
VETIOT: On Vetting IoT Defenses Enforcing
Policies at Runtime

Akib Jawad Nafis∗, Omar Chowdhury†, and Endadul Hoque∗
∗Syracuse University, NY USA

†Stony Brook University, NY USA

Abstract—Smart homes are powered by numerous pro-
grammable IoT platforms. Despite tremendous innovations, these
platforms often suffer from safety and security issues. One class
of defense solutions dynamically enforces safety and security
policies, which essentially capture the expected behavior of the
IoT system. While many proposed works were built on this
runtime approach, they all are under-vetted. The primary reason
lies in their evaluation approach. They are mostly self-evaluated
in isolation using a virtual testbed combined with manually
orchestrated test scenarios that rely on user interactions with the
platform’s UI. Such hand-crafted and non-uniform evaluation
setups are limiting not only the reproducibility but also a
comparative analysis of their efficacy results. Closing this gap
in the traditional way requires a huge upfront manual effort,
which causes the researchers turn away from any large-scale
comparative empirical evaluation. Therefore, in this paper, we
propose a highly-automated uniform evaluation platform, dubbed
VetIoT, to vet the defense solutions that hinge on runtime policy
enforcement. Given a defense solution, VetIoT easily instantiates a
virtual testbed inside which the solution is empirically evaluated.
VetIoT replaces manual UI-based interactions with an automated
event simulator and manual inspection of test outcomes with an
automated comparator. We developed a fully-functional prototype
of VetIoT and applied it on three runtime policy enforcement
solutions: Expat, Patriot, and IoTguard. VetIoT reproduced their
individual prior results and assessed their efficacy results via
stress testing and differential testing. We believe VetIoT can foster
future research/evaluation.

Keywords—IoT Security, Testbed, Evaluation

I. INTRODUCTION

Smart homes are powered by numerous programmable IoT
platforms (e.g., SmartThings, OpenHAB, IFTTT) to facilitate
automation and over-the-air control and monitoring. Despite
tremendous innovations, smart home systems suffer from
safety and security issues [1], [2]. As a result, this problem has
garnered much attention from the security research community,
which has led to several proposals for defense solutions [3]–
[11] focused on curbing unexpected (i.e., unsafe/insecure) be-
havior on these platforms. One category of these defenses [6]–
[8], [10], [11] hinges on the enforcement of safety and security
policies at runtime, where each policy essentially captures
the expected behavior of the IoT system regarding one or
more installed IoT devices. Unfortunately, they are all under-
vetted because they were evaluated against a small number of
testcases. In addition, identifying a better defense solution has
been difficult as they all lack comparative empirical evaluation.

The reason behind using a small number of testcases lies
in their current evaluation methodology. First, a testbed (pre-
dominantly, virtual) along with the desired automation apps
and policies is manually set up to evaluate the defense solution

in isolation. Secondly, an evaluator comes up with testcases,
which have to be manually orchestrated. A testcase defines
a sequence of events that can occur naturally (e.g., a certain
time of the day) or due to an interaction with a IoT device
(e.g., opening the front door). The evaluator feeds a testcase
into the testbed by manually interacting with the platform’s UI
(e.g., a web-based UI or a phone app). The testcases that can
demonstrate the defense’s efficacy are primarily selected for
evaluation. Thirdly, after feeding a testcase, the log information
from the platform is collected and manually inspected for
reporting the achieved efficacy. Finally, for the next testcase,
a manual cleanup of the testbed is required to bring it back to
the initial (clean) state. This huge upfront manual effort causes
the researchers to resort to only hand-crafted testcases for
evaluation, leaving the defense solutions mostly under-vetted.

Such non-uniform evaluation setups explain the absence
of comparative empirical assessments of the effectiveness of
these defense solutions. For comparing a new defense (say,
A) with an existing one (B), an evaluator must be able to
test both A and B on the B’s original test-suite and a new
test-suite. The former calls for reproducing B’s empirical
results, and the latter calls for a uniform evaluation mechanism
irrespective of the differences betweenA and B. Unfortunately,
the traditional way of evaluating these defense solutions limit
both reproducibility and comparative analysis.

As an example, consider a smart home testbed where the
initial states of the devices are: {IndoorMotionSensor
= OFF, FrontDoor = CLOSED, HomeMode = ON,
SleepMode = OFF}. In addition, an automation app “R1:
When IndoorMotionSensor senses motion, execute
FrontDoor.Open()” and a policy “P1: Deny opening
FrontDoor, if user is not at Home” are installed in
the testbed. Suppose we have a testcase (aka, a sequence of
events): ⟨HomeMode = OFF, IndoorMotionSensor = ON⟩.
The first event simply changes the state of HomeMode to OFF,
and the second event triggers R1, which attempts to open
FrontDoor. While defenses like ExPAT [7] and PatrIoT
[8] block FrontDoor.Open() as opening FrontDoor
when the user is away will violate P1, the other solutions
such as IoTGuard [6] and IoTSafe [10] fail to block
FrontDoor.Open() even though the user is away. Without
testing against a large number of testcases and evaluating
for a comparative analysis, the shortcomings of a defense
solution will remain undetected.

Prior efforts on some standardization in IoT evaluations
proposed testbeds with physical devices [12], [13] or emulated
devices [14], and benchmarks consisting of IoT applications
[15], [16]. However, none of these efforts automate the evalu-
ation of policy enforcing IoT defense solutions.

ar
X

iv
:2

30
8.

12
41

7v
2

 [
cs

.C
R

]
 1

 S
ep

 2
02

3

In this paper, we present VETIOT, a highly-automated
uniform evaluation platform for vetting smart home defenses
that hinge on runtime policy enforcement. VETIOT is designed
to address the aforementioned limitations by automating much
of the experimenting process. First, VETIOT incorporates a
testbed generator to quickly and easily create an identical
testbed to enable a controlled vetting environment required
for reproducibility and comparative testing. Secondly, VETIOT
employs an event sequence generator to automate the genera-
tion of testcases. Instead of manually feeding each event using
the platform’s UI, VETIOT utilizes the external programming
interface available on the platform (e.g., REST API) to push
each event of the testcase. Finally, VETIOT replaces manual
inspection of the test outcomes with an automated comparator
to report on the defense solution’s efficacy. The comparator
makes decisions based on a heuristic algorithm that checks for
discrepancy between the initial and final states of the testbed.

We developed a fully functional prototype of VETIOT
using Python 3.9. VETIOT leverages virtual IoT devices as
they cost nothing and require less time to reset and boot up as
opposed to physical devices. To deploy the testbed, VETIOT
utilizes the OpenHAB IoT platform [17], because it is not only
open source but also entirely deployable on a local machine, as
opposed to SmartThings [18] which is hosted on a proprietary
cloud server. When VETIOT interacts with the testbed (e.g.,
to push a testcase), it uses OpenHAB’s REST API interface.

We vetted three smart home defense solutions that en-
force safety and security policies at runtime: PatrIoT [8],
ExPAT [7], and IoTGuard [6]. We selected them for vet-
ting because of their popularity in the research community.
ExPAT1 and PatrIoT2 have open-source implementations for
OpenHAB available on GitHub.com. IoTGuard, on the other
hand, is designed for SmartThings, but its public repository
on GitHub.com3 does not contain the full implementation,
which prompted us to develop an in-house implementation of
IoTGuard for OpenHAB. Our implementation of IoTGuard
faithfully followed its description [6] as closely as possible.

Using VETIOT, we evaluated each test-subject (ExPAT,
PatrIoT, IoTGuard) by following three testing approaches:
fidelity, stress, and differential. Technically, fidelity testings are
used to assess VETIOT’s fidelity in reproducing the efficacy
results of each subject by replicating the same testbed and
testcases as mentioned in [6]–[8]. Next, we used VETIOT
to stress test each subject separately to measure their own
efficacy with respect to multiple test-suites comprising total
140 randomly generated testcases. Finally, VETIOT was used
to perform a differential testing on ExPAT, PatrIoT and
IoTGuard where we used an identical testbed along with
the same auto-generated testcases. Our vetting revealed many
nuanced corner cases where the test-subjects efficacy differed
for unique reasons specific to their design choices (e.g., which
policies are selected to enforce at runtime). In differential test-
ing, we observed that IoTGuard prevented 8 less unexpected
actions than ExPAT and PatrIoT. VETIOT is available as
open-source at https://github.com/syne-lab/vetiot.

1https://github.com/expat-paper/expat
2https://github.com/yahyazadeh/patriot
3https://github.com/Beerkay/SmartAppAnalysis

Contributions. This paper makes the following contributions:

• We proposed a highly-automated uniform evaluation plat-
form, dubbed VETIOT, for vetting IoT defenses that enforce
policies at runtime. It automates much of the traditional
evaluation process, which requires huge manual efforts from
the researchers.

• We developed a fully functional prototype of VETIOT for
the OpenHAB platform. To demonstrate VETIOT’s efficacy,
we evaluated VETIOT by applying it to three IoT defenses
(ExPAT, PatrIoT, and IoTGuard) for assessing their indi-
vidual and comparative efficacy.

• To the best of our knowledge, VETIOT is the first automated
platform that empirically evaluates IoT security defenses
enforcing policies at runtime.

II. PRELIMINARIES

Platforms. Smart home platforms (e.g., OpenHAB, Smart-
Things) provide users with a common interface to control and
manage IoT devices and enable users to automate numerous
manual tasks with customized applications (aka, apps) that
may interact with the physical world by operating the IoT
devices. A platform is considered as the brain of a smart
home, because the platform not only manages the devices
connected to it and ensures communication between them but
also executes the core automation logic. Depending on the
platform’s architecture, a local or remote server (aka, backend)
is employed to host the brain. For instance, SmartThings
utilizes a proprietary cloud-based backend whereas OpenHAB
allows users to spawn their own local backend.

Apps. Platforms typically allow numerous customization in
automation apps, which can vary in complexity. For example,
“When the sun sets, turn on the porch lights” is a
simpler app and “When Smoke_Detector detects smoke
and if Living_room_temperature > 120◦, turn on
Fire_Sprinkler” is a complex one. In general, these
apps follow a trigger-condition-action paradigm. A trigger,
which is usually a logical event occurred in the smart home
(e.g., “Smoke_Detector detects smoke”), initiates the
execution of an app. The action block includes a list of
commands to be operated on the respective IoT device
(e.g., “turn on Fire_Sprinkler”). Note that a command
can change not only the state of the physical world (e.g.,
turning on the fire sprinkler will spray water) but also the
internal state of the device (e.g., Fire_Sprinkler.state
= ON). A condition is an optional block of predicates (e.g.,
Living_room_temperature > 120◦), often expressing a
situation that must be satisfied before the app can continue
executing its action block.

Defenses using Policy Enforcement. Many safety and security
concerns of smart home (or, IoT systems in general) often stem
from faulty apps or unintended interaction and interference
between apparently correctly functioning apps. It is a common
threat model for smart homes. To curb the undesired behavior
of apps, many solutions have been proposed, including a class
of defenses that rely on enforcing policies at runtime to ensure
safety and security of IoT systems [6]–[8], [10], [11]. A policy
is basically a user’s expectation about the behavior of an
IoT system. An example policy can be “The surveillance

camera can never be turned off.” For example, if an
app issues an action to turn off the surveillance camera
(i.e., camera.off() command), a defense solution should
block it as the action violates the camera policy. Thus, the
defense attempts to keep the system aligned with the user’s
expectations at runtime.

Furthermore, for policy enforcement, a defense solution
needs to deploy hooks (called policy information point (PIP))
at several locations in each app to collect additional infor-
mation at runtime, necessary to decide about policies using
a policy decision function (PDF). The defense also uses a
policy enforcement point (PEP) where the defense checks
if the contemplated actions will satisfy or violate the user-
provided policies.

Where to deploy their PEP, PIP and PDF varies among the
defense mechanisms. While some solutions [7], [8] deploy all
its PEP, PIP and PDF in the app’s source code, solutions like
[6], [10] keep PIP and PEP in the app but leverage a remote
offshore server to deploy their PDF. Therefore, they all require
an access to the apps’ source code for instrumentation.

Irrespective of how PEP, PIP, and PDF are deployed,
whenever the execution of an app reaches its PEP (e.g., its
action block), the instrumented code in PEP invokes its PDF
by supplying all the information collected from its PIP. Once
the PDF returns with a response, the PEP simply allows the
actions if the response is positive or blocks the actions if the
response is negative.

III. OVERVIEW OF VETIOT

In this section, we present an abstract model of our testing
platform and our problem definition.

A. Abstract Models

Programmable IoT Systems. At a high-level, a programmable
IoT system I can be viewed a labeled transition system (LTS)
defined as I = ⟨V,S,A,Λ,R, T ⟩. Here, V represents a finite
set of typed variables, which can further be decomposed into
two mutually exclusive sets Venv and Vdev . Venv refers to a set
of environment variables (e.g., temperatures) and Vdev denotes
a set consisting of the internal state variables of each device
deployed in this system (e.g., the state of a bedroom light). S is
a non-empty finite set of system-states such that each s ∈ S is a
tuple ⟨d0, d1, . . . , d|V|⟩ where di is an assigned value to vi ∈ V
taken from vi’s finite domain Di. For example, a state s of an
IoT system composed of two devices – a front-porch light and
a smart lock – can be ⟨On, Locked⟩ at a given instant of time.
A in I refers to a finite set of all possible activities supported
by the underlying IoT platform. Technically, an IoT platform
provides a list of action_commands to change each v ∈ V . For
example, {Lock, Unlock} are two possible actions allowed
to change the status of a smart lock.

The rest of the components of I is relatively complex.
Whenever there is a change in the value of vi (e.g., from
dij to dik , where dij , dik ∈ Di), the device/sensor sends λi
(aka, a status_update message) to the backend. In fact,
there is a one-to-one mapping between vi and λi, and hence
Λ =

⋃n
i=0 λi. The change in vi can happen after (i) the device

executes an appropriate command ax ∈ A received from the
backend (e.g., the Unlock command), or (ii) a user physically
interacts with the device (e.g., the user unlocks the door with
a key).

R defines a set of all possible automation apps allowed by
the underlying platform and can be viewed as R ⊆ E×C×2A.
Here, E is a finite set of all possible methods to interact with I.
These interactions can be either through physical interactions
with the actual device(s) or using the platform’s UI. The former
method causes the device to send λi to the backend for the
change occurred in vi, while the latter method asks the backend
to send ax to the device which may change vi. Hence, E is
essentially the possible set of triggering events, defined as
E = A∪Λ (Recall that A and Λ are mutually exclusive. Some
platforms, e.g., OpenHAB, allow apps that can be triggered
right before executing an action from A). C is a finite set
of conditions/predicates such that each element c ∈ C is a
Boolean expression with logical and relational operators over
V . In other words, a condition dictates a specific situation
under which the app in question can be executed. For any
e ∈ E , c ∈ C and α ∈ 2A, if an app ⟨e, c, α⟩ ∈ R, then
it signifies that after observing a triggering event e under a
situation where c evaluates to true, the backend will execute
the actions listed in α.

T is another relation and defined as T ⊆ S × E ×S. This
signifies how the system I transitions from one state to another
upon receiving a triggering event from a device. We consider
T to be left-total and I to be a deterministic LTS.

Target Defense Solutions (TDS). In this paper, our target
defense solutions are those that aspire to ensure the safety and
security of an IoT system by enforcing policies at runtime
[6]–[8]. A target defense system (TDS) T is defined as T =
⟨Ψ,∆,ℵ⟩. Here, Ψ is a finite set of policy statements (say,
ψ1, . . . , ψn), ∆ dictates the logic behind its policy enforcement
(i.e., PIP, PEP, and PDF), and ℵ is a special function to embed
PEP, PIP and PDF in each app before installing it to I.

Assume for each app r ∈ R, ξ(r) denotes the syntactical
representation of r written in the language supported by the
platform and L(r) denotes the semantics of r defined by the
language’s type system and the supported logical formula.
Now we can defined ℵ, which is in theory, ℵ : R 7→ R.
In other words, for each r ∈ R, there exists r′ ∈ R such that
both r and r′ are semantically the same (i.e., L(r) ≡ L(r′))
but syntactically different (i.e., ξ(r) ̸= ξ(r′)). The syntactical
difference between r and r′ is merely due to incorporating PIP,
PEP, and PDF inside r′.

The target system is often equipped with its own domain
specific language that the user utilizes to write each policy.
Internally, each policy ψj is first converted to a logical for-
mula (preferably, quantifier-free first-order logic (QF-FOL) or
similar). In most cases, the collection of policies Ψ is treated as
a logical conjunctive formula over all ψjs (i.e., Ψ ≡

∧n
j=0 ψj).

The policy decision logic ∆ expresses the underlying
mechanism to enforce Ψ at runtime. This mechanism varies
with each TDS. For example, given Ψ, ∆ExPAT used by ExPAT
[7] influences T to include ⟨si, λ, sj⟩ only if sj |= Ψ.
Informally, ∆ExPAT will allow a contemplated action a ∈ A

in si only if the status update λ that will be resulted after
executing a will take the system to sj , which satisfies Ψ (i.e.,
s2 |= Ψ, aka, safe). ∆IoTGuard used by IoTGuard [6] logically
achieves the same outcome as ∆ExPAT. On the contrary, given
Ψ, ∆PatrIoT of PatrIoT [8] allows a ∈ A in si only if si |= Ψ
and thus includes ⟨si, a, sj⟩ ∈ T . Informally, ∆PatrIoT allows
a only if the current state si satisfies all policies relevant to a.

Testbeds: A testbed is defined as Ω = ⟨I,T⟩, where I and T
are defined as above. For example, when VETIOT instantiates
a testbed for ExPAT, the test-bed is notified as ΩExPAT =
⟨IExPAT,TExPAT⟩. Similarly, for PatrIoT and IoTGuard, VE-
TIOT can instantiate ΩPatrIoT = ⟨IPatrIoT,TPatrIoT⟩ and
ΩIoTGuard = ⟨IIoTGuard,TPatrIoT⟩, respectively.

Note it is possible that the testbeds can have the same
I (i.e., IExPAT = IPatrIoT = IIoTGuard), but their Ts must be
different. Finally, when no target defense solution is selected,
the testbed Ωυ = ⟨I,∅⟩ is considered as a vanilla testbed,
where no instrumentation on apps and no policy enforcement
at runtime are performed.

Testcases: Given a testbed Ω (an instantiation for a I and T),
a testcase (aka, test scenario) is defined as Γ = ⟨Ω, ζ⟩, where
ζ is a sequence of triggering events (recall, E).

B. Problem Definition

Consider a testcase Γ = ⟨Ωx, ζ⟩, where Ωx be a testbed
instantiated for a Ix and an actual Tx and ζ be ⟨e1, e2, . . . , en⟩
with n > 0. Assume I begins at s0. After pushing each ej
(where, 1 ≤ j ≤ n) to Ωx, Ix transitions through states sj
and eventually ends up in sn. If any ej ∈ ζ triggers the
app that in turn invokes some unexpected actions, VETIOT
can detect if Tx were successful in preventing the unexpected
actions and mark Γ accordingly (i.e., success or failure).
success signifies that Tx prevented the unexpected actions
whereas failure denotes Tx failed to do so.

Problem. Given a TDS (say, P), can VETIOT evaluate its
efficacy? We designed VETIOT to evaluate the TDS using three
testing approaches:

• Fidelity testing: VETIOT checks if it can reproduce the
evaluation result reported in the TDS’s paper/repository.
Formally, VETIOT instantiates ΩP using the same IP and
TP as described in P ’s paper and tests the TDS against a
series of testcases Γ1,Γ2, . . ., where each Γi = ⟨ΩP , ζi⟩
and ζi be the same event sequence used in the paper.
• Stress testing: VETIOT measures the TDS’s efficacy

against new testcases (not tested in the original paper).
Formally, VETIOT utilizes the previously instantiated ΩP

and tests against a series of testcases Γ1,Γ2, . . ., where
each Γi = ⟨ΩP , ζi⟩ and ζi be a randomly generated event
sequence.

• Differential testing: VETIOT assesses how the given TDS
(P) fares against other TDSs (say, Q). Formally, VETIOT
first instantiates two almost identical testbeds ΩP and ΩQ

where IP = IQ and ΨP = ΨQ and then tests both P
and Q in their respective testbed using the same series
of randomly generated event sequences. Finally, VETIOT
reports the efficacy of P compared to Q.

DeviceDeviceDevice RuleRuleApp PolicyPolicyPolicy
Target

Defense

Virtual Testbed
Programmable IoT Platform

VetIoT

Testbed
Generator

Event Seq.
Generator

Event
Simulator Comparator

Reports ConfigConfig

Testbed
info about

devices, apps, policies
1

2

3

4
5

seq request
6

system-states
s0 and sn

events (in-order)
e1, e2, ..., en

Ei = (e1, ...,en)

Fig. 1: VETIOT’s architecture and workflow

IV. DESIGN OF VETIOT

We will describe a high-level workflow of VETIOT fol-
lowed by the inner workings of its different components..

A. Workflow

Figure 1 presents the architecture of VETIOT. VETIOT
consists of 4 modules: Testbed Generator, Event Sequence
Generator, Event Simulator, and Comparator. All four modules
of the VETIOT work in concert to create a desired testbed and
conduct experiments for evaluating an IoT defense solution.

Given a testbed configuration file provided by the user
(aka, the evaluator), the testbed generator instantiates a virtual
testbed – consisting of IoT devices – in a programmable
IoT platform (e.g., OpenHAB) and then installs the specified
automation apps. For the vanilla testbed Ωυ , that is all required.
However, to prepare a testbed ΩT for a target defense solution
(T), the testbed generator deploys the supplied policies in
appropriate format and the solution itself. A testbed is instanti-
ated automatically by invoking (external) APIs of the platform
(1). Our generator can create not only an arbitrary testbed but
also a customized testbed based on the supplied configuration.
While the former mode offers versatility, the latter enables a
controlled vetting environment essential for reproducibility and
comparative analysis.

After that, the event simulator takes over the control and
drives the execution of each testcase. Upon the request for
the next testcase (2), the event sequence generator supplies
a sequence of events (Ei = ⟨e1, . . . , en⟩) composing the
testcase Γi (3).4 What an event will be depends on the devices
installed in the testbed. For example, TV = ON is a possible
event for TV, indicating TV has been turned ON; similarly,
MotionSensor = ON is possible event for the MotionSensor
device, indicating the motion sensor has detected motion. Now
whether the supplied sequence of events is randomly generated
or selected for a predefined set depends on the provided
configuration. The former is used for stress testing each TDS,
and the latter is used for differential testing. Then the event
simulator pushes each event ej sequentially to the platform
using the platform’s external API (4).

4Hereafter,E and ζ are used interchangeably to denote a sequence of events.

s0 sns0 sn

Apps Policies TDS

s0 sns0 sn

Comp.

baseline=sn

s'=sn
ReportsE

ve
nt

s:
 E

=
<
e 1

,..
.,e
n> 1

2

Testbed

Testbed

Fig. 2: Testing a target defense solution (TDS) using VETIOT

Upon processing each event ej , the testbed logically
changes from the system-state sj−1 to sj . Note that sj−1

and sj are not necessarily unique. After a short delay, the
comparator collects the testbed’s initial s0 and final sn system-
states (5) and compares them to generate a report (6). This
report indicates whether the T was successful in preventing
unexpected actions in case of an event causing any policy
violation. VETIOT additionally provides a debug mode. If it
is enabled, a trace of how the system-state is changing after
each event is included in the report. Before the event simulator
repeats the process for the next testcase from 2 , VETIOT
automatically resets the testbed to its initial. The testing cycle
will terminate once there is no more testcases or the time
budget expires.

B. Automated Comparator

The goal of designing VETIOT is to evaluate dynamic
policy enforcing smart home defenses automatically. To per-
form automated testing, VETIOT easily replaces most of the
manual steps of the traditional evaluation: setting up testbed,
generating testcases, and running testcases. But automating
the manual inspection of test outcome is challenging, because
neither the platform nor a TDS itself provides any output
signal to indicate the success/failure of the TDS in preventing
unexpected actions. One can argue to export the internal result
of policy violation from inside the platform or the TDS, which
we want to avoid as it will require us to modify either the
platform or the TDS, limiting VETIOT’s portability. With
these constraints, there exists no unequivocal way to externally
measure the efficacy of the TDS.

To overcome this challenge, we adopted a heuristic ap-
proach to externally measure the efficacy of a TDS (see
Figure 2). Technically, we run each testcase twice: once in
the vanilla testbed Ωυ (path 1) and once in the TDS’s testbed
ΩT (path 2). Recall that both Ωυ and ΩT both have the same
set of devices and apps, but only ΩT contains the policies and
the solution code T. The final system-state sn of Ωυ serves
as the baseline, which describes what the final system-state
would be without the defense solution T. The baseline will
be compared against the final system-state sn of ΩT (i.e., s′).

After collecting both baseline and s′, VETIOT uses the
comparator (see Algorithm 1) which operates as follows: for
each device i, it checks if the observed state of the device
(di) in baseline is different from that in s′. Any discrepancy
indicates that some actions were allowed in the vanilla testbed
Ωυ but later blocked in the T’s testbed ΩT, indicating the
possibility of T becoming successful in preventing unexpected
actions. The comparator next checks if both s0 and s′ have

Algorithm 1 Comparator

Require: Initial system-state s0 = ⟨d1, d2,dm⟩,
baseline = ⟨d1, d2,dm⟩, s′ = ⟨d1, d2,dm⟩, assum-
ing there exists m devices

1: policyViolation ← false
2: indeterminate ← false
3: for i← 1 to m do
4: if baseline[di] ̸= s′[di] then
5: /* Defense might work */
6: if s ′[di] = s0 [di] then
7: policyViolation ← true /* Defense

worked */
8: else
9: indeterminate ← true /* Unsure */

10: end if
11: end if
12: end for
13: if indeterminate = true then
14: Report “the outcome is indeterminate”
15: else if policyViolation = true then
16: Report “the TDS prevented unexpected actions”.
17: else
18: Nothing to report
19: end if

recorded the same state of the device. The equality here means
that the initial state of the device did not change in the final
system-state, implying the success T in preventing unexpected
actions on this device. However, if di of s0 and di of s′ are
unequal, then the comparator cannot be conclusive in deciding
about the success of T. Therefore, the comparator marks them
as “indeterminate”.

To help an evaluator debug such indeterminate cases,
VETIOT offers a debug mode, which is slow but generates
a detail report to provide fine-grained insights of the testbed
for the testcase in question. When the debug mode is enabled,
the comparator collects the system-state of the testbed after
pushing each event of the sequence, unlike the normal mode
where it waits for the entire sequence to finish running. After
running VETIOT in the debug mode for the testcase twice:
once in Ωυ and later in ΩT, the comparator generates a trace
file containing the pairwise differences between the system-
state of Ωυ and that of ΩT at every step. The evaluator can
utilize this detail report to manually inspect such cases.

V. IMPLEMENTATIONS

We implemented a fully functional prototype of VE-
TIOT using Python 3.9. As a the programmable IoT plat-
form, VETIOT utilizes the OpenHAB platform [17] (precisely,
OpenHAB-3.2.0 stable runtime edition). During an evaluation
of a target defense solution (TDS), different components of
VETIOT communicates with the platform using OpenHAB’s
REST API. VETIOT accepts testbed configurations in toml
format. It uses json format for internal usage and reporting
results. The event simulator uses Python’s random module
for randomly generating event sequences. VETIOT introduces
some delays at several points during an evaluation. For ex-
ample, the mechanism to install apps in OpenHAB does not

instantaneously load freshly installed apps. Therefore, VETIOT
waits for 10 seconds (resp., 15 seconds) when it installs
vanilla apps (resp., instrumented apps) in the testbed. To
ensure that each injected event is processed by the platform
and that the triggered apps have enough time to finish their
execution, VETIOT waits for 5 seconds. All the delay times
were selected based on our experiments with the platform
where we gradually increased the delay times until we found
a suitable duration when VETIOT could finish fidelity testing
without any incomplete execution of the apps.

VI. EVALUATION

We now demonstrate how our prototype implementation of
VETIOT empirically assessed several IoT defenses that enforce
policies at runtime. For our evaluation, we selected three test-
subjects: ExPAT [7], PatrIoT [8], and IoTGuard [6]. While
they are highly popular in the community and closely related in
terms of their policy enforcement mechanism, none of them
was empirically compared with each other. Another goal of
this evaluation is to show how the developers of those defense
solutions could have utilized VETIOT had it existed back then.

The research question we set out to answer is: can VETIOT
automatically evaluate each of three IoT defenses and compare
them empirically? To answer this question, we conducted the
evaluation using three testing approaches – fidelity, stress and
differential – discussed in § III-B. As our evaluation metrics,
we used two counts: “violation” and “indeterminate”.
While the former denotes the number of testcases for which
VETIOT detects that the defense solution managed to prevent
unexpected actions, the latter denotes the number of testcases
for which VETIOT is unsure whether the defense worked
or not. The remaining testcases are all considered as “no
violation”. We also measured the performance overhead
incurred by VETIOT.

A. Setup

In our evaluation, we used the open-source implemen-
tations of ExPAT and PatrIoT from their respective public
repository (i.e., github.com). Despite IoTGuard’s popularity,
unfortunately, a full implementation of IoTGuard is not pub-
licly available. Therefore, we re-implemented IoTGuard by
closely following [6]. Although IoTGuard was originally im-
plemented for SmartThings, we chose the OpenHAB platform
to implement IoTGuard as both ExPAT and PatrIoT were
implemented for OpenHAB. While both ExPAT and PatrIoT
has all their policy enforcement modules (i.e., PIP, PEP, PDF)
in the platform, IoTGuard employs a remote offshore server
to host its PDF and exports data from the platform to the
server for policy decision. Therefore, our in-house IoTGuard
implementation spawns a separate server to host its PDF and
intermediate data necessary for making policy decision (for
details, see Appendix A).

While VETIOT can utilize a testbed with physical devices
for experiments, we chose virtual devices for our evaluations,
because they were used by our test-subjects in their original
evaluation. For fidelity and stress testing, we replicated the
same virtual smart home and policies as used in their respective
paper (recall ΩExPAT,ΩPatrIoT,ΩIoTGuard in § III-A). However,

for differential testing, we used an identical smart home (I) and
the same set of policies (Ψ) for all test-subjects. These I and
Ψ were chosen from ExPAT, the lowest common denominator.

The event sequence (ζ) used in a testcase depends on the
testing approach. For fidelity testing, we hand-crafted each
event sequence for VETIOT according to the testcases used
in the test-subject’s original evaluation. For stress testing,
VETIOT randomly generates a sequence of events for each
testcase. The set of testcases used in stress testing is unique
for each test-subject. On the contrary, for differential testing,
all test-subjects were tested against the same testcases. For
simplicity, the set of testcases generated for ExPAT’s stress
testing is reused in the differential testing of all test-subjects.

We configured VETIOT to create 6 test-suites consisting
of 5, 10, 15, 25, 35, and 50 different testcases. Each testcase
can have at most 15 events, while the actual number of events
was varied between 1 and 15. These event sequences were
generated based on the testbed VETIOT was evaluating. All
our experiments were conducted in a server machine equipped
with 40 core 2.4 GHz Intel Xeon(R) Platinum 8260 CPU and
80GB RAM.

B. Results

Fidelity testing. With this experiment, we wanted to assess
the correctness of our VETIOT prototype by checking whether
VETIOT could faithfully reproduce the evaluation results of
each test-subject reported in [6]–[8]. These works conducted
their evaluations manually where the authors interacted with
the virtual devices using the platform UI to create a trig-
gering event and inspected the outcome of each testcase.
VETIOT replaced all the manual interaction and inspection
with automated approaches while keeping the same smart
home and policies as the prior work. In this evaluation, we
observed that VETIOT tested ExPAT and PatrIoT with all the
testcases (8 and 5, respectively) and were able to reproduce
all results mentioned in [7], [8]. On the other hand, VETIOT
reproduced the results of 4 out of 6 testcases for IoTGuard.
Unfortunately, we could not even reproduce the results of the
remaining 2 testcases manually using the platform’s UI. After
close inspection, we found that those testcases could not be
reproduced solely based on the description provided in [6].

Stress testing. Recall that in stress testing, we wanted to
evaluate the efficacy of a given test-subject using VETIOT.
For each subject, we replicated the testbed as mentioned in
their paper but tested the subject against randomly generated
6 test-suites. Technically, we randomly generated a sequence of
events for each testcase required for our test-suites (mentioned
earlier). In other words, each subject was tested in a different
testbed against different sets of test-suites.

Figure 3a shows the outcome of stress testing ExPAT
against 6 test-suites. For example, we observed that ExPAT was
able to prevent unexpected actions in 15 out of 50 testcases of
test-suite 6 (testcases with policy violation). 33 testcases did
not cause any policy violation. In the remaining 2 testcases,
VETIOT noticed some changes in one or more devices but
was unsure whether ExPAT was successful or not, and thus
VETIOT reported them as indeterminate.

0.0 10.0 20.0 30.0 40.0 50.0 60.0
Test case count

1

2

3

4

5

6

Te
st

S
ui

te
N

um
be

r

5

10

15

25

35

50

4

5

8

15

15

1

1

1

2

4

6

10

16

19

33

Test cases W/ Policy Violation Test cases W/ Indeterminate Scenario Test cases W/ no Policy Violation

0.0 10.0 20.0 30.0 40.0 50.0 60.0
Test case count

1

2

3

4

5

6
Te

st
S

ui
te

N
um

be
r

5

10

15

25

35

50

4

5

8

15

15

1

1

1

2

4

6

10

16

19

33

(a) ExPAT

0.0 10.0 20.0 30.0 40.0 50.0 60.0
Test case count

1

2

3

4

5

6

Te
st

S
ui

te
N

um
be

r

5

10

15

25

35

50

2

4

2

4

5

10

3

6

13

21

30

40

(b) PatrIoT

0.0 10.0 20.0 30.0 40.0 50.0 60.0
Test case count

1

2

3

4

5

6

Te
st

S
ui

te
N

um
be

r

5

10

15

25

35

50

1

5

5

15

17

22

2

3

4

4

7

19

2

2

6

6

11

9

(c) IoTGuard
Fig. 3: Result of Stress Testing IoT defenses

0.0 10.0 20.0 30.0 40.0 50.0 60.0
Test case count

1

2

3

4

5

6

Te
st

S
ui

te
N

um
be

r

5 (actual)

10 (actual)

15 (actual)

25 (actual)

35 (actual)

50 (actual)

1

4

4

9

13

17

4

6

11

16

22

33

5 (expat)

10 (expat)

15 (expat)

25 (expat)

35 (expat)

50 (expat)

4

5

8

15

15

1

1

1

2

4

6

10

16

19

33

5 (patriot)

10 (patriot)

15 (patriot)

25 (patriot)

35 (patriot)

50 (patriot)

1

4

5

8

15

15

1

1

4

6

10

16

20

34

5 (iotguard)

10 (iotguard)

15 (iotguard)

25 (iotguard)

35 (iotguard)

50 (iotguard)

1

3

4

8

12

12

4

7

11

17

23

38

Test cases W/ Policy Violation
Test cases W/ Indeterminate Scenario
Test cases W/ no Policy Violation

Fig. 4: Result of Differential Testing with VETIOT

Figure 3b shows the results of stress testing PatrIoT
against 6 test-suites generated for PatrIoT. We observed that
PatrIoT has no indeterminate cases, which can be attributed
to the policy language of PatrIoT that allows fine-grained
policies. We will explain this benefit with a case study later.

Figure 3c shows the results of stress testing IoTGuard.
We observed a higher number of policy violation and indeter-
minate cases, which is due to the testbed of IoTGuard. The
testbed has many apps that create a loop in multiple testcases
(e.g., app1’s action triggers app2, then app2’s action triggers
app1). In such cases, VETIOT cannot correctly generate a
baseline that is required by the comparator algorithm.

Differential testing. In this experiment, we wanted to assess
VETIOT’s capability to empirically compare the test-subjects.
VETIOT used an identical testbed along with the same policies
(written in their respective languages) and the same suites
of testcases to evaluate each subject. We compared the test
outcomes of each subject with that of others. The rational
was to measure how a subject fared compared to others in
preventing unexpected actions. Figure 4 shows the comparison
of differential testing, where actual denotes the ground truth
(derived manually). We observed that ExPAT and PatrIoT
behaved similarly in most cases. IoTGuard detected relatively
lower number of policy violations, which we attribute to
IoTGuard’s policy enforcement mechanism. This reason will
be further explained in a case study later. In suites 3 and 5,
both ExPAT and PatrIoT erroneously labeled more testcases
as policy violations than the actual number. After close in-

0.0 10.0 20.0 30.0 40.0 50.0 60.0
Test case count

540.0

560.0

580.0

600.0

620.0

640.0

660.0

680.0

700.0

720.0

Pe
ak

m
em

or
y

us
ag

e
du

rin
g

si
m

ul
at

io
n(

kB
)

Stress/Differential Testing ExPAT
Stress Testing PatrIoT

Stress Testing IoTGuard
Differential Testing PatrIoT

Differential Testing IoTGuard

0.0 10.0 20.0 30.0 40.0 50.0 60.0
Test case count

0.0

0.5

1.0

1.5

2.0

2.5

R
eq

ui
re

d
to

ta
lt

im
e

du
rin

g
si

m
ul

at
io

n(
ho

ur
s)

(a) Required time

0.0 10.0 20.0 30.0 40.0 50.0 60.0
Test case count

540.0

560.0

580.0

600.0

620.0

640.0

660.0

680.0

700.0

720.0

Pe
ak

m
em

or
y

us
ag

e
du

rin
g

si
m

ul
at

io
n(

kB
)

(b) Required peak memory

Fig. 5: Performance overhead incurred by VETIOT

spection, we found that testcases causing the IoT system to
become unsafe due to events simulating physical interactions
were labeled as policy violations by ExPAT and PatrIoT.

Performance overhead. To measure approximate performance
overhead incurred by VETIOT, we recorded its peak memory
usage and the total required time when running each test-suite.
Figures 5a and 5b show that VETIOT required around 2.2 hrs
maximum (no more than 6 seconds as CPU-time + delays)
and less than 800kB recorded its peak memory usage. Also,
the performance overhead increases linearly with the increase
in the number of testcases.

C. Case Studies

Type1: Inconsistency between the IoTGuard’s policy server
and the platform. Differential testing revealed that IoTGuard
failed to prevent policy-violating actions in multiple testcases,
whereas ExPAT and PatrIoT prevented them. It is because
the IoTGuard’s policy server and the platform sometimes go
out-of-sync, resulting in erroneous policy enforcement. Note
that this issue is specific to IoTGuard’s design.

Consider a testcase from test-suite 2 of differential testing.
For this testcase, IoTGuard failed to prevent WaterValve
from turning OFF when FireSprinkler was spraying wa-
ter due to the smoke detected by SmokeDetector, even
with this policy “PI1: WaterLeakDetector can turn off
WaterValve only if SmokeDetector is OFF ” in place.
Upon investigation, we observed that when the platform re-
ceived the event SmokeDetector=ON, no app was triggered
and hence no information about this event was exported

to the IoTGuard’s policy server. Recall that IoTGuard ex-
ports data to the policy server right before an app’s ac-
tion block (i.e., PEP). Later when the platform received
WaterLeakDetector=ON, an app was triggered that contem-
plated an action WaterValve=OFF. The PEP of this app ex-
ported all information (i.e., the event WaterLeakDetector=ON
and the contemplated action WaterValve=OFF). Since the
policy server has no information about SmokeDetector=ON,
the server erroneously decided that the contemplated action
would not violate PI1 and thus allowed the action, causing
WaterValve to be OFF at a wrong time.

Type2: Efficacy depends on the policy selection process.
How a defense solution selects which policies to evaluate dur-
ing its policy enforcement impacts its efficacy. While PatrIoT
and IoTGuard select only those polices that are relevant to the
contemplated actions to evaluate, ExPAT always evaluates all
policies, which sometimes results in erroneous enforcement.5

Consider a part of a long testcase from test-suite 1 of differ-
ential testing, where the platform receives the event TV=ON fol-
lowed by AC=ON and SleepMode=ON in that order. The TV=ON
event triggered an app that opened LivingRoomWindow.
Then when AC=ON (say, due to a physical action) was re-
ceived, the system reached an unsafe state because it violated
a policy “PI8: LivingRoomWindow can be opened only
if both the heater and AC are off.” None of the de-
fense solutions prevented it because it was due to a user
interaction in the physical world.

Later when the SleepMode=ON event triggers an app that
contemplated to turn off TV, ExPAT denied the action as it
evaluated all policies, including PI8 that turned out to be
false. On the contrary, PatrIoT and IoTGuard will allow
TV.off() because they did not evaluate PI8 as this policy
was not related to the contemplated action.

Type3: Erroneous policy decision function. IoTGuard’s
policy decision function (PDF) employs a reachability analysis
on the graph of events and actions that the policy server
internally builds based on the data exported by the platform.
During stress testing, IoTGuard could not prevent unexpected
actions in some testcases due to an erroneous reachability
analysis. Instead of explaining one of those testcases, we will
use a simple scenario for the sake of brevity.

Consider a testcase where the event TV=ON is followed
by the event LivingRoomTemp=90◦. The first event triggered
an app that opened LivingRoomWindow. Later the second
event triggered an app that contemplated AC.on() because
LivingRoomTemp>70◦. Now as per the policy “PI8:
LivingRoomWindow can be opened only if both the
heater and AC are off”, a defense mechanism should not
turn on AC because LivingRoomWindow=OPEN and PI8 is
internally represented as “¬(LivingRoomWindow=OPEN) ∨
((Heater=OFF) ∧ (AC=OFF))”.

5Recall that the collection of policies (Ψ) is a conjunction of all policy
statements (ψj) (i.e., Ψ ≡

∧n
j=0 ψj). Therefore, a violation of any policy

(e.g., ψj = false) will evaluate Ψ to false. While the policy selection of
PatrIoT and IoTGuard may appear counter intuitive because they do not
evaluate the non-relevant policies, the policy language and its semantics of
PatrIoT and IoTGuard allow the non-relevant policies automatically evaluate
to true, making the evaluation of Ψ only depends on the relevant ones.

Unfortunately, IoTGuard could not block AC.on() be-
cause of its reachability analysis. Since there was no direct in-
teraction from the first app to the second app (i.e., one app’s ac-
tion does not trigger the second app), IoTGuard’s policy server
did not have any path from the LivingRoomWindow=OPEN
node to the AC=ON node. As a result, IoTGuard erroneously
decided no violation of PI8 and allowed AC.on().

VII. DISCUSSIONS

VETIOT depends on the baseline generation mechanism
to measure the impact of the defense solution. However, a
baseline cannot be generated with confidence when two or
more apps create an execution loop (e.g., two apps’ actions
trigger each other, creating a loop).

Our in-house implementation of IoTGuard faithfully fol-
lows the description [6] as closely as possible, and we took
some rational design decisions whenever the description was
vague. Our evaluation results may differ if the original im-
plementation of IoTGuard is used, since the implementation
could include optimizations that were not mentioned in [6].

The defense solutions can prevent unexpected actions only
when issued by apps. As a result, user interactions with the
physical devices or on the platform UI can potentially move the
system into an unsafe state, later causing the defense solutions
enforce policy incorrectly. Our randomly generated testcases
often include such events that push the system into an unsafe
state, resulting in some indeterminate outcomes.

VIII. RELATED WORK

The rapid growth of IoT innovations has resulted in multi-
ple avenues of smart-home security research. Examples include
IoT security relying on access control mechanism [19]–[24],
static policy enforcement [2], [9], [25], [26] and dynamic
policy enforcement [4], [6]–[8], [10], [11]. On the contrary,
VETIOT provides an evaluation platform for defense solutions
enforcing dynamic policies at runtime.

Testbeds are key component for any kind of research
experiment. Creating testbeds to conduct large scale IoT
experiments has become another research problem. Much of
the prior research in this direction focuses on creating large
scale physical IoT testbeds. OpenTestBed [12], LinkLab 2.0
[13], Fit IoT Lab [27], 1KT [28] are physical IoT testbed
that can be accessed via web portal or ssh to conduct IoT
experiments. Gotham Testbed [14] uses emulation to create
IoT devices. These testbeds are used for IoT data generation
and IoT network security experiments. On the other hand,
our target is dynamic policy enforcement based defenses that
aim to curb unexpected actions issued by automation apps,
not devices. Therefore, physical testbeds and emulated devices
are not essential. Hence, VETIOT utilizes an existing IoT
platform equipped with virtual devices and communicates with
the platform using programming APIs.

Uniform evaluation of IoT security mechanisms has been
proposed for other types of IoT systems. BenchIoT [15]
proposed a test suite and evaluation framework for evaluating
defense mechanisms created for the micro-controllers used in
IoT devices. SmartAttack [29] proposed a uniform adversarial

attack model framework to test security solutions that analyze
network trace of IoT devices. Similarly, VETIOT provides an
evaluation framework for policy enforcing IoT defenses.

Prior research on generating IoT events has been proposed
for security evaluation and simulation purposes. Helion [30]
proposes an event generation framework based on patterns
found in IoT applications. Helion uses the event generation
framework to define security policy. Alotaibi et al. [31] pro-
posed a Smart Home Simulator, which can generate events to
simulate human activity. But it requires manual UI interactions.

Event generation based evaluation approaches have been
proposed for systems. Android Monkey [32] is an UI event
generator built to test Android applications. Approaches like
IoTFuzzer [33], DIANE [34] generate app-specific events to
test smartphone companion apps for IoT.

IX. CONCLUSION

We proposed VETIOT, a highly automated uniform eval-
uation platform for vetting IoT defense solutions that dy-
namically enforce security and safety policies at runtime to
prevent unexpected actions issued by automation apps. VE-
TIOT replaces much of the traditional experimentation process
with an automated counterpart, including, testbed instantia-
tion, testcase generation and execution, output collection and
report generation. For evaluation, we demonstrated VETIOT
on three existing IoT defense solutions: ExPAT, PatrIoT,
and IoTGuard. Our results demonstrate that VETIOT can
be effective in assessing IoT defense solutions. Researchers
can leverage it to fine-tune their new defense solutions and
empirically compare with existing solutions.

ACKNOWLEDGMENT

This research was supported by the National Science
Foundation under grants CNS-2006556 and CNS-2007512.

REFERENCES

[1] E. Fernandes, J. Jung, and A. Prakash, “Security analysis of emerging
smart home applications,” in IEEE S&P, 2016.

[2] Q. Wang, P. Datta, W. Yang, S. Liu, A. Bates, and C. A. Gunter,
“Charting the attack surface of trigger-action iot platforms,” in ACM
CCS, 2019.

[3] Y. J. Jia, Q. A. Chen, S. Wang, A. Rahmati, E. Fernandes, Z. M. Mao,
and A. Prakash, “ContexIoT: Towards Providing Contextual Integrity
to Appified IoT Platforms,” in NDSS, 2017.

[4] Q. Wang, W. U. Hassan, A. Bates, and C. Gunter, “Fear and logging
in the internet of things,” in ISOC NDSS, 2018.

[5] H. Landi, “82% of healthcare organizations have ex-
perienced an iot-focused cyberattack, survey finds,”
https://www.fiercehealthcare.com/tech/82-healthcare-organizations-
have-experienced-iot-focused-cyber-attack-survey-finds.

[6] Z. B. Celik, G. Tan, and P. D. McDaniel, “Iotguard: Dynamic enforce-
ment of security and safety policy in commodity iot.” in NDSS, 2019.

[7] M. Yahyazadeh, P. Podder, E. Hoque, and O. Chowdhury, “Expat:
Expectation-based policy analysis and enforcement for appified smart-
home platforms,” in ACM SACMAT, 2019.

[8] M. Yahyazadeh, S. R. Hussain, E. Hoque, and O. Chowdhury, “Patriot:
Policy assisted resilient programmable iot system,” in RV, 2020.

[9] H. Chi, Q. Zeng, X. Du, and J. Yu, “Cross-app interference threats in
smart homes: Categorization, detection and handling,” in DSN, 2020.

[10] W. Ding, H. Hu, and L. Cheng, “Iotsafe: Enforcing safety and security
policy with real iot physical interaction discovery,” in NDSS, 2021.

[11] M. H. Mazhar, L. Li, E. Hoque, and O. Chowdhury, “Maverick: An
app-independent and platform-agnostic approach to enforce policies in
iot systems at runtime,” in ACM WiSec, 2023.

[12] J. Munoz, F. Rincon, T. Chang, X. Vilajosana, B. Vermeulen, T. Wal-
carius, W. van de Meerssche, and T. Watteyne, “OpenTestBed: Poor
Man’s IoT Testbed,” in IEEE INFOCOM - CNERT, 2019.

[13] W. Dong, B. Li, H. Li, H. Wu, K. Gong, W. Zhang, and Y. Gao, “Lin-
kLab 2.0: A multi-tenant programmable IoT testbed for experimentation
with Edge-Cloud integration,” in USENIX NSDI, 2023.

[14] X. Sáez-de Cámara, J. L. Flores, C. Arellano, A. Urbieta, and U. Zu-
rutuza, “Gotham testbed: A reproducible iot testbed for security exper-
iments and dataset generation,” IEEE TDSC, 2023.

[15] N. S. Almakhdhub, A. A. Clements, M. Payer, and S. Bagchi, “Ben-
chiot: A security benchmark for the internet of things,” in IEEE/IFIP
DSN, 2019.

[16] “Iotbench-test-suite,” https://github.com/IoTBench/IoTBench-test-suite.
[17] OpenHAB, https://www.openhab.org.
[18] “Smartthings,” https://www.smartthings.com/.
[19] A. Rahmati, E. Fernandes, K. Eykholt, and A. Prakash, “Tyche: A risk-

based permission model for smart homes,” in IEEE SecDev, 2018.
[20] S. Lee, J. Choi, J. Kim, B. Cho, S. Lee, H. Kim, and J. Kim,

“Fact: Functionality-centric access control system for iot programming
frameworks,” in ACM SACMAT, 2017.

[21] Y. Tian, N. Zhang, Y.-H. Lin, X. Wang, B. Ur, X. Guo, and P. Tague,
“Smartauth: User-centered authorization for the internet of things,” in
USENIX Security, 2017.

[22] A. K. Sikder, L. Babun, Z. B. Celik, A. Acar, H. Aksu, P. McDaniel,
E. Kirda, and A. S. Uluagac, “Kratos: Multi-user multi-device-aware
access control system for the smart home,” in ACM WiSec, 2020.

[23] Y. Jia, B. Yuan, L. Xing, D. Zhao, Y. Zhang, X. Wang, Y. Liu, K. Zheng,
P. Crnjak, Y. Zhang, D. Zou, and H. Jin, “Who’s in control? on security
risks of disjointed iot device management channels,” in ACM CCS,
2021.

[24] G. Goyal, P. Liu, and S. Sural, “Securing smart home iot systems with
attribute-based access control,” in ACM SaT-CPS, 2022.

[25] Z. B. Celik, P. McDaniel, and G. Tan, “Soteria: Automated IoT safety
and security analysis,” in USENIX ATC, 2018.

[26] D. T. Nguyen, C. Song, Z. Qian, S. V. Krishnamurthy, E. J. Colbert,
and P. McDaniel, “Iotsan: fortifying the safety of iot systems,” in ACM
CoNEXT, 2018.

[27] C. Adjih, E. Baccelli, E. Fleury, G. Harter, N. Mitton, T. Noel,
R. Pissard-Gibollet, F. Saint-Marcel, G. Schreiner, J. Vandaele, and
T. Watteyne, “Fit iot-lab: A large scale open experimental iot testbed,”
in IEEE WF-IoT, 2015.

[28] M. Banaszek, W. Dubiel, J. Łysiak, M. Dundefinedbski, M. Kisiel,
D. Łazarczyk, E. Głogowska, P. Gumienny, C. Siłuszyk, P. Ciołkosz,
A. Paszkowska, I. Rüb, M. Matraszek, S. Acedański, P. Horban,
and K. Iwanicki, “1kt: A low-cost 1000-node low-power wireless iot
testbed,” in ACM MSWiM, 2021.

[29] K. Yu and D. Chen, “Smartattack: Open-source attack models for
enabling security research in smart homes,” in IGSC, 2020.

[30] S. Manandhar, K. Moran, K. Kafle, R. Tang, D. Poshyvanyk, and
A. Nadkarni, “Towards a natural perspective of smart homes for
practical security and safety analyses,” in IEEE S&P, 2020.

[31] A. Alotaibi and C. Perera, “Smart home human activity simulation tool
for openhab-based research,” Cardiff University, Tech. Rep., 2019.

[32] “Android monkey,” https://developer.android.com/studio/test/other-
testing-tools/monkey.

[33] J. Chen, W. Diao, Q. Zhao, C. Zuo, Z. Lin, X. Wang, W. C. Lau, M. Sun,
R. Yang, and K. Zhang, “Iotfuzzer: Discovering memory corruptions in
iot through app-based fuzzing.” in NDSS, 2018.

[34] N. Redini, A. Continella, D. Das, G. De Pasquale, N. Spahn,
A. Machiry, A. Bianchi, C. Kruegel, and G. Vigna, “Diane: Identifying
fuzzing triggers in apps to generate under-constrained inputs for iot
devices,” in IEEE S&P, 2021.

https://www.openhab.org
https://www.smartthings.com/

After Sunset

Motion-ACTIVE Light-ON

(a)

After Sunset

Motion-ACTIVE Light-ON

Heater-ON

CrockPot-ON

(b)

Fig. A1: (a) A dynamic model of an IoT app and (b) the unified
dynamic model of interacting IoT apps

APPENDIX A. IOTGUARD RE-IMPLEMENTATION

IoTGuard [6] is a defense mechanism built to protect
IoT system from malicious IoT applications (hereafter, apps)
and unintended interactions among seemingly benign IoT
applications. To ensure safety and security, IoTGuard enforces
policies on IoT applications at runtime.

Policy enforcement mechanism of IoTGuard is built using
three modules: code instrumentor, data collector, and security
service. To the best of our knowledge, implementations of
data collector and security service are not publicly available.
IoTGuard’s code instrumentor was built for the SmartThings
platform. Since VETIOT is developed for OpenHAB, we
could not reuse the publicly available code instrumentor of
IoTGuard.6 Therefore, we had to re-implement all three
modules of IoTGuard for OpenHAB.

The purpose of the code instrumentor module of IoTGuard
is to instrument an IoT app with necessary hooks, which
guard each action to be taken by the app. At runtime, when
an instrumented app is triggered and starts executing, these
hooks enable IoTGuard’s data collector to collect necessary
data and invoke security service to verify safety and security
of taking the contemplated action. According to [6], when an
app is about to take multiple actions in the same context, the
code instrumentor must deploy one common hook for all such
actions. In our implementation of the code instrumentor, we
first parsed the given app for OpenHAB and inserted those
policy enforcing hooks before the action statement of the app.
Our instrumentor follows the design mentioned in [6].

IoTGuard’s data collector collects necessary information
(i.e., the occurred events and the contemplated actions) from
the instrumented IoT apps at runtime and stores this informa-
tion in a dynamic model consisting of states and transitions.
Each state represents an attribute of a device. Each transition
from one state to another state represents the condition under
which the state change has occurred. At a program level,
this dynamic model is essentially a mutable directed graph
where nodes represent states and edges denotes transitions. For
example, consider an IoT app named light-control: “when
motion-active after sunset, turn on light.” Upon
receiving data from the instrumented light-control app,
the data collector will create a dynamic model which has an
event node “motion=ACTIVE” and an action node “Light=ON”
along with an edge between them with the condition “after
sunset” (see Figure A1a).

If multiple applications interact with each other, the data

6https://github.com/Beerkay/SmartAppAnalysis

collector will create a unified dynamic model. Consider
this example. If the “Light=ON” event due to the action
from the light-control app triggers another app, say,
heat-on app: “Turn on the heater and crockpot when
light is on.”, the dynamic models of the light-control
app and the heat-on app will be merged to generate a unified
dynamic model (see Figure A1b). In our implementation,
we developed the data collector module using the Python’s
Networkx library and ensured this module has all the features
of the original design [6].

IoTGuard’s security service module reads safety and se-
curity policies, enforces those policies on the dynamic models
generated by the data collector, and conveys the result of policy
enforcement to the instrumented IoT apps. After receiving the
data (i.e., event, action) from an instrumented IoT app, the data
collector updates (or create) the dynamic model and invokes
security service to enforce policies on the latest dynamic
model.

IoTGuard [6] supports three types of policies: General
Policies, Application Specific Policies, and Trigger-Action
Specific Policies. General policies are enforced directly on the
dynamic model by applying graph-based algorithms (e.g., an
cycle detection algorithm in the graph). Application specific
policies are written in a specific policy language described in
[6]. We implemented a policy parser to read policies written in
the IoTGuard’s policy language. To enforce application spe-
cific policy, our implementation of security service followed
the description provided in [6].

Each application specific policy is essentially a logical
implication between a premise and a conclusion. A premise/-
conclusion is a logical expression consisting of one or more
atoms combined using logical connectives (e.g., ∧), where
each atom denotes a proposition on a device attribute (e.g.,
comparing a device attribute with a constant using a relational
operator). Recall that device attributes (e.g., Light=ON) are
represented as nodes in the dynamic model. To enforce an
application specific policy, the security service searches for a
path in the dynamic model – from the node that satisfies the
premise to a node that satisfies the conclusion. If there exists
such a path in the dynamic model and if it is a “restrict” policy,
the security service labels it as a policy violation. Then, the
security service removes the nodes that were recently added
by the data collector prior to this round of policy enforcement
and returns a “deny” response to the instrumented IoT app.

To enforce a trigger-action specific policy, we tagged each
physical device of the testbed as trusted and secure and
all virtual triggers (e.g., EmailSent, GoogleAssistantActivated)
as untrusted and insecure. When enforcing a trigger-
action specific policy, the security service searches the dynamic
model for a path from a node with the untrusted/insecure
tag to a node with the trusted/secure tag. If there exists such
a path, the security service denies the contemplated actions and
removes the recently added nodes from the model.

	Introduction
	Preliminaries
	Overview of VetIoT
	Abstract Models
	Problem Definition

	Design of VetIoT
	Workflow
	Automated Comparator

	Implementations
	Evaluation
	Setup
	Results
	Case Studies

	Discussions
	Related Work
	Conclusion
	References
	IoTGuard Re-Implementation

