
Evaluating Generalisation in
General Video Game Playing

Martin Balla
Queen Mary University of London

m.balla@qmul.ac.uk

Simon M. Lucas
Queen Mary University of London

simon.lucas@qmul.ac.uk

Diego Perez-Liebana
Queen Mary University of London

diego.perez@qmul.ac.uk

Abstract—The General Video Game Artificial Intelligence
(GVGAI) competition has been running for several years with
various tracks. This paper focuses on the challenge of the GVGAI
learning track in which 3 games are selected and 2 levels are
given for training, while 3 hidden levels are left for evaluation.
This setup poses a difficult challenge for current Reinforcement
Learning (RL) algorithms, as they typically require much more
data. This work investigates 3 versions of the Advantage Actor-
Critic (A2C) algorithm trained on a maximum of 2 levels from
the available 5 from the GVGAI framework and compares their
performance on all levels. The selected sub-set of games have
different characteristics, like stochasticity, reward distribution
and objectives. We found that stochasticity improves the gener-
alisation, but too much can cause the algorithms to fail to learn
the training levels. The quality of the training levels also matters,
different sets of training levels can boost generalisation over all
levels. In the GVGAI competition agents are scored based on
their win rates and then their scores achieved in the games. We
found that solely using the rewards provided by the game might
not encourage winning.

I. INTRODUCTION

Games are commonly used to benchmark Reinforcement
Learning (RL) algorithms, but in many cases training is
performed on a single level, which is also used for evaluation.
In this work, the General Video Game AI (GVGAI) framework
has been used as it provides a large number of games with at
least 5 levels for each one of them. The GVGAI Learning
competition has been running for a few years and received
several entries, but due to the difficulty of the games and the
requirement to generalise to new levels to perform well on the
evaluations, even the best agents do not perform better than
the random agent during evaluation. This paper investigates the
possibility of generalizing to new levels only using a maximum
of 2 levels for training.

In the majority of Deep Reinforcement Learning experi-
ments, the training domain is used to test the performance of
the algorithm. However, this approach does not give enough
information about the agent’s real capabilities. Often agents
just memorise scenarios, learning a sequence of actions, in-
stead of showing intelligent and adaptable behaviours. These
behaviours might not be obvious if there are no test levels,
as they might just overfit to the set of training levels. The
GVGAI framework provides multiple levels (which have the
same rules, but some variants on the map layout or sprite
types) for each game, so it provides a great testing opportunity

for RL agents. Due to the Video Game Description Language
(VGDL) used by GVGAI to build games, it is easy to create
new games and levels or even procedurally generate levels
during training [1]. Generalisation recently received more
attention for benchmarking RL agents with challenges like
Sonic Retro [2] and Obstacle Tower [3].

The main objective of this paper is to investigate to which
extent generalisation happens in Reinforcement Learning,
when the agent has a very limited number of levels for training.
We trained 3 different version of the A2C algorithm on 4
games on various training levels and compared them on all
available levels of that game. Some sets of training levels have
been evaluated in order to investigate if having training levels,
that are more representative of the different features of the
game can improve generalisation.

This paper introduces GVGAI in Section II, to then describe
the most relevant work around Deep Reinforcement Learning,
generalisation in reinforcement learning and how has this been
explored in GVGAI in Section III. Section IV describes the
methods used in this study. Section V outlines the experiments
performed and the results observed are detailed in Section VI.
Finally, Section VII concludes the paper with the main take-
aways and future work.

II. THE GENERAL VIDEO GAME AI FRAMEWORK

The General Video Game AI Framework (GVGAI) frame-
work is a Java benchmark, evolved from the original py-
vgdl implementation by Tom Schaul [4]. It is developed with
the objective of centering research in general video game
playing. Rather than focusing on a single game, for which ad-
hoc heuristics can be built, the GVGAI framework proposes
planning and learning challenges for playing agents in multiple
games. The GVGAI competition [5], run since 2014 and built
around this benchmark, has helped the framework reach a
widespread usage in research and education [6].

At the time of writing, GVGAI has a collection of more
than 180 two-dimensional arcade-like games. These games
are described using the Video Game Description Language
(VGDL; [4]), which allows the definition of games and levels
in a text-based format. Games are designed around a collection
of sprites, which have their own behaviours and properties.
These sprites can interact with each other by means of
collisions, and the effects of these interactions can determine
the winning condition of the game.

978-1-7281-4533-4/20/$31.00 c©2020 IEEE

ar
X

iv
:2

00
5.

11
24

7v
1

 [
cs

.A
I]

 2
2

M
ay

 2
02

0

GVGAI games are in general stochastic and can be played
by agents via an API. In its original implementation, GVGAI
provides a forward model that allows the agent to simulate
future states given the current game state and an action to
apply. This setting has been employed for the single and two-
player tracks of the GVGAI competition [5]. The learning
configuration, however, does not provide a forward model. In
this scenario, agents are able to learn by repeatedly playing a
given game, potentially becoming better at it as the number of
episodes increases. The learning track uses the GVGAI GYM
interface, implemented by Torrado et al. [7], which integrates
the GVGAI framework with the OpenAI Gym library for
learning agents. Via this interface, the agent has access to the
RGB observation of the current screen and the game score at
each frame. The agent can then return an action to be executed
in the game.

A. Games

The GVGAI framework provides a large collection of
games, with different difficulties. Similarly to the ALE frame-
work [8], GVGAI also has games with both sparse (score
events are very rare) and dense rewards . The main difference
is that GVGAI provides multiple levels for each game and
it is easy to modify the rules and the rewards of the game
and create new levels. Many games in GVGAI use stochastic
elements, which make the learning problem harder than the
games in ALE. The subset of games selected in this paper
tries to capture different characteristics of GVGAI. We have
not selected games with sparse rewards, as they require the
usage of reward shaping or advanced exploration techniques,
which was not the main goal of our experiments.

Figure 1 shows the four selected games from the GVGAI
framework, which were used in this study. All these games
use 6 actions (Up, Down, Left, Right, Use and NIL).
All games have dense rewards, although their frequency and
magnitude varies. The sprite graphics used by each game are
also different, and so are the rules and the winning conditions.
Thus, these games have been selected in order to provide a
challenging scenario for the learning agents.

An objective of this work is to analyze how the presence
of features in the training set can influence the generalisation
across different levels. Part of the experimentation work of
this paper was performed only on the first 2 levels for each
of the selected games. However, generally speaking, they do
not capture all the existing game features, leading to poor
generalisation. This subsection describes the different training
sets employed and compared in our experiments, with the
reasoning behind them.

The description of the selected games is as follows:
a) Aliens: This game is a version of Aliens (based

on Atari’s Space Invaders), where the player, rather than
being locked into the bottom of the screen, can move in all
directions. Touching the base kills the player instantly, which
gives a reward of −2. The same happens when the player gets
hit by the alien shots, with a reward of −1. Each alien gives 2
points when killed and each base (by shooting) gives 1 point

when destroyed. As the starting location of the player is close
to the bases, a random (or less intelligent) agent dies early in
the game. This game was used in the 2018 and 2019 Single-
player Learning Track competitions and can be found in the
framework under the name of ”cec1”. The first 2 levels of this
game capture all the difficulties that can come up in this game,
as they include both types of aliens (set aliens). We refer
to aliens0 as the training set which only contains the first
level for training.

b) Zelda: In order to win the game, the player has to
collect a key (1 point) and then take it to the door (another
point, if player has the key). There are uniform randomly
moving non-player characters (NPC), that the player can kill
(2 points each), but if they collide with the player, then the
game ends and the player receives a reward of −1 points.
The main difficulty for learning agents in Zelda comes from
having 3 different opponent types, all having different sprites
with different speed and action-repeats (the same action gets
executed for multiple frames). Zelda is the hardest game to
train on. The first level only contains 3 enemies of the same
type, while the second contains 3 enemies, but one of each
type. When trained on these 2 levels together (set zelda),
learning progress was poor, resulting in low scores and no
wins. We investigated various setups and we found that when
there are too many different types of enemies in the training
set then none of the algorithms could learn good policies in
50 million interactions. Set zelda0 only uses the first level
for training and zelda2 uses the first level and the fourth, a
level which contains the same enemy type as on the first one
with an additional type. We found that training on zelda2
was the only pair of levels in Zelda that resulted in completing
the levels consistently.

c) Missile Command: The player controls a spaceship
which has to stop incoming missiles before they reach and
destroy the cities located at the bottom of the screen. Each
one of the destroyed missiles is worth 2 points, which can be
eliminated by shooting at them (the player needs to be looking
towards the missile and next to it). If a city is destroyed, 1
point is lost. This game is deterministic, as the missiles follow
the shortest path towards the cities. The game by default has 2
types of missiles, which move with different speeds. The first 2
levels contain only red missiles, while later levels have slightly
faster blue missiles as well. The set mc contains the first 2
levels, which only have red missiles. To capture more features
mc2 has a level (lvl2) that also contains blue missiles along
with the red missiles from the first level. mc0 was trained on
lvl3 only, which includes both types of missiles.

d) Seaquest: The player controls a submarine that must
rescue divers from the bottom of the sea and take them to the
surface. Aquatic animals make the player lose the game when
touched by them, and the submarine must watch its oxygen
level, which decreases every certain number of time steps.
If it gets depleted, the player loses the game, but it can be
refilled if the player goes back to the surface. Animals can
be eliminated by shooting at them, which gives the player 1
point each. Taking 4 divers at once to the surface gives 1000

(a) Aliens lvl0 (b) Zelda lvl0 (c) Missile Command lvl0 (d) Seaquest lvl0

(e) Aliens lvl1 (f) Zelda lvl1 (g) Missile Command lvl2 (h) Seaquest lvl3

Fig. 1: Example screenshots from the games used for this study. Aliens lvl0 has blue aliens, while lvl1 has slightly faster green
aliens. Zelda lvl0 only has 3 enemies of the same type, while lvl1 has one of each type with different speed and action-repeat.
Missile Command lvl0 only has red missiles, while lvl2 also has faster blue missiles. Seaquest lvl0 has a large selection of
fish and 2 holes at the bottom from where the divers emerge, while lvl3 has less fish and the divers from the bottom holes
spawn 5 times more frequently.

points (no points received if taken in smaller batches). This
game is highly stochastic, as the spawn of animals and divers
(including the movement of the latter) happens uniformly
at random with different probabilities. Set seaquest uses
the first 2 levels, which contain divers and various types of
fish. seaquest0 just uses the first level, while seaquest2
uses level 3, which spawns divers more frequently. Level 3
facilitates getting high scores by spawning 5 times more divers
than other levels.

III. RELATED WORK

A. Deep Reinforcement Learning

Reinforcement Learning (RL) is a form of machine learning,
where an agent interacts with its environment. The problem
is typically framed as a Markov Decision Process, which
allows us to study algorithms to solve such problems. The
agent is presented with a state st ∈ S, where S is the set
of possible states at each step and has to select an action
a ∈ A, where A is the set of available actions and in response
the environment returns the next state st+1 with a reward
rt+1 ∈ R. The objective of the agent is to reach the highest
discounted cumulative reward in the environment.

Tabular methods represent values for exact state and action
combinations. They require a table of size |S| × |A|, which
becomes problematic for most problems due to large action
and state spaces. Neural Networks have shown great perfor-
mance recently for function approximation, which can be used
to approximate value functions and policies in RL.

Deep Reinforcement Learning is the combination of Neural
Networks with RL algorithms, which has shown superhuman
performance on various benchmarks solely training from RGB
pixel input. The first successful work using Deep RL was the
Deep Q Network [9], which reached human level performance
on the Atari Learning Environment (ALE) just using the RGB
pixels as input. A Deep Q-Network (DQN) was running only
a single environment at a time, which can be a bottleneck

for modern computers, as the GPU is idle a lot of the time
while waiting for the agent to collect a batch of experience.
The Asynchronous Advantage Actor-Critic (A3C) [10] and it’s
synchronous version (A2C) have shown that Deep RL can be
parallelized and similar or even better policies can be learned,
while using less wall time. Actor-critic algorithms maintain
2 networks, one is the actor executing the actions and the
other is the critic, which approximates the value function and
helps the actor in the learning process (by estimating a value
function i.e: the advantage function to reduce the variance of
the updates). In practice the actor and the critic share the
same Neural Network body and they only get separated at
the final layers. The A2C algorithm spawns multiple workers
that operate in parallel in the environment and after a deter-
mined number of steps, make a synchronous update to the
master network. After this, all workers can update their own
parameters. A3C makes asynchronous updates, so the updates
that the network gets are always from one agent’s experience.
However, A2C has shown to be more sample efficient than
A3C, as all agents’ experience are updated at the same time
as a single batch, making the update more diverse.

A3C has shown great results on the 2016 ViZDoom com-
petitions where both 1st [11] and 3rd [12] place agents
were based on A3C. Many researches uses the Advantage
Actor-critic framework as their policy optimization algorithm.
The option-critic [13] uses a modified actor-critic algorithms
to learn options (temporally abstracted actions). The UN-
REAL [14] agent adds a replay buffer to replay rewarding
situations more frequently and adds an auxiliary task to the
agent, which forces it to learn how its actions influence its
environment. The A2C algorithm has been used in this work,
which has a comparable performance to the state-of-the-art
methods. Novel algorithms like PPO [15] and IMPALA [16]
are generally more stable as they do not allow large changes in
the policy in a single update, but for this reason they also need
more training time. We chose the A2C algorithm to perform

our experiments, due to its simplicity and good performance
in previous works in both ALE and GVGAI.

B. Generalisation over levels

One of the main objectives of this paper is to investigate
the possibility of training an agent only on a maximum of 2
given levels, that transfers to new unseen levels without further
training.

Most work on RL uses a single level for training, which also
serves as the evaluation set. Farebrother et al. [17] used DQN
to learn policies in ALE and evaluated how they generalize to
modified version of the games. To improve generalisation they
applied regularization techniques on DQN, which seemed to
help. Some recent works have suggested the usage of proce-
durally generated levels to increase the training set [1], [18],
[19]. Augmenting the set of training levels has shown to result
in more robust policies, when trained using RL algorithms.
Unfortunately augmenting the training levels is not always
possible or feasible, for example in real world applications one
might not have the possibility to create thousands of levels to
learn simple tasks. This motivates our research to investigate
the extent to which generalisation happens when trained on a
very limited set of levels. We selected various scenarios to test
ranging from training on a single level to training on a pair
of levels, which best describes the games. Evaluation is done
in zero-shot, without any further training on the test levels.

C. Learning Agents in GVGAI

The GVGAI competition is organised in various tracks, one
of them being the Single-Player Learning track, which runs
since 2017. Before the competition took place, Samothrakis
et al. [20] showed the possibility of training learning agents
in 10 GVGAI games by means of Neuro-Evolution. Also
Kunanusont et al. [21] developed enhanced Deep Q-Learning
agents that were able to play GVGAI games via screen
capture, showing that the approach was able to learn to play
both stochastic and deterministic games, increasing score and
victory rate on them.

In 2018, Torrado et al. [7] integrated the GVGAI framework
with OpenAI’s gym, in order to facilitate training with deep
RL agents implemented in this library. In that work, the
authors benchmarked two versions of DQN and an A2C agent,
and trained them on the first level of a set of 8 games without
evaluating them on the other levels. Additionally, Justesen
et al. [22] also implemented A2C in a training environment
integrated with procedural generation of levels. In this setting,
levels of increasing difficulty were provided to the agent in
response to agent’s learning process.

IV. METHODS

In this section we present the variants of A2C, their neural
network architectures and the experimental setup used in this
work.

A. Agents

Three versions of the A2C algorithm were used in our
experiments, each with various training levels, which are
described in Section II-A.

A2C is an implementation of the synchronous version of
the Advantage Actor-critic algorithm [10], which is used as
the base of the other agents. The agent referred to as GAP,
uses Global Average Pooling (GAP) over the last convolutional
layer’s activation, instead of a flattening layer. This way
arbitrary input dimensions can be fed into the network, as
the network does not depend on the width and the height
of the input. The shortcoming of the method is, that it loses
the spatial information about where the convolutional filters
activate and works as a bag of features. The motivation behind
using it, is that it has shown good results in preliminary
experiments. It has also been used in winner’s entry of the
2019 CEC GVGAI learning track competition. GAP makes it
possible to work with various input dimensions (width and
height of the input), which tackles the problem of having
various input dimensions between levels or games (not the
focus of the current work). The top entries and the baseline
agents could not be evaluated in the earlier competitions [6],
due to the competition levels having different input sizes
(width and height) between levels of the same game (this is
not the case in our selection of games). GAP has regularization
effects and have been used in image classification networks,
we were hoping that it might learn different features, than
other networks and might help in generalisation.

PopArt is a reward normalization technique introduced by
van Hasselt et al. [23]. As many games have different reward
distributions in scale and frequency the same hyperparameters
might not perform well on all games. PopArt learns the mean
µ and standard deviation σ of the return and use them to
normalise the targets. This alone makes the learning problem
harder as these targets are non-stationary, so the critic’s last
weights and biases should be updated in a way that the output
remain consistent after updating the statistic µ and σ.

B. Network Architecture

The same Neural Network architecture has been used
throughout the paper, with a small difference for GAP. The
same network architecture has been used as by Mnih et al. [9],
but with 2 heads, one for the actor and one for the critic’s
output. We used 3 convolutions layers with 32 filters with
kernel size 8 and stride 4 followed by 64 filters with kernel
size 4 and stride 2 and finally 64 filters with kernel size 3 and
stride 1. In the case of A2C and PopArt, these get flattened
and fed into a fully connected layer with 256 units. In the case
of GAP the width and height dimensions of the last activation
gets averaged, which gives 64 values, that gets fed into the
fully connected layer without the need for flattening. The critic
has a single output value, while the actor outputs a probability
distribution over the action space (1 output for each action).
The actions are sampled using a Normal Distribution over the
action distribution.

For optimization we used the same loss function as used
by Mnih et al. [10] with the RMSProp optimization function.
We used an exponential learning rate decay, every 1000
optimization steps we multiplied the learning rate by 0.95 with
an initial learning rate of 7e-4. For PopArt we used the same
hyperparameters as were used by Hessel et al. [24] β = 3e-4
and a lower bound of 1e-4 and upper bound 1e6.

V. EXPERIMENTAL SETUP

We used the games described in Section II-A for evaluating
the methods described in the previous section. As mentioned
above, the selected games have different reward distributions.
In order to avoid providing domain knowledge about the
games to the algorithm, we avoided reward clipping as it would
change the objective of the agent, for example on Seaquest
getting a 1000 points for collecting 4 divers would not be
as beneficial with clipping and the agent would learn a very
different policy.

All the policies have been trained using 32 workers on 16
CPUs and a single GPU for the updates. The training was done
for 50 million frames per game on up to 2 levels. Training
levels were equally distributed between workers (thus, when
training for 2 levels on a single game, 16 workers were
used by level). The network takes in the RGB inputs from
GVGAI GYM, with each pixel taking values in the range
of [0, 255], which are normalized to [0, 1]. The environment
frames are fed into the network without any further pre-
processing (no downsampling or grayscaling) to avoid infor-
mation loss over the different levels/games.

Reinforcement Learning agents tend to learn different poli-
cies each time they are trained due to having a random initial-
ization for the weights, randomly sampling actions from their
action distribution and random elements in the environment.
Thus, we trained each algorithm on each game with 3 different
random seeds and averaged the results. For evaluation we used
the final weight of each run and evaluated on all 5 levels 20
times to get a better estimate of the true final performance. We
report the mean and the standard deviation of the final scores
reached in the evaluations. As we run 3 random seeds and 20
evaluations, we aggregate the results over 60 evaluation runs
per agent per level. The results of the evaluations are shown
in the tables below.

VI. RESULTS

All algorithms have been trained on the selected training sets
3 times. It is important to mention that the stochasticity and
large scales in rewards made a very small subset of these runs
unable to converge to satisfactory learning. On the one hand
we want to highlight the shortcomings of the tested methods
with this type of environments. On the other hand, we wish
to present plots that are representative of how learning takes
place (when it does), and averaging non-convergent runs would
make this not possible. Hence, in the affected experiments
(GAP and A2C in seaquest2 and PopArt and GAP in
zelda2, only 2 runs were counted into the evaluations and
2 curves averaged in the figures. Training was done for 50

million time steps over 3 random seeds per algorithm. The
plots only show the first 20 million frames for clarity, the
remaining 30 million frames did not show improvements for
any of the games. Note that the scale of the rewards and
lengths are not comparable between training sets as their scales
differ across levels. The values in the tables show the mean
episode scores and win rates and the values in parentheses
show the standard deviation, the shaded areas indicate the
levels used for training for that row. During training, statistics
of the runs were collected after every 200 optimization steps
(every 32, 000 environment steps) and each point in the plots
show the running mean over the last 100 episodes.

The results of training on Aliens are shown in Figure 2 and
Table I. The figures show that PopArt is slightly getting higher
scores, while it gets the lowest win rates. The evaluations in
Table I show that, when the agent was trained on only the first
level it could do well on the second level, even thought the
aliens moved slightly faster and used a different sprite (green
instead of blue). The unseen levels provided some challenge
in general, but the trained policies occasionally managed to
win and get reasonable scores. The evaluation levels only had
slight variations compared to the first 2 levels, like having the
bases in different positions or no bases at all. GAP got the
highest win rate over all levels by a small margin over A2C.

Missile Command seems to be the easiest game for training,
that was used in this experiment. During training all agents
reached a 100% win rate after a few million steps. Figure 3
shows that on mc PopArt found a slightly better policy, which
results in a slightly higher average reward, but takes longer. On
mc2, the agents performed rather similarly, GAP got higher
rewards slightly faster. Table II shows that almost all agents
got maximum scores for evaluation on the levels they were
trained on. As mc is deterministic the learned policies did
not perform well on the evaluation levels. The last level lvl4
is misleading as there are more cities than missiles, so the
player always wins. Comparing the 3 training sets, it seems
that having 2 levels helped the agents reach higher scores on
the evaluation levels. Having both red and blue missiles does
not seem to improve generalisation, but it may be due to the
deterministic events in the game.

One of the problems we discovered when training on
Zelda is that, due to having multiple opponents with different
movement patterns, training became extremely hard. The first
plot on Figure 4 shows that when we trained on the first 2
levels (first level only contains 1 enemy type, while the second
contains all 3) none of the algorithms could learn a policy that
would result in consistent scoring. The plots for zelda2 on
Figure 4 show that training on lvl0 and lvl4 resulted in a much
better policy in terms of scores and win rates. Interestingly,
A2C outperformed PopArt during training and GAP performed
the worst. Table III shows that agents failed to win in levels
they were not trained on. Even on the trained levels the agent
could not achieve a 100% win rate during evaluation. The
best agent was PopArt on the training set zelda2, slightly
getting more wins (34%) in this case. We found lvl1 causing
difficulties to train on, when it was used in the training set,

none of the agents could learn a reasonable policy. PopArt
reached the highest score on average when it was trained on
lvl1, but it never managed to win the level.

Finally, the results of Seaquest can be seen in Figure 5 and
in Table IV. Seaquest presents the challenge of exploration and
exploitation, as a local optima is to kill fish in the water, which
gives 1 point each, or take the risk and collect 4 divers before
running out of oxygen, which is worth a 1000 points. When
agents were trained on the first 2 levels, they rarely managed
to collect 4 divers with a single tank of oxygen. As rewards
were not clipped, A2C and GAP got quite unstable in some
runs, both resulting in one training run (as mentioned above)
where learning did not take place. PopArt was more stable, as
it normalized the reward, which made it less sensitive to large
changes in the scale and the frequency of the rewards. PopArt
clearly outperformed the other algorithms in terms of scores,
but not in win rates. A2C and GAP seem to be more cautious,
they do not take as much risk as PopArt. To win the game
the agent just has to avoid drowning or collision with the fish.
When training on lvl0 and lvl1 the agent rarely figures out
that it should collect 4 divers at the same time to maximise
its score. The evaluation results in Table IV show, that having
a level in the training set (lvl3) where the agent can more
easily collect divers to earn points, helps in transferring that
knowledge to the other levels. This confirms our hypothesis,
that the quality of the training set matters and they influence
the behaviour of the trained agent.

Our experiments show that training on a single level is easier
to achieve high scores, but it is more likely to overfit, while
having 2 levels improves the generalisation, but do not seem
to provide enough experience to learn policies that could work
well on unseen levels. Stochasticity definitely helps, as seen by
the difference between Aliens and Missile Command, where
the later is fully deterministic, resulting in the agents only
memorising a trajectory and failing to win on the evaluation
levels. Another interesting property that we observed is that
getting a high score is not equal to winning the game. PopArt
had the highest score in Seaquest and Aliens, but at the same
time had the lowest win rate. PopArt’s objective is slightly
changed due to the learned normalization, which might cause
it to care more about positive rewards than the end of the
episode or a small negative reward. In Seaquest the agent does
not get any reward for winning or losing, which might be
the reason why PopArt only cares about maximizing score.
It is not surprising that PopArt did not achieve the highest
scores in every game, as even in van Hasselt et al. [23]
it underperformed the baseline agent in various games, but
overall it achieved a slightly higher median score over all
Atari games. GAP is the most inconsistent algorithm, having
a much larger variance in the evaluations and even during
training (failed a run in both zelda2 and seaquest2
training sets). The inconsistency is likely to come from the
fact that GAP loses the spatial information about which area
of the state a convolutional filter activates. Surprisingly it can
still outperform the other algorithms in a few cases, maybe due
to the regularization capabilities acting as a bag of features and

Fig. 2: Training results for Aliens. The plots show the running
mean of the episode rewards and the win rate, during training
on aliens (lvl0 and lvl1).

also having fewer weights (having less weights in the first fully
connected layer, due to not using flattening).

VII. CONCLUSION AND FUTURE WORK

In this work 3 versions of the A2C algorithm have been
compared on 4 games with different sets of training levels.
The trained agents then have been evaluated over all 5
levels available on the selected games and their ability of
generalisation have been measured by their score in the game
and their win rates. Our contribution is the comparison of
these algorithms, the evaluation of the trained policies on the
evaluation levels and the comparison of using different training
sets, which capture different features of the game. We found
that RL algorithms learn to play well on the training levels
of the selected games, where almost all agents achieved high
scores and near 100% win rates, except on zelda which
likely comes from the stochasticity of the game.

Training RL agents without evaluation levels, can be very
deceptive as they do not show the robustness of the learned
policies. Having robust policies is important, especially for
games as players always find exploits in NPCs, which makes
playing against them less enjoyable.

Smartly selecting the training levels can improve gener-
alisation, for example on seaquest, when lvl3 was present
in the training set the agents learned to focus on collecting
the divers on all levels. A negative example of the training
levels is zelda in which lvl1 made the learning too difficult,
that the agents failed to learn any good policy on any of
the levels simultaneously. The objective of the RL algorithms
is to maximize the discounted reward, not to win the game.
Winning and getting a high score might correlate, but not in
all cases, see the results of PopArt. Additionally, our results
also showed that these algorithms struggle to learn in highly
stochastic environments, for example in Zelda when both lvl0
and lvl1 were used for training. Too much stochasticity seem
to cause a problem for the agent, while having deterministic
games make the agent overfit to the training levels.

Recent works have shown the power of training on proce-
durally generated levels [19]. A future line of work could be
on identifying features in training levels, which could improve
generalisation and robustness of the trained policies. Instead
of randomly generating a large number of levels only a few
could be enough if they capture enough features of the game.

Training set Policy Score Win rate avg.
lvl0 lvl1 lvl2 lvl3 lvl4 lvl0 lvl1 lvl2 lvl3 lvl4 win

aliens0 A2C 54.00(0.00) 50.70(7.94) -0.85(1.57) -1.00(0.00) 19.55(16.61) 1.00 0.70 0.00 0.00 0.25 0.39
(lvl0) GAP 61.10(8.26) 48.20(15.54) 1.90(12.04) 32.95(11.74) -1.75(0.79) 0.95 0.35 0.05 0.65 0.00 0.40

PopArt 63.25(15.56) 41.35(15.23) -1.65(0.88) 5.25(11.27) 2.00(3.21) 0.90 0.15 0.00 0.05 0.00 0.22
aliens A2C 53.95(1.74) 53.15(4.11) 13.37(21.18) -0.38(2.57) 5.07(10.92) 0.97 0.97 0.22 0.00 0.03 0.44
(lvl0, lvl1) GAP 58.93(5.63) 58.84(4.67) 6.42(19.03) 13.07(17.84) -1.00(1.33) 0.94 0.96 0.14 0.26 0.00 0.46

PopArt 61.62(15.11) 61.17(9.74) -0.05(7.48) 10.28(17.83) -0.42(2.49) 0.77 0.80 0.02 0.25 0.00 0.37

TABLE I: Evaluation results for Aliens.

Training set Policy Score Win rate avg.
lvl0 lvl1 lvl2 lvl3 lvl4 lvl0 lvl1 lvl2 lvl3 lvl4 win

mc0 A2C -2.90(0.45) -0.50(0.89) -3.00(0.00) 7.85(0.67) -7.00(0.00) 0.00 0.00 0.00 1.00 1.00 0.40
(lvl3) GAP 0.20(2.19) -1.00(0.00) -3.00(0.00) 8.00(0.00) -7.00(0.00) 0.45 0.00 0.00 1.00 1.00 0.49

PopArt -1.60(1.57) -1.00(0.00) -3.00(0.00) 8.00(0.00) -7.00(0.00) 0.10 0.00 0.00 1.00 1.00 0.42
mc A2C 8.00(0.00) 16.00(0.00) -3.00(0.00) -0.38(1.69) -0.20(3.49) 1.00 1.00 0.00 0.02 1.00 0.60
(lvl0, lvl1) GAP 6.45(2.43) 15.89(0.74) -3.00(0.00) -0.88(1.68) 0.92(4.00) 0.98 0.98 0.00 0.02 1.00 0.60

PopArt 7.45(1.17) 16.00(0.00) -3.00(0.00) -1.22(1.01) 2.52(4.04) 1.00 1.00 0.00 0.00 1.00 0.60
mc2 A2C 5.90(1.39) 1.13(2.30) 4.95(0.39) -1.50(0.95) -1.60(3.57) 1.00 0.00 1.00 0.00 1.00 0.60
(lvl0, lvl2) GAP 6.00(1.43) -0.90(0.77) 4.90(0.54) -1.87(0.50) -4.00(3.79) 1.00 0.00 1.00 0.00 1.00 0.60

PopArt 5.95(1.51) 3.17(2.61) 4.85(0.66) -0.57(2.13) -1.95(3.89) 1.00 0.00 1.00 0.07 1.00 0.61

TABLE II: Evaluation results for Missile Command.

Training set Policy Score Win rate avg.
lvl0 lvl1 lvl2 lvl3 lvl4 lvl0 lvl1 lvl2 lvl3 lvl4 win

zelda0 A2C -1.00(0.00) -1.00(0.00) -1.00(0.00) -1.00(0.00) 4.00(2.68) 0.00 0.00 0.00 0.00 0.65 0.13
(lvl4) GAP -0.90(0.31) -1.00(0.00) -0.80(0.41) -1.00(0.00) 7.60(1.23) 0.00 0.00 0.00 0.00 0.90 0.18

PopArt -0.35(0.67) -1.00(0.00) -0.90(0.31) -1.00(0.00) 5.50(1.43) 0.00 0.00 0.00 0.00 0.95 0.19
zelda A2C -0.20(1.20) 0.35(1.84) -0.10(1.92) -0.40(1.14) -0.50(1.10) 0.00 0.00 0.00 0.00 0.00 0.00
(lvl0, lvl1) GAP 0.60(1.96) 0.10(1.74) 0.00(1.86) -0.30(1.17) 0.40(2.09) 0.05 0.00 0.00 0.00 0.00 0.01

PopArt 0.30(2.25) 1.25(2.47) 0.80(2.17) 1.75(3.55) 0.50(1.85) 0.00 0.00 0.00 0.00 0.00 0.00
zelda2 A2C 3.37(2.31) -0.43(1.31) -0.95(0.29) -1.00(0.00) 4.10(2.03) 0.72 0.00 0.00 0.00 0.77 0.30
(lvl0, lvl4) GAP 1.90(1.80) 0.50(1.15) -0.75(0.72) -0.90(0.45) 3.65(1.93) 0.60 0.00 0.00 0.00 0.70 0.26

PopArt 4.05(2.24) -0.80(0.61) -0.98(0.16) -0.95(0.32) 4.25(1.58) 0.82 0.00 0.00 0.00 0.90 0.34

TABLE III: Evaluation results for Zelda

Training set Policy Score Win rate avg.
lvl0 lvl1 lvl2 lvl3 lvl4 lvl0 lvl1 lvl2 lvl3 lvl4 win

seaquest A2C 68(21) 80(30) 348(667) 565(1249) 411(992) 0.88 0.82 0.70 0.15 0.10 0.53
(lvl0, lvl1) GAP 69(17) 107(132) 81(214) 130(329) 54(184) 0.87 0.87 0.57 0.28 0.23 0.56

PopArt 57(222) 262(609) 1561(1550) 358(997) 1408(1912) 0.00 0.15 0.47 0.02 0.12 0.15
seaquest0 A2C 774(574) 793(464) 2313(1264) 105(311) 804(1739) 0.95 1.00 0.75 0.00 0.05 0.55
(lvl0) GAP 874(697) 529(527) 0(1) 0(0) 100(308) 0.90 0.80 0.00 0.00 0.00 0.34

PopArt 7(9) 57(226) 1006(1526) 54(225) 404(823) 0.00 0.10 0.20 0.00 0.00 0.06
seaquest2 A2C 550(502) 833(668) 2317(854) 4117(1166) 5333(1052) 1.00 1.00 1.00 1.00 1.00 1.00
(lvl0, lvl3) GAP 800(608) 750(543) 2525(1086) 4050(1108) 5350(1145) 1.00 1.00 1.00 1.00 1.00 1.00

PopArt 494(831) 1400(739) 4170(947) 5822(3174) 7955(3075) 0.22 0.81 1.00 0.79 0.88 0.74

TABLE IV: Evaluation results for Seaquest.

Fig. 3: Training on Missile Command. The two plots on the left show results for training set mc, right plots for mc2. Plots
show running average of the episode rewards and length. Note that the scale of the rewards differ between the training sets.

VIII. ACKNOWLEDGEMENT

This work was funded by the EPSRC Centre for Doctoral
Training in Intelligent Games and Game Intelligence (IGGI)

Fig. 4: Training results on Zelda. The first plot shows the running mean of the episode reward using zelda. The other plots
show the training performance using zelda2.

Fig. 5: The two plots on the left show running average reward and win rate during training on seaquest, right plots for
seaquest2. A2C and GAP only average 2 runs on the latter, as they both failed once to learn good policies.

EP/L015846/1. This research utilised Queen Mary’s Apoc-
rita HPC facility (http://doi.org/10.5281/zenodo.438045), sup-
ported by QMUL Research-IT.

REFERENCES

[1] Niels Justesen, Ruben Rodriguez Torrado, Philip Bontrager, Ahmed
Khalifa, Julian Togelius, and Sebastian Risi. Illuminating generalization
in deep reinforcement learning through procedural level generation.
arXiv preprint arXiv:1806.10729, 2018.

[2] Alex Nichol, Vicki Pfau, Christopher Hesse, Oleg Klimov, and John
Schulman. Gotta learn fast: A new benchmark for generalization in rl,
2018.

[3] Arthur Juliani, Ahmed Khalifa, Vincent-Pierre Berges, Jonathan Harper,
Ervin Teng, Hunter Henry, Adam Crespi, Julian Togelius, and Danny
Lange. Obstacle tower: A generalization challenge in vision, control,
and planning. In Proceedings of the Twenty-Eighth International Joint
Conference on Artificial Intelligence, pages 2684–2691. International
Joint Conferences on Artifi9cial Intelligence Organization, 7 2019.

[4] T. Schaul. A video game description language for model-based or
interactive learning. In 2013 IEEE Conference on Computational
Inteligence in Games (CIG), pages 1–8, Aug 2013.

[5] Diego Perez-Liebana, Spyridon Samothrakis, Julian Togelius, Tom
Schaul, Simon M Lucas, Adrien Couëtoux, Jerry Lee, Chong-U Lim, and
Tommy Thompson. The 2014 general video game playing competition.
IEEE Transactions on Computational Intelligence and AI in Games,
8(3):229–243, 2016.

[6] Diego Perez-Liebana, Jialin Liu, Ahmed Khalifa, Raluca D Gaina, Julian
Togelius, and Simon M Lucas. General video game ai: A multitrack
framework for evaluating agents, games, and content generation algo-
rithms. IEEE Transactions on Games, 11(3):195–214, 2019.

[7] Ruben Rodriguez Torrado, Philip Bontrager, Julian Togelius, Jialin Liu,
and Diego Perez-Liebana. Deep reinforcement learning for general video
game ai. In 2018 IEEE Conference on Computational Intelligence and
Games (CIG), pages 1–8. IEEE, 2018.

[8] Marc G Bellemare, Yavar Naddaf, Joel Veness, and Michael Bowling.
The arcade learning environment: an evaluation platform for general
agents. Journal of Artificial Intelligence Research, 47(1):253–279, 2013.

[9] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A Rusu,
Joel Veness, Marc G Bellemare, Alex Graves, Martin Riedmiller, An-
dreas K Fidjeland, Georg Ostrovski, et al. Human-level control through
deep reinforcement learning. Nature, 518(7540):529, 2015.

[10] Volodymyr Mnih, Adri Puigdomnech Badia, Mehdi Mirza, Alex Graves,
Timothy P. Lillicrap, Tim Harley, David Silver, and Koray Kavukcuoglu.
Asynchronous methods for deep reinforcement learning, 2016.

[11] Yuxin Wu and Yuandong Tian. Training agent for first-person shooter
game with actor-critic curriculum learning. In ICLR, 2017.

[12] Dino Stephen Ratcliffe, Sam Devlin, Udo Kruschwitz, and Luca Citi.
Clyde: A deep reinforcement learning doom playing agent. In Workshops
at the Thirty-First AAAI Conference on Artificial Intelligence, 2017.

[13] Pierre-Luc Bacon, Jean Harb, and Doina Precup. The option-critic
architecture. In Thirty-First AAAI Conference on Artificial Intelligence,
2017.

[14] Max Jaderberg, Volodymyr Mnih, Wojciech Marian Czarnecki, Tom
Schaul, Joel Z. Leibo, David Silver, and Koray Kavukcuoglu. Reinforce-
ment learning with unsupervised auxiliary tasks. In 5th International
Conference on Learning Representations, ICLR, Toulon, France, April
24-26, Conference Track Proceedings. OpenReview.net, 2017.

[15] John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg
Klimov. Proximal policy optimization algorithms, 2017.

[16] Lasse Espeholt, Hubert Soyer, Remi Munos, Karen Simonyan,
Volodymir Mnih, Tom Ward, Yotam Doron, Vlad Firoiu, Tim Harley,
Iain Dunning, Shane Legg, and Koray Kavukcuoglu. Impala: Scalable
distributed deep-rl with importance weighted actor-learner architectures,
2018.

[17] Jesse Farebrother, Marlos C Machado, and Michael Bowling. General-
ization and regularization in dqn. arXiv preprint 1810.00123, 2018.

[18] Karl Cobbe, Oleg Klimov, Chris Hesse, Taehoon Kim, and John
Schulman. Quantifying generalization in reinforcement learning. In
International Conference on Machine Learning, pages 1282–1289, 2019.

[19] Karl Cobbe, Christopher Hesse, Jacob Hilton, and John Schulman.
Leveraging procedural generation to benchmark reinforcement learning.
arXiv preprint arXiv:1912.01588, 2019.

[20] S. Samothrakis, D. Perez-Liebana, S. M. Lucas, and M. Fasli. Neu-
roevolution for general video game playing. In 2015 IEEE Conference
on Computational Intelligence and Games (CIG), pages 200–207, 2015.

[21] Kamolwan Kunanusont, Simon Lucas, and Diego Pérez-Liébana. Gen-
eral Video Game AI: Learning from Screen Capture. In IEEE Congress
on Evolutionary Computation (CEC), pages 2078–2085, 2017.

[22] Niels Justesen, Ruben Rodriguez Torrado, Philip Bontrager, Ahmed
Khalifa, Julian Togelius, and Sebastian Risi. Illuminating Generalization
in Deep Reinforcement Learning through Procedural Level Generation.
arXiv:1806.10729, 2018.

[23] Hado P van Hasselt, Arthur Guez, Matteo Hessel, Volodymyr Mnih,
and David Silver. Learning values across many orders of magnitude. In

http://doi.org/10.5281/zenodo.438045

Advances in Neural Information Processing Systems, pages 4287–4295,
2016.

[24] Matteo Hessel, Hubert Soyer, Lasse Espeholt, Wojciech Czarnecki,
Simon Schmitt, and Hado van Hasselt. Multi-task deep reinforcement
learning with popart, 2018.

	I Introduction
	II The General Video Game AI Framework
	II-A Games

	III Related Work
	III-A Deep Reinforcement Learning
	III-B Generalisation over levels
	III-C Learning Agents in GVGAI

	IV Methods
	IV-A Agents
	IV-B Network Architecture

	V Experimental Setup
	VI Results
	VII Conclusion and Future Work
	VIII Acknowledgement
	References

