drawn independently from a known
continuous density function fP(x), where for all x ∈ Rp,

Rp =

{
(x1, x2, · · · , x |E |−r ) ∈ (0, 1) |E |−r :

xi > 0, x1 + x2 + · · · + x |E |−r < 1, i = 1, 2, · · · , |E | − r
}
,

we have

0 < δ1 < fP(x) < δ2 < ∞. (5)

A. Perfect Anonymity Analysis

The following theorem states that if m or l are significantly
smaller than n

2
|E |−r in this r-state Markov chain model, then

all users have perfect anonymity.

Theorem 5. For the above r-state Markov chain model, if Y
is the anonymized version of X, and W is the past behavior
of the users as defined above, and

• at least one of m or l is less than or equal to cn
2

|E |−r −α

for any c, α > 0;
then, user 1 has perfect anonymity at time k.

Proof. We can now repeat the similar reasoning as Theorem
1; then, by using [15, Theorem 3], the proof is complete. �

B. No Privacy Analysis

The following theorem states that if both m and l are
significantly larger than n

2
|E |−r , then the adversary can find

an algorithm to successfully estimate users’ data points with
arbitrarily small error probability, and as a result, break users’
privacy.

Theorem 6. For the above r-state Markov chain model, if Y
is the anonymized version of X, and W is the past behavior
of the users as defined above, and

• m = cn
2

|E |−r +α for any c, α > 0;
• l = c′n

2
|E |−r +α for any c′, α > 0;

then, user 1 has no privacy at time k.

Proof. The proof of Theorem 6 is similar to the proof of
Theorem 2, so we just provide the general idea. For each
u ∈ {1, 2, · · · , n}, we similarly define Yu and Wu as vectors
of length |E | − r:

Yu =
[
Yu(1),Yu(2), · · · ,Yu(|E | − r)

]T
, u ∈ {1, 2, · · · , n}.

Wu =
[
Wu(1),Wu(2), · · · ,Wu(|E | − r)

]T
, u ∈ {1, 2, · · · , n}.

We claim that for m = cn
2

|E |−r +α, l = c′n
2

|E |−r +α, and large
enough n,

1) P
( ���YΠ(1) −W1

��� ≤ ∆′′n )
→ 1,

2) P
(

n⋃
u=2

{ ���YΠ(u) −W1

��� ≤ ∆′′n })
→ 0,

where ∆′′n = n−
(

1
|E |−r +

α
4

)
. �

VI. CONCLUSION

In this paper, we have derived the theoretical bounds on
user privacy in situations in which user traces are matchable
to prior user behavior despite anonymization protection. In
particular, the adversary employs statistical matching of the
user traces to previous behavior of users within a network to
compromise their privacy.

As shown in Figure 2, which displays the characterized
privacy limits for the i.i.d. case, we demonstrated that the
parameter plane, with coordinates length of learning set (l) and



length of observed set (m), can be divided into two regions:
in the first region, all users have perfect anonymity and in the
second region no user has any privacy whatsoever. Specifically,
we showed that if either l or m is significantly smaller than
n

2
r−1 , users have perfect anonymity and the adversary cannot

identify the permutation function (Π), and, if both of them are
significantly larger than n

2
r−1 , users have no privacy. It is worth

noting that in the case the adversary has the accurate prior
information, which is discussed in [15], [16] and is shown in
Figure 3, users have no privacy as long as number of adversary
observations per user m is larger than n

2
r−1 .

For the case where the users’ data points are governed by
an irreducible and aperiodic r-state Markov chain with |E |
edges, we demonstrated similar results: if either l or m is
significantly smaller than n

2
|E |−r , users have perfect anonymity,

and, if both of them are significantly larger than n
2

|E |−r , users
have no privacy.

Fig. 2: Limits of privacy in the entire m − l plane in the case
the adversary does not have the accurate prior distribution.
Here, both training data traces and observed data traces are
governed by an i.i.d. multinoulli distribution. l is the length
of the learning set, m is the length of the observed data, and
r is the number of possible values for each user’s data point.

Fig. 3: Limits of privacy in the case the adversary has an
accurate prior distribution. Here, the observed data traces are
governed by an i.i.d. multinoulli distribution, m is the length
of the observed data and r is the number of possible values
for each user’s data point.
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