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Abstract—A Kkey problem on the measurement of lower-limb
joint angles using inertial sensors is drift resulted in error accu-
mulation after time integration. Several types of methods have
been proposed to eliminate the drift. Among these methods, com-
plementary filter-based sensor fusion algorithms are widely used
in real-time applications due to its efficiency. Results from existing
studies have shown that the performance of methods is relevant
to walking speed. However, factors of walking variation have
not been explored. This study first systematically investigated
the walking variation factors and their effects on the accuracy
of a proposed sensor fusion method during treadmill walking.
Ten able-bodied participants participated in the experiment and
walked on a treadmill with three different speeds (0.5, 1.0 and
1.5 m/s). A 12 camera Vicon motion capture system was used
as the reference. The accuracy of the proposed method was
evaluated in terms of the root-mean-square errors (RMSE),
offsets and Pearson’s correlation coefficients (PCC) in phases
of a normalised gait cycle. A general linear model of analysis
of variance (ANOVA) was used to analyze the factors including
treadmill speed and gait phases. Results showed both factors had
a significant influence on the RMSE, and only the treadmill speed
had a significant influence on the offset. It provides an insight to
improve the complementary filter-based method in future work.

Index Terms—Gait analysis, data fusion, complimentary filter,
ankle angle measurement, treadmill speed, gait phases

I. INTRODUCTION

N ankle foot assist device is usually a wearable medical

device that is attached to the wearer’s ankle and foot,
aiming to provide a certain amount actuation for the correction
of drop foot. It would help individuals with a drop foot who
suffer from a limited ability to lift the foot during early swing
phase and enhance their independence to perform activities of
daily living. To maximise the efficiency of gait interventions,
real-time information presenting the movement need to be
explored. The real-time gait feedback that highly correlated
to the use of the system would augment proprioceptive inputs
synchronised with the gait cycle [1], [2]. Kinematics is of
importance for advanced control of wearable robotics.
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A key problem on the measurement of joint angles using
inertial sensors is drift resulted in error accumulation after time
integration. Several methods have been proposed to eliminate
the drift: strap-down method [3], [4], high-pass filtering [5].
Morris et al. [3] set the signal equal at the begin and end of
every gait cycle. Sabatini et al. [4] proposed a method that
calculates body segment orientation from the angular velocity
data and compensates the drift with the cycle properties.
Tong et al. [5] derived the knee angle from segment angular
velocities and applied a low-cut high-pass filter to remove
the low-frequency component. Sensor fusion method seems
a promising solution for the drift problem. The methods, such
as Kalman filter [6] and complimentary filter [7], [8], could
correct offset drift at each time online. Sensor orientation can
be presented as a quaternion calculated from 9D IMU data
and the joint angle is derived from the relative orientation of
two adjacent segments [9], [10]. The use of magnetometer
measurement where magnetometer disturbances occur may
limit the algorithm accuracy and its indoor application. Favre
et al. [11] proposed to use acceleration data to compensate
the drift from the angular velocity angle. The complementary
filter is relatively simple and easy to be applied in real-
time applications. The sensor fusion of gyroscope-based and
accelerometer-based angles has shown its good performance
in gait analysis [7], [8].

Studies have demonstrated the IMU-based methods provide
acceptable accuracy for lower limb angle measurement and
high correlation coefficients with the measurements obtained
from optical gait analysis system or goniometer. A higher
Pearson’s correlation coefficients (PCC) and a lower root-
mean-square error (RMSE) between the reference and the
angles obtained from the proposed methods for the knee angle
are shown compared to the ankle [12]. Compared to the knee
angle, the ankle angle measurement was also more affected by
treadmill speed variation. It might be caused by the foot in the
contact with the ground during walking resulting in external
disturbances and noises for the ankle angle measurement.
Variations during treadmill walking, such as walking speed and
gait phases, might have a significant effect on the performance
of the proposed method. However, to the authors’ knowledge,
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no studies have explored the factors systematically.

We hypothesise that the treadmill speed and gait phase
variation are significant factors for the performance of a
complementary filter based data fusion algorithm for the ankle
angle measurement. The study firstly aimed to explore the
factors systematically. The paper is organised as follows: the
data fusion method based on a complementary filter is pre-
sented in Section II. The experiments and results are described
in Section III. The discussion and conclusions are given in
Section IV.

II. DATA FUSION BASED ON A COMPLEMENTARY FILTER

Fig. 1 shows the diagram of the angle calculation where
gyroscope and accelerometer data are combined to remove the
angle drift using a complementary filter. A sensor-to-segment
calibration was taken prior to obtaining joint axes so that there
is no requirement in precision placements of sensors in our
algorithm.
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Fig. 1. The diagram demonstrates the algorithm for calculating the ankle
angle. Two sensors were attached to the shank and foot respectively whilst
acceleration (a;) and angular velocity (w;) were collected. A fast complimen-
tary filter (FCF) algorithm was firstly used to obtain the local acceleration
(aﬁ). As there is no requirement in precision placements of sensors, a sensor-
to-segment calibration was taken in prior to obtaining joint axes ji; and
j2. The functional joint axes were applied to calculate gyroscope-based and
accelerometer-based ankle angle. The ankle angle drift was removed by using
a complementary filter algorithm.

A. Identification of the joint Axes
In our study, inertial sensors are attached to the hip, shank
and foot segments as shown in Fig. 2. It is assumed that
the local sensor axes do not coincide with the joint axes.
The flexion axes of the shank and foot are determined re-
spectively during the knee flexion/extension and ankle dorsi-
/plantarflexion movement. The joint axes j; and j, can be
identified using a least square cost function, Eq 1.
N
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where w; is angular velocity, N is the total sample number
during the movement, || - || is the Euclidean norm.
The j; and jo are written in spherical coordinates:

Ji = (cos(d;)cos(0;), cos(pi)sin(6;), sz’n(@))T

where —7/2 < ¢; < 7w/2, 2w < 6; < 2.

MATLAB function fimincon (MATLAB 2017b, MathWorks,
Natick, USA) is used to solve the cost function C'. It needs
to be noted that the flexion axes should point in the same

direction and the thigh sensor is only used for the calibration
procedure. Details of joint axes identification can be found in

[7].
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Fig. 2. The procedure of sensor-to-segment calibration. Sensors were attached
to the thigh, shank and foot. The subject performed knee flexion/extension and
ankle dorsi-/plantarflexion when angular velocity data were recorded. The
joint axis of the thigh sensor (j1) was set based on prior knowledge and
the flexion axis of the shank (j2) was estimated during the knee sagittal
movement. The ankle axis (j3) was calculated with the obtained jo during
the ankle dorsi-/plantarflexion movement.

B. Joint angle calculation

Gravity-based acceleration can be expressed by:

a' = D(Gow)G 2)

Where G = (0,0,1)7 at the global reference frame, D is
the direction cosine matrix in the form of (D;, D2, D3) with
quaternion 4, [13]. Eq. 2 can be decomposed as:

. —q2 43 —qo q1 211(1)
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qo —q1 —q2 g3
q3

Its rotation can be represented by the normalised quaternion
Ja. that is calculated through acceleration and angular rate
data fusion at current time instant.

An accelerometer-based joint angle can be approximated by
the angle between the projections of a! into the joint plane,
which is defined as following:

V2 X Us

Oace = arctan(
Vg + V3

4)

Where vy = (ab-w2, ab-ya, 0)T, v3 = (ak-23, ak-y3, 0)7
The joint plane is defined by a pair of axes z;,y; € R®:

To = J2 X C, Y2 = Jo X T3
T3 =73 X C, Y3 = J3 X T3
cl gz kf Js

c is an arbitrary normalised vector that is not parallel to the
axes jo and js.

)
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A gyroscope-based joint angle is calculated by the integra-
tion of the difference of the angular velocity around the joint
axis:

ogyr(t) = /0 (wa(T) - jo — w3(T) - j3)dT (6)

The gyroscope-based angle is precise on the short time scales
but exhibits slow drift over long time measurement. The
accelerometer-based angle is not affected by drift, but it is
sensitive to measurement noise and may not be reliable at
moments when large acceleration change occurs. A comple-
mentary filter is used to combine two angles in order to remove
the drift in the gyroscope-based angle. An implementation of
the complementary filter is given as below:

0(t) = Aaace(t) + (1= X) (at — At) +agyr (t) — gyr (t— At))
(7)

III. EXPERIMENT AND RESULTS
A. Experiment set-up

The study was approved by the ethics committee of the
Department of Biomedical Engineering at the University of
Strathclyde. ten participants (six males and four females,
age = 26.5 £ 6.2 years) participated. Each participant wore
Trigno™ IM sensors (Delsys Inc., USA) attached to the thigh,
shank and foot of both legs. To validate our real-time gait
measurement system, the participant also wore a marker set
of Strathclyde functional cluster model [14], as shown in
Fig 3. A 12 camera Vicon motion capture system (Vicon
MX Giganet, Oxford Metrics Ltd., UK) was used as the
reference. Marker trajectories were recorded at 100Hz. IMU
and stereophotogrammetric data streams were synchronised
via an audio signal of START button clicking.

Fig. 3. Placement of inertial measurement units and optical marker clusters
on a subject. The Strathclyde functional cluster model was used to analyse
gait phases and kinematics. The IMUs were attached to the thigh, shank and
foot without restricting their positions.

Each participant was instructed to perform knee flex-
ion/extension and ankle dorsi-/plantarflexion in the calibration
trial. Each movement was repeated ten times. The joint axes
were calculated using the method in Section II-A and saved
as a MAT file. Subsequently, the participants walked on the
treadmill at three different speeds (0.5, 1.0 and 1.5 m/s) for 1
minute. The sensor data and marker trajectories were gathered.
Reference of kinematic outputs and gait phases were post-
processed using MATLAB-Nexus interface model (MATLAB
2017b, MathWorks, Natick, USA) while the ankle angle was
calculated through the model script described in Section II-B
in which A and At were set to 0.05 by trial and error.

B. Data analysis

Gait events including heel strike (HS), flat foot (FF), heel
off (HO) and toe off (TO) were found, Fig.4. One gait cycle is
defined as the time period between two adjacent HS events. All
data were normalised to the gait cycle. The normalised gait
cycle was further divided into four phases, namely loading
response (LR), middle stance (MS), terminal stance (TS) and
swing (SW). The accuracy of the algorithm was evaluated in
terms of the RMSE, offset and Pearson correlation coefficient
(PCC) between the ankle angles obtained from our proposed
method and the optical reference, Eq 8. All results were
analysed through a general linear model including analysis of
variance (ANOVA) with the following factors: the treadmill
walking speed and gait phases.

1 N
=N > (0(t) = o (1))
— (®)
RMSE = \/ S (0(t) - Oopt (t) — b)?

where b is offset, 6 is the ankle angle obtained from our
method, 6, is the angle measured from the optical reference
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Fig. 4. The ankle angle measured from one participant walking on the
treadmill was divided into normalised gait cycle. Four gait events, namely
heel strike, flat foot, heel off and toe off, segments the gait cycle into four
gait phases.

C. Results

Comparison of the ankle angles between the IMU-based
algorithm and Vicon reference based on normalised gait cycles
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was shown in Table I. The results show that the estimated angle
using the proposed method had a good agreement with the
optical reference (PCC > 0.90) with an accuracy of RMSE
below 3.25 degrees. The offset and RMSE values increased
while the PCC values decreased with the treadmill speed
incremented by a step of 0.5 m/s.

TABLE I
COMPARISON OF THE ANKLE ANGLES BETWEEN THE IMU-BASED
ALGORITHM AND VICON REFERENCE BASED ON NORMALISED GAIT

CYCLES.
Treadmill speed  Offset (deg) RMSE (deg) PCC P
0.5m/s 032+377 171 £1.17 094+£0.03 0
1.0m/s 486 +349 207 +£1.01 0924+003 0
1.5m/s 588 £474 247 +141 090=£0.04 O

Results from the general linear model ANOVA (Table II)
showed that the treadmill speed had a significant influence on
the offset and RMSE of the ankle angle estimation. As shown
in Fig 5, the offset and RMSE errors significantly increased
with an increasing treadmill speed. The gait phase had no
significant effect on the offset but was a significant factor that
affected the RMSE. Larger RMSE were obtained during the
TS and SW phases.
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Fig. 5. The offset (A) and RMSE values under different treadmill speeds and
gait phases.

TABLE 11
RESULTS FROM THE GENERAL LINEAR MODEL ANOVA OF THE OFFSET
AND RMSE.
Factors SumSq DF MeanSq F pValue
Offset Gait phase  226.85 1 226.85 10.291 1.35e-03
(Deg) Speed 12384 1 12384 729.61 1.60e-140
RMSE  Gait phase  394.3 1 394.3 284.09  2.50e-60
(Deg) Speed 234.8 1 234.8 161.43  7.67e-36

IV. DISCUSSION AND CONCLUSION

The proposed IMU-based method provides good accuracy
for ankle angles and high correlation coefficients with the
Vicon reference in a treadmill walking experiment of ten
able-bodied participants. This paper gives a good insight
into variation during treadmill walking and their effect on
the accuracy of the ankle angle estimation. It would help
to improve the performance of IMU-based algorithms with
adaptive parameters corresponding to environment variations.
The results showed that the performance of the data fusion
algorithm based on a complementary filter was sensitive to
the treadmill speed and gait phases.

Three treadmill speeds were selected and submitted to
comparative analysis. The slow speed (0.5 m/s) yielded the
lowest offset of 0.32 £ 3.77 and the smallest RMSE of 1.71
+ 1.17 degrees and highest PCC of 0.94 £ 0.03 while the
method obtained the worst performance with the fast speed
(offset = 5.88 + 4.74, RMSE = 247 + 1.41, PCC = 0.90 £
0.04). The findings are consistent with the previous study that
the accuracy of angle measurement is influenced by varying
the treadmill speed [12]. The results in [12] also showed that
the ankle angle measurement was more affected compared to
the knee.

The treadmill speed influences the angle measurement from
the following two perspectives. Firstly, the increased offset
value with an incrementation of treadmill speed might come
from the linear displacement of the foot on the treadmill during
the stance phase as the foot is the only segment interacting
with the environment. Secondly, skin tissue artefacts (STAs)
result in an addition of noise to the body-fixed sensors and
the STA amplitude depends on the type, speed and range
of movement [15]. The propagation of the STAs might be
the cause of the increase of RMSE value while increasing
the treadmill speed as well as during the TS and SW phases
(Fig. 5). It should be noted that the gait phase does not have
a significant effect on the offset as shown in Table II. The
treadmill speed would be the main cause of the offset while
the RMSE resulted from the STAs.

As the complementary filter combines the accelerometer-
based angle to the gyroscope angle in order to remove the
angle drift, the filter coefficient usually needs to be well tuned
before the application. However, the fixed filter coefficient can
not respond robustly to variations during human walking. This
study showed that limitations of the sensor fusion algorithm
by the complementary filter in practical applications. A novel
adaptive algorithm based on the complementary filter will be
more suitable for real-time implementations in conditions of
fast motions [16]. Moreover, the effect of treadmill speed
on the accuracy of the sensor fusion method should not be
neglected. Further work is required to develop a machine
learning algorithm for removing the treadmill effect.
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