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Abstract—We describe an automatic analysis to check secure
multi-party computation protocols against privacy leaks. The
analysis is sound — a protocol that is deemed private does not
leak anything about its private inputs, even if active attacks are
performed against it. Privacy against active adversaries is an
essential ingredient in constructions aiming to provide security
(privacy + correctness) in adversarial models of intermediate
(between passive and active) strength. Using our analysis we are
able to show that the protocols used by the SHAREMIND secure
multi-party computation platform are actively private.

I. INTRODUCTION

In a secure multiparty computation (SMC) problem, there
are n parties P1, . . . , Pn, with each party Pi providing an input
xi and expecting to learn the output yi, where (y1, . . . , yn) =
f(x1, . . . , xn) for some publicly known function f . Moreover,
each party Pi is expected to learn only yi; it must learn nothing
more about the inputs and outputs of other parties (except of
what can be deduced from xi and yi).

SMC can be combined with cloud services to outsource
computations on private data. In this situation, we may use
secret sharing to split the private data between several cloud
service providers so that the data cannot be reconstructed
without a certain number of them colluding. In the cloud-based
setting, the parties are naturally assigned the roles of “input
parties”, “computation parties” (the cloud servers) and “output
parties” [1], some parties may have several roles. Only input
parties Pi have non-trivial inputs xi, which they share among
the computation parties. Only the output parties Pj have non-
trivial outputs yj that they reconstruct from the shares they
receive from the computation parties.

SMC is the universal cryptographic functionality. Construc-
tions transforming any f to a SMC protocol have been known
for a long time [2] and are considered to be too inefficient
for practical use. Over the last years, many frameworks for
SMC have been proposed [3], [4], [5], [6], [7], [8], [9], [10],
facilitating the specification of secure protocols and making
the use of SMC more practical.

Security of a SMC protocol is defined as the indistinguisha-
bility (using appropriate simulators) of the execution of the
protocol from the use of an ideal functionality that computes
f . Security thus implies that (i) the protocol preserves privacy
by not letting the adversarial parties learn anything they could
not learn through the interaction with the ideal functionality,
and (ii) the protocol delivers the correct answer to all non-
adversarial parties. Recent results have given value to the
studies of privacy independently of security. Indeed, privacy

is composable [11], allowing complex private protocols to be
constructed from simpler ones. The private protocols can then
be transformed to secure ones by additional checks near the
end of their execution [12], [13]. Also, private protocols are
necessary to achieve consistent computations [14] that provide
a cheaper alternative to actively secure protocols. Both cases
need privacy against active adversaries.

Our privacy checker is targeted towards SMC protocols
that aim to provide information-theoretic privacy against ad-
versarial parties. Typically, such protocols [15], [16] use
secret sharing to represent the intermediate values during
the computation. These protocols usually have a quite large
communication volume (the number of bits exchanged between
different parties) of intermediate messages compared to the
number of bits published as the final output. This is further
amplified when smaller protocols are composed into larger
protocols and the intermediate outputs do not need to be
published (they remain as secret shares, which are used directly
as inputs of the next protocols). This increases the volume of
intermediate messages but not the size of the final output.

Thus an adversarial party who makes active attacks by
changing the protocol, can potentially leak much more private
data through the intermediate messages sent to him than
through the final outputs. This gives us the motivation why
it is useful to check that the intermediate messages do not
leak anything, without worrying about the correctness of final
outputs. If we have eliminated the high-bandwidth flows of
intermediate messages then only the low-bandwidth flows of
final output remain possible. If these still leak too much then
we can use other means to reduce these flows without worrying
about the intermediate messages.

The SHAREMIND platform supports the specification of
privacy-preserving applications through composition of SMC
protocols, featuring a rich programming language SECREC
[17] for this purpose. For the results of our analysis to be
applicable to such applications, we need composability. We
show that the property checked by our analyser is composable.
Additionally, the existing composability results for privacy [11]
easily carry over to the active security model. Either of
them is usable to deduce the privacy preservation of complex
applications.

The checker is integrated with our toolchain for compiling
and maintaining the SMC protocols for SHAREMIND [18].
Using it, the protocols are first specified in a high-level declar-
ative language similar to the pseudo-code appearing in publi-
cations on SMC protocols [19], [16], often including simpler
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protocols as subroutines. This domain-specific language (the
protocol DSL) is different from SECREC, which cannot handle
individual shares of secret-shared values. The specification
is compiled to an intermediate representation (IR), analyzed
and optimized. From the IR, code in C++ is generated and
compiled together with the rest of the SHAREMIND system.
Then the protocols can be called from SECREC programs. Our
privacy checker works on the IR, which is highly suitable for
such analyses.

The benefits of our privacy checker are the most apparent
in developing, extending, and maintaining large sets of SMC
protocols (currently, SHAREMIND employs more than 100 dif-
ferent protocols for various arithmetic, relational, and database
operations with shared values; all these tailor-made protocols
contribute to the efficiency of the framework), that work with
additively shared values. In this setting it gives us guarantees
that the used protocols are private and the compilation (up to
the intermediate representation) and the optimizations do not
destroy this property. It is infeasible to obtain such guarantees
in a way that does not involve significant automation — the
protocol set is large, the optimizations (including automatic
parallelization of subprotocols) applied to them often complex
and their security properties subtle. The results of our privacy
checker offer much more confidence than manually generated
and verified proofs of privacy (whether against active or even
just passive attacks).

We have applied our privacy checker to the SHAREMIND

protocol set and verified that they indeed provide active
privacy. This opens up the possibilities to use SHAREMIND

in settings where security against active attacks is necessary.

We will begin in Sec. II by defining the security and
privacy of SMC protocols. In Sec. III, we will describe the
IR of analyzed protocols in SHAREMIND (for the generation
of IR, see [18]). We will describe our algorithm for verifying
input privacy in Sec. IV and prove its soundness in Sec. V. In
Sec. VI, we will show an example to illustrate composability
and the kind of mistakes caught by our algorithm. In Sec. VII,
we will discuss what our results imply about the privacy of
more complex SMC programs. In Sec. VIII, we will describe
how we implemented the algorithm and how it worked in
practice. We will review the related work in Sec. IX and
discuss our results in Sec. X.

II. SECURITY AND PRIVACY OF SMC PROTOCOLS

We define the privacy (and security) of protocols in the
usual manner [20], [21], through the ideal-real paradigm.

Definition 1: An SMC protocol π for n parties is black-
box private (or secure) if there is a simulator Sim, such that
for all environments Z and adversaries A, the views of Z
in configurations Z‖π‖A and Z‖F‖(Sim‖A) are indistin-

guishable. Here F is either Ff
priv or Ff

sec, the ideal SMC
functionality for n parties computing f for the purposes of
defining privacy or security. The symbol ‖ denotes parallel
composition (and connecting the corresponding input and
output ports for sending messages).

Because we are interested in active adversaries, the adversary
A may have both input and output ports connecting it to π in
Z‖π‖A. Here π would execute the protocol only for the non-
corrupted parties, any messages that should be sent to and

received from the corrupted parties according to the protocol
are instead exchanged with the adversary.

The functionality Ff
priv is simple: at the beginning it accepts

the adversary’s requests to corrupt a number (up to a certain
bound) of parties (i.e. we are only dealing with non-adaptive
corruptions in this paper). It will then obtain the inputs of the
n parties from Z and send the corrupted parties’ inputs to the
adversary. It will produce no further output.

The definition of Ff
sec is more involved — it also produces

outputs to Z if the adversary allows. Also, the inputs and the
outputs of the corrupted parties can be further modified by the
adversary. As we do not deal with security of SMC protocols
in this paper, we will refer to [21] for further discussions.

We see that for showing the privacy of π, we must present a
simulator that is able to construct the (distribution of the) mes-
sages exchanged between corrupted and non-corrupted parties,
using just the inputs of corrupted parties. The simulation must
work for all (joint) probability distributions of parties’ inputs,
generated by any possible Z . As next, we will give a sufficient
condition for the simulator to exist. Our privacy analysis
checks for this condition. Let P denote the set {1, . . . , n}.

Lemma 1: For a protocol π and sets of participants A,B,
where A ∩B = ∅ and A ∪B = P , let Dπ,A

A,B(�x; �y) denote the
probability distribution of messages sent by parties in B to
parties in A in the execution of π with the adversary A, if �x
is the tuple of inputs to parties in A and �y the tuple of inputs
to parties in B. If for all adversaries A, all sets of parties A
that can be corrupted, all tuples of inputs �x, �y1, �y2 we have
Dπ,A

A,P\A(�x, �y1) = Dπ,A
A,P\A(�x, �y2), then π is black-box private.

Proof: The simulator Sim works as follows. In the begin-
ning, it receives from A the request to corrupt parties in the
set A ⊂ P . It forwards this request to the ideal functionality
Fpriv, and receives back their inputs �x. It will now pick an
arbitrary �y as the inputs of the parties in P\A, and run the
protocol π on the inputs (�x, �y), together with the adversary
A. The adversary, even in cooperation with the environment
Z , cannot distinguish this run from a real run of π, where the
inputs to parties in P\A may differ, because the messages that
Sim sends to the adversary come from the same distribution,
and these messages are the only inputs A and Z receive from
the protocol / simulator.

III. THE PROTOCOLS

The intermediate representation of our protocols, also used
by our privacy checker, is an arithmetic circuit with the nodes
having an extra attribute. Fig. 1 shows the (unoptimized)
protocol for multiplying two values in the main protocol
set of SHAREMIND, based on additive sharing among three
parties and tolerating one passive corruption. The protocol
computes w = uv, where each value x is represented as
x = (x1 + x2 + x3) mod N for a fixed modulus N , with
i-th party holding the value xi. In Fig. 1, nodes labeled with
u and v denote the input nodes for parties; each node labeled
with +, -, or * computes, respectively, the sum, difference, or
product of the values of its predecessors; nodes labeled with
w denote the outputs. Nodes labeled $ denote the generation
of a random element of ZN .

7676



Figure 1. SHAREMIND’s multiplication protocol

The extra attribute of each node is the identity of the party
executing it. In Fig. 1, this is denoted by the shape of the node.
This attribute immediately determines the messages sent from
one party to another. The communication is depicted in Fig. 1
by drawing the edges corresponding to message sends with
solid lines, while local dependencies are shown with dotted
lines.

We stress that the arithmetic circuits that we consider in this
paper correspond to the building-block protocols operating on
shares (such as the protocol in Fig. 1), thus both the input and
the output of the protocols consist of shares of some values, not
the values themselves. The actual SMC programs that calculate
something useful call these protocols as building blocks after
splitting the actual inputs into shares, later recombining the
shares of some values into the actual outputs, and maybe also
declassifying some intermediate results. We consider these full
SMC programs only in Sec. VII.

Formally, an arithmetic circuit G consists of

• A set of nodes VG.

• A mapping prG : VG → V ∗G, giving the predecessors
of each node. The predecessors are ordered. The
predecessor relation must define a directed acyclic
graph (dag). Let u→G v denote u ∈ prG(v).

• A labeling λG : VG → Op, giving the operation in
each node. The number of operands of λG(v) must
equal |prG(v)|. We denote the set of nodes having an
operation f , by λ−1

G (f).

• A labeling UG : VG → P , giving the party executing
this node.

The set of supported operations Op contains some special
elements. A node v labeled with input is an input vertex. The
value in this node is given by party UG(v). If this party is
honest, then the value in this node should remain secret to
the adversary. A node labeled with random denotes random
number generation. The value in this node is a uniformly

distributed element of ZN , independent of all other random
values and inputs.

All other operations are required to be deterministic. They
are not limited to only arithmetic operations, we can also have
bitwise operations (and, or, xor, not), bit shifts, or any other
deterministic operation.

A protocol run of G is a mapping rG : VG → ZN ,
where rG(v) is arbitrary if λG(v) is input or random, and
rG(v) = λG(v)(rG(v1), . . . , rG(vk)) for all other vertices v,
where prG(v) = v1 · · · vk. Let RG denote the set of all
protocol runs of G.

In protocols, certain operations, for example addition, sub-
traction, exclusive or, negation, etc. are reversible, according
to the following definition.

Definition 2: A k-ary operation ⊗ ∈ Op is reversible iff
for all i and x1, . . . , xk,
{⊗(x1, . . . , xi−1, y, xi+1, . . . , xk) | y ∈ ZN} = ZN .

Let revi⊗ denote the operation in Op such that
y = revi⊗(x1, . . . , xi−1, z, xi+1, . . . , xk) iff
z = ⊗(x1, . . . , xi−1, y, xi+1, . . . , xk). Let OpR ⊆ Op be the
set of all reversible operations. We assume that if ⊗ ∈ OpR
then revi⊗ ∈ Op. This can be achieved by taking the closure
of OpR under rev, which increases the size of OpR by at
most a factor of (k + 1)! (in practice much less), where k is
the highest arity of an operation in OpR.

Our analyser tries to prove privacy against a coalition of
parties A where A is a non-empty proper subset of P . Any
information about the inputs of the parties outside A must not
be leaked to vertices that belong to parties in A. To show
privacy in the sense of Sec. II, the analyser must be run for
each coalition A that the adversary is allowed to corrupt.

IV. ALGORITHM FOR PRIVACY CHECKING

We consider the case where the adversary A is active. In
this case, it is possible that A does not follow the protocol
correctly. It must still receive and send the same number (and
type) of messages as in the original protocol but it can choose
which values it sends out instead of the values that it should
send according to the protocol. Thus the subgraph of the circuit
induced by the vertices of the parties in A may be replaced
with a black box that has the appropriate number of incoming
and outgoing edges.

As we are interested in information-theoretic security, we
may assume the adversary to be a deterministic algorithm.
Indeed, for each possible random tape s, the adversary A(s),
using the random coins determined by s, has a certain ad-
vantage in distinguishing the protocol π from the composition
F‖Sim. We may pick an s that maximizes this advantage and
consider it hard-wired into A.

The input of the adversary is the list of values coming from
the circuit into the black box together with their arrival times
(i.e. the adversary can measure the time at which messages
arrive). We consider times to be non-negative integers, i.e. time
is discrete and the protocol is started at time 0. The output of
the adversary is the list of values sent from the black box to
the circuit together with their dispatch times.
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We can model the black box as a subgraph. It has one
vertex, called the adversarial sink, where all edges coming
into the black box end. For each message sent out from the
adversary, it has one vertex, called an adversarial source, from
which exactly one edge goes out of the black box. The value
of an adversarial source vertex is the corresponding value sent
from the adversary. The operation of the vertex is considered
to be the special nullary operation advsrc. The value of the
adversarial sink may be thought as a tuple of all values sent to
the adversary and its operation would be the special operation
advsink with an appropriate arity. The values of the adversarial
source vertices are uniquely determined by the value of the
adversarial sink vertex but we do not know anything about
this dependency because the active adversary may choose any
values for the adversarial source vertices.

The resulting graph (with the subgraph controlled by the
adversary replaced, as described above) is still a circuit, and
we call circuits of this kind, active-adversarial dags (aadags).

Definition 3: We say that an arithmetic circuit G is an
aadag iff all of the following hold:

1) G has exactly one vertex with the operation advsink
(we assume advsink ∈ Op) and this vertex has no
outgoing edges. We call such a vertex the adversarial
sink and denote it sinkG

2) Every vertex of G that has the operation advsrc (we
assume advsrc ∈ Op) has exactly one outgoing edge
and no incoming edges. We call such vertices the
adversarial sources

3) There are no edges in G whose both endpoints are
in the set consisting of the adversarial sink and
the adversarial sources. The adversarial sink and the
adversarial sources are called the adversarial vertices
and the rest of the vertices are called the non-
adversarial vertices

Given an arithmetic circuit G and a set of parties A, our
privacy checker transforms the circuit to the corresponding
aadag, where the adversarially controlled subgraph is replaced
with the nodes labeled advsrc and advsink. It will then
execute the algorithm given in Figures 2, 3, and 4. Let
thr1(X1, . . . , Xk) denote the set of elements that are present
in exactly one of the sets X1, . . . , Xk. Let thr≥2(X1, . . . , Xk)
denote the set of elements that are present in at least two sets.
In Fig. 4, we use the fail statement to indicate the situations
where some statements would not be meaningful. We will
later see in the soundness proof that these fail statements are
actually never reached.

The algorithm first (in the for each loop) computes some
global arrays (described in Fig. 2). Then (in the while loop)
it tries to find for each vertex v whose value is sent to the
adversary, a corresponding random vertex r whose value is
used in the computation of v in a way that makes also v
uniformly random, e.g. v = (a+r)+b. Every random vertex r
can be used to ascertain the randomness of only one vertex v
and r can not be used in the computation of any other message
sent to the adversary whose randomness is not yet ascertained.
Otherwise, the adversary might get two messages depending
on r (e.g. v = (a+r)+b and u = (r+c)−d) and might be able
to cancel out (part of) the randomness, e.g. u−v = c−d−a−b.
In the final if, the algorithm checks that those messages sent

These are part of the input to the algorithm (the circuit itself
is given implicitly):

• numRandoms is the number of random vertices
outside A in the circuit

• numVertices is the number of all vertices in the
circuit

• randomIndex is a one-to-one mapping from the
set of random vertices outside A to the set
{0, . . . ,numRandoms− 1}

• randomIndex(v) = i iff v is a random vertex that is
mapped to the index i; the vertex v is called the ith
random vertex

These are filled by the for each loop:

• isSensitive is an array of numVertices booleans
• isSensitive[v] = true iff vertex v contains information

that must not leak to A
• leakRandoms is an array of numVertices subsets of

{0, . . . ,numRandoms− 1}
• i ∈ leakRandoms[v] iff the ith random value may be

leaked from vertex v
• usableRandoms is an array of numVertices subsets

of {0, . . . ,numRandoms− 1}
• i ∈ usableRandoms[v] iff the ith random value may

be used to encrypt the information in vertex v (if A
does not get any information about the ith random
value from elsewhere)

Figure 2. Global variables used by the privacy-checking algorithm

to the adversary whose randomness could not be ascertained,
do not contain any sensitive information.

The algorithm also transforms the graph during its execu-
tion. The transformations do not affect the final output but they
simplify the soundness proof because after the transformations
the privacy of the protocol will be obvious. The subroutine
transformPath in Fig. 4 essentially reverses the edges of the
path from r to v where r is the random vertex corresponding
to the vertex v whose value is sent to the adversary. Now v
will be the random vertex instead of r and the randomness of
the message sent to the adversary becomes obvious. For the
reversal of edges to be possible, the operation of all nodes
(except the first) on the path must be reversible. This ensures
that the reversal does not change the value of any vertex, only
the order of their computation.

V. SOUNDNESS

A. Preliminaries

In the following proofs, we assume that the input is an
aadag but the algorithm gives the same result on the original
arithmetic circuit. If the input is an aadag, the set A in the
algorithm is the set consisting of the adversarial sink and the
adversarial sources. If the input is the original circuit, then A
is the set of vertices belonging to the adversary.

Because the adversary is deterministic, its output (including
the timings) is uniquely determined by its input. Parts of the
input can be sent to the adversary at different times and parts
of the output can be sent by the adversary already before the
whole input has arrived. All input and output messages sent
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for each vertex v (in topological order of vertices) do
if v ∈ A then

isSensitive[v]← false
leakRandoms[v]← ∅
usableRandoms[v]← ∅

else if λG(v) = input then
isSensitive[v]← true
leakRandoms[v]← ∅
usableRandoms[v]← ∅

else if λG(v) = random then
isSensitive[v]← false
leakRandoms[v]← ∅
usableRandoms[v]← {i}, where i = randomIndex(v)

else if λG(v) ∈ OpR then
Let v1 · · · vk = prG(v)
isSensitive[v]← ∨k

i=1 isSensitive[vi]

leakRandoms[v]← thr≥2(usableRandoms[v1], . . . , usableRandoms[vk]) ∪
⋃k

i=1 leakRandoms[vi]
usableRandoms[v]← thr1(usableRandoms[v1], . . . , usableRandoms[vk]) \ leakRandoms[v]

else
Let v1 · · · vk = prG(v)
isSensitive[v]← ∨k

i=1 isSensitive[vi]

leakRandoms[v]← ⋃k
i=1 leakRandoms[vi] ∪

⋃k
i=1 usableRandoms[vi]

usableRandoms[v]← ∅

Let S be the set of non-random vertices outside A from which there is an edge into A

while there exists a vertex v ∈ S and an index i such that
i ∈ usableRandoms[v] ∧
for each vertex w ∈ S different from v:

i ∈ leakRandoms[w] ∧ i ∈ usableRandoms[w]
do

Call transformPath(v, i) (in Fig. 4)
(This modifies the aadag into a simulating aadag where the operation of v is random)

Remove v from S
if for each vertex v ∈ S: isSensitive[v] = false then

exit(the protocol is private)
else

exit(cannot prove that the protocol is private)

Figure 3. The privacy-checking algorithm

transformOne(z, y):
• Let v1 · · · vk = prG(y), where vm = z; if such an

index m does not exist or is not unique then fail
• Let f = λG(y); if f ∈ OpR then fail
• Let v′i = vi for all i = m and let v′m = y
• Set λG(z)← revmf and prG(z)← v′1 · · · v′k
• Set λG(y)← random and prG(y)← ε (empty)

transformPath(v, i):
• Let v0, v1, . . . , vn (n ≥ 1) be the only path in G from

the ith random vertex v0 to the vertex v = vn; if such
a path does not exist or is not unique then fail

• for i = 0, 1, ..., n−1 do call transformOne(vi, vi+1)

Figure 4. Transformation subroutines in the privacy-checking algorithm

at or before time T − 1 will uniquely determine all messages
sent at time T .

Each operation outside the adversary takes a positive

integer amount of time that does not depend on its operands.
The adversary cannot send an output message m earlier than
1 unit of time after all the input messages that m depends on
have arrived.

In Sec. V-B, we will see how to make aadag transforma-
tions that do not change the protocol. In Sec. V-C, we will
state some loop invariants of the algorithm. In Sec. V-D, we
will look at the timing of vertices. In Sec. V-E, we will define
some properties that imply privacy and prove the main theorem
that the property verified by the algorithm implies privacy.
In Sec. V-F, we will see that the property verified by our
algorithm is composable.

B. Simulating Aadags

Protocol run of an aadag is defined similarly to protocol
run of a circuit but with special handling of adversarial sources
and the sink.
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Definition 4: A protocol run of an aadag G is a map-
ping rG : VG \ {sinkG} → ZN , where rG(v) is arbi-
trary if λG(v) ∈ {input, random, advsrc}, and rG(v) =
λG(v)(rG(v1), . . . , rG(vk)) for all other vertices v, where
prG(v) = v1 · · · vk. Let RG denote the set of all protocol
runs of G.

We now define a certain preorder that allows us to make
graph transformations that do not change the protocol de-
scribed by the graph.

Definition 5: We say that an aadag G1 can simulate an
aadag G2 iff all of the following hold:

1) VG1
= VG2

= V ;
2) λ−1

G1
(input) = λ−1

G2
(input);

3) λ−1
G1

(advsrc) = λ−1
G2

(advsrc);
4) There is a vertex va ∈ V , such that λG1

(va) =
λG2

(va) = advsink;
5) |λ−1

G1
(random)| = |λ−1

G2
(random)|;

6) The edges to the adversarial sink are the same in both
graphs;

7) RG1 = RG2 ;
8) If v is a vertex from which there is an edge to the

adversarial sink then every path ending in v in G1 is
also a path in G2 and for every vertex on this path
that is non-random in G1, the operation, the incoming
edges, and the ordering of predecessors are the same
as in G2.

It is easy to see that this relation is reflexive and transitive,
i.e. it is a preorder. We call this relation can simulate because
it is related to the notion of simulation used in Sec. II. As
we will see in the proof of Theorem 1, if an aadag G2 can
simulate an aadag G1 then there exists a simulator S such
that the view of the adversary A in configurations G1‖A and
G2‖(S‖A) is indistinguishable. In the proof of Theorem 1,
S‖A is represented by the constructed adversary A′. As we
are going to show, our algorithm transforms the original aadag
to a new aadag that can simulate it. The privacy of the new
aadag is obvious, thus the new aadag can be considered as an
ideal functionality for the original protocol.

The next lemma describes the properties of the basic
modification made by the algorithm that moves the generation
of a random value one step nearer to the adversary but does
not change the protocol.

Lemma 2: Suppose all of the following hold in an aadag
G:

• z →G y and there is no other path in G from z to y;

• λG(z) = random;

• λG(y) ∈ OpR;

• All paths from z to the adversarial sink in G go
through the vertex y

Then executing transformOne(z, y) (from Fig. 4) on G does
not fail and produces an aadag G′ that can simulate G such
that

• λG′(y) = random

• the only edges that may differ between G and G′ are
those that end in z or y

• the only vertices whose operation or ordering of
predecessors may differ between G and G′ are z and
y

Proof: The premises of the current lemma ensure that fail
is not reached when executing transformOne(z, y). The aadag
G′ is constructed from G using the following transformation
(from Fig. 4) that may change the operation and predecessors
of z and y but does not change anything else:

• Let v1 · · · vk = prG(y), where vm = z

• Let f = λG(y). Then f ∈ OpR and revmf ∈ Op

• Let v′i = vi for all i = m and let v′m = y

• Set λG′(z) = revmf and prG′(z) = v′1 · · · v′k
• Set λG′(y) = random and prG′(y) = ε (empty)

It is easy to see that G′ satisfies the three itemized statements
of the current lemma.

Because G is an aadag, it is also a dag. Now we show that
G′ is a dag, i.e. the transformation does not introduce cycles.
Suppose there exists a cycle in G′. We consider the shortest
such cycle, thus we can assume that it does not contain any
vertex or edge more than once. This cycle must contain an
edge e that does not occur in G, otherwise the whole cycle
would occur in G, a contradiction. The edge e must end in z
or y by the second itemized statement of the current lemma.
Because y does not have any predecessors in G′, it cannot
occur in the cycle. Thus the edge e must go from a to z for
some vertex a. Now we divide the cycle into two parts: the
edge from a to z and the path from z to a. The path does not
contain any edges that end in z or y, thus this path occurs also
in G.

We consider two cases depending on whether a = y or
not. If a = y then the edge from a to z also occurs in G and
combined with the path from z to a, we have a cycle in G,
a contradiction. If a = y then the path from z to a in G is
a path from z to y, which contradicts the first premise of the
current lemma. Thus G′ is a dag.

Now it is easy to see that G′ is a valid aadag (the changed
vertices still have the same number of incoming edges as the
arity of their operation).

We now show that G′ can simulate G. The propositions 1,
2, 3, 4, 6 of Def. 5 are obviously satisfied. Proposition 5 is
also satisfied by the isomorphism that relates z in G to y in
G′ and all other random vertices (which are different from z
and y, thus their operation is not changed) to themselves.

Now we look at proposition 7 of Def. 5. Consider any
protocol run rG in G. It fixes the values of all vertices in G
except the adversarial sink. Because the only vertices whose
operation or predecessors may have changed from G to G′
are z and y, all other vertices of G′ (whose operation is not
input, random, advsrc, or advsink) have a value equal to
their operation applied to the values of their predecessors.
λG′(y) = random. Thus we only need to check that the value
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of z in G′ is equal to its operation applied to the values of its
predecessors, i.e. that rG(z) = λG′(z)(rG(v

′
1), . . . , rG(v

′
k)).

Because rG is a run of G, we have

rG(y) = λG(y)(rG(v1), . . . , rG(vk)) = f(rG(v1), . . . , rG(vk))

Because f is reversible, we have (from Def. 2)

rG(vm) = revmf (rG(v
′
1), . . . , rG(v

′
k))

rG(z) = λG′(z)(rG(v
′
1), . . . , rG(v

′
k))

Thus the values of all vertices (except the adversarial sink) are
correctly calculated according to their operations in G′ and
values of their predecessors in G′ and rG is also a protocol
run in G′.

Also every protocol run in G′ is a protocol run in G
because if we apply the transformation described above to G′
(exchanging the roles of y and z), we get G again.

Now consider proposition 8 of Def. 5. Let v be a vertex
from which there is an edge to the adversarial sink in G′ (and
G). Let w be a vertex in G′ from which there is a path to v.
Let this path be p. If p does not contain either of the vertices y
and z then proposition 8 of Def. 5 follows from the second and
third itemized statements of the current lemma. Now consider
the other case. Let u be the last vertex on p that is in the set
{y, z}. Then the path from u to v also exists in G because
no edges on this path are changed between G and G′. If u is
z then the path from u through v to the adversarial sink in
G must contain y. Contradiction. Thus u is y. Because y is
nullary in G′, it must be the first vertex of the path p, i.e. u,
v, and y are the same vertex. Thus the path p also exists in G.
For every vertex on p different from y, i.e. for every vertex on
p that is non-random in G′, the operation, the incoming edges,
and the ordering of predecessors are the same as in G. This
proves proposition 8 of Def. 5.

The next lemma describes the properties of the subroutine
transformPath from Fig. 4, which makes some number of
modifications described in the previous lemma to move the
generation of a random value to a vertex whose value is sent
to the adversary without any further calculations. Thus the
message sent to the adversary is now completely random. The
proof applies Lemma 2 n times.

Lemma 3: Suppose all of the following hold in an aadag
G:

• v0, v1, . . . , vn (n ≥ 1) is the only path in G from the
ith random vertex v0 to the vertex v = vn

• The operation of v0 is random

• The operations of v1, . . . , vn are reversible and not
advsink

• All paths from the ith random vertex to the adversarial
sink in G go through the vertex v

Then executing transformPath(v, i) (from Fig. 4) on G does
not fail and produces an aadag G′ that can simulate G such
that

• the operation of v is random in G′

• the only edges that may differ between G and G′ are
those that end in one of the vertices v0, v1, . . . , vn

• the only vertices whose operation or ordering of
predecessors may differ between G and G′ are
v0, v1, . . . , vn

Proof: The first premise of the current lemma ensures
that the fail in transformPath(v, i) is not reached. Then we
essentially use Lemma 2 n times to move the generation of a
random value from v0 to v1 to . . ., and finally to vn in G′.
Lemma 2 ensures that the calls to transformOne do not fail.

We use induction over n. The base case n = 1 holds by
Lemma 2 with z = v0 and y = v. Now consider the case n ≥
2. We use the induction hypothesis for the path v0, . . . , vn−1.
The first three premises are obviously satisfied. The fourth one
is also satisfied because all paths from v0 to the adversarial
sink in G go through v and the only path from v0 to v also
goes through vn−1. The induction hypothesis gives us an aadag
G1 that can simulate G such that the operation of vn−1 is
random in G1, the only edges that may differ between G and
G1 are those that end in one of the vertices v0, . . . , vn−1, and
the only vertices whose operation or ordering of predecessors
may differ between G and G1 are v0, . . . , vn−1.

Now we use Lemma 2 with vn−1 as z, v as y, and G1 as
G. The second and third premise are obviously satisfied.

Now consider the first premise. The edge from vn−1 to v,
which exists in G, cannot have changed in G1. Suppose there
exists another path from vn−1 to v in G1. This path cannot
contain the edge from vn−1 to v because G1 is acyclic. Let vk
be the last vertex on this path that is in the set {v0, . . . , vn−1}.
This vertex exists because vn−1 is in that set. Then the path
from vk to v does not contain any of the vertices v0, . . . , vn−1,
except as the first vertex. Thus the edges in this path have not
changed between G and G1, thus the path also exists in G.
We prepend to this path the path v0, . . . , vk (a prefix of the
path v0, v1, . . . , vn). Now we have a path from v0 to v in G
that does not go through the edge from vn−1 to v. This path
is different from v0, v1, . . . , vn. Contradiction. Thus the first
premise of Lemma 2 is satisfied.

Now consider the fourth premise. Suppose there exists a
path from vn−1 to the adversarial sink in G1 that does not go
through v. Similarly to the first premise above, we can show
that there exists a suffix of this path that is in G and can be
prepended with a prefix of the path v0, v1, . . . , vn to get a path
from v0 to the adversarial sink in G that does not go through
v. Contradiction. Thus the fourth premise is also satisfied.

Lemma 2 now gives us an aadag G′ that can simulate
G1 such that the operation of v is random in G′, the only
edges that may differ between G1 and G′ are those that
end in vn−1 or v, and the only vertices whose operation or
ordering of predecessors may differ between G1 and G′ are
vn−1 and v. Now G′ can simulate G because of transitivity
and the statements of the current lemma for G′ follow from
the statements we got from Lemma 2 and from the induction
hypothesis (which was described above).

C. Algorithm Invariants

In the next two lemmas, we state some loop invariants of
the algorithm. These will be used in the proofs of our Theo-
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rems 1 and 2. The lemmas relate the values of certain variables
in the algorithm to the properties of the aadag (especially the
existence of certain paths). Lemma 5 additionally shows that
the aadag transformations made by the algorithm preserve the
can simulate relation, and that the algorithm never fails by a
run-time error.

Lemma 4: After the execution of the for each loop in
Fig. 3, the following statements hold for all v different from
the adversarial sink and all i:

• isSensitive[v] = true if and only if there is a path from
a non-adversarial input vertex to the vertex v

• If i ∈ leakRandoms[v] ∧ i ∈ usableRandoms[v] then
there is no path from the ith random vertex to the
vertex v

• If i ∈ usableRandoms[v] then there exists exactly one
path from the ith random vertex to v and the operation
of every vertex on this path is reversible and different
from advsink, except the first vertex, whose operation
is random

Proof: Due to lack of space, we have to give just a
summary instead of the full proof. It uses induction over the
vertices of the dag, in topological order, and case analysis
based on the code of the algoritm in Fig. 3. The proofs of first
two statements are simple. For the third statement, there is one
simple case. The more difficult case is

• The operation of v is reversible and different from
advsink and for exactly one predecessor w of v, i ∈
usableRandoms[w].

By the induction hypothesis, we have the unique path from
the ith random vertex r to w, which we extend with the edge
from w to v. This new path has the required property. If there
is another such path then let the vertex before v in that path be
w′. Then we consider the cases w = w′ and w = w′ and both
lead to contradiction (here we use the induction hypothesis for
the second and the third statement).

Lemma 5: At the beginning and end of each iteration of
the while loop in Fig. 3, the following statements hold:

• The statements of Lemma 4 hold for all v ∈ S and
for all i

• The set S is the set of non-random vertices from which
there is an edge into the adversarial sink

• The aadag at that point can simulate the aadag origi-
nally given to the algorithm

• The algorithm has not reached fail

Proof: The set S is initially finite and each iteration of
the while loop removes one vertex from S, thus the while
loop terminates. We use induction on the iteration number of
the while loop. At the beginning of the first iteration, the first
statement holds by Lemma 4 (and because S does not contain
the adversarial sink) and the second statement is true because
of the initial value of S defined just before the while loop. The
third statement holds because the two dags mentioned are the
same at this point. The fourth statement holds because there
are no fail statements before the while loop. At the beginning

of any other iteration, the statements follow from the induction
hypothesis for the end of the previous iteration.

Now suppose the statements hold at the beginning of an
iteration. Consider the changes made to the aadag during the
iteration. We change the current aadag G into a new aadag
G′ that can simulate G using the transformations described
in Fig. 4. We use Lemma 3 with the ith random vertex as
v0 and the vertex v as v. Because i ∈ usableRandoms[v], the
induction hypothesis gives that there exists exactly one path in
G from the ith random vertex to v and the operation of every
vertex on this path is reversible and different from advsink,
except the first vertex, whose operation is random. Because
i ∈ leakRandoms[w] ∧ i ∈ usableRandoms[w] for all w ∈ S
different from v, the induction hypothesis gives that there is no
path from the ith random vertex to any vertex in S except v.
Because v ∈ S, v is not random and thus there is also no path
from the ith random vertex to any vertex not in S from which
there is an edge to the adversarial sink. Thus all paths from
the ith random vertex to the adversarial sink go through v.
Thus all premises of Lemma 3 are satisfied and we can apply
this lemma.

Lemma 3 and the transitivity of the can simulate relation
give that the third and the fourth statement of the current
lemma hold at the end of the iteration.

The only changes made to the aadag during the iteration
are in the vertices of the path v0, v1, . . . , vn in Lemma 3. These
vertices may have their operations or incoming edges changed
but no other vertices or edges are modified. There is no path
from any of these vertices vi to any of the vertices in S except
v (because otherwise there would also be path from v0 to that
vertex).

The only vertex with an outgoing edge into the adversarial
sink which has its operation or incoming edges changed, is
v. It is changed from non-random to random, thus it should
be removed from S, and no other vertex should have its
membership in S changed. This is exactly what is done in
the algorithm, thus the second statement of the current lemma
holds at the end of the iteration.

Now we consider the first statement of the current lemma.
The statements of Lemma 4 depend only on the values of
arrays isSensitive, leakRandoms, and usableRandoms, and
on paths that end in a vertex in S and on the operations of the
vertices on those paths. The arrays are not changed during the
iteration and the paths and the operations of the vertices on
the paths are also not changed if we consider S \ {v} instead
of S because v is removed from S during the iteration. Thus
the first statement of the current lemma also holds at the end
of the iteration.

D. Timing

The next two definitions and a lemma describe the timing
of the vertices of the aadag. Timing is important for two
reasons. First, it allows us to formalize that any message
sent or received by the adversary does not depend on the
messages sent or received in the future, thus avoiding circular
dependencies. This allows us to use induction over time
moments to show that the view of the adversary at each time
moment (the messages received by that time) is the same in

8282



the original aadag and the aadag transformed by the algorithm.
Second, timing allows us to prove privacy against a more
powerful and realistic adversary who can also measure (and
use in the attack) the arrival times of messages, not only their
contents.

Definition 6: A protocol run timing function is a function
F that maps every tuple consisting of the identifier of a vertex
v, the operation of v, the list of identifiers of the predecessors
of v (including their ordering as predecessors), and the list of
timings of the predecessors of v to the timing of v and satisfies
the following:

• the timing of v is a positive integer greater than the
timing of every predecessor of v

• if the operation of v is random then its timing is 1

• F is monotonic in the timing of each predecessor of
v

Definition 7: The timing of a vertex v in aadag G accord-
ing to the protocol run timing function F is the integer obtained
by applying the function F to the timings of the predecessors
of v in G according to F and some other information that
does not depend on F (as described in Def. 6). This definition
is recursive (the timings can be calculated in the topological
order of vertices in G).

Lemma 6: If an aadag G1 can simulate an aadag G2, v is
a vertex from which there is a path to the adversarial sink in
G1, and F is a protocol run timing function then the timing
of v in G1 according to F is less than or equal to the timing
of v in G2 according to F .

Proof: We use induction over the vertices of G1 from
which there is a path to the adversarial sink, in the topological
order of vertices of G1.

Let v be a vertex of G1 from which there is a path to the
adversarial sink. If v is random in G1 then its timing in G1 is
1, which is less than or equal to the timing of v in G2, which
is a positive integer.

Now we consider the case where v is not random in G1.
Then the predecessors of v in G1 are also vertices from which
there is a path to the adversarial sink and by the induction
hypothesis, the timings of the predecessors of v in G1 are less
than or equal to the timings of the same vertices in G2. Because
G1 can simulate G2, we can use proposition 8 of Def. 5 and
the operation of v, the identifiers of the predecessors of v, and
their ordering as predecessors are the same in G1 and G2. Also
the identifier of v is the same in G1 and G2. Because F is
monotonic in the timing of each predecessor of v, the timing
of v in G1 is less than or equal to the timing of v in G2.

E. Properties Implying Privacy

In this paper, we are considering four different properties
related to privacy. Two of them we already saw in Sec. II.
The one in Def. 1 requires that the environment, with the help
of the adversary, cannot distinguish between the real protocol
and the ideal functionality. The second property is the premise
of Lemma 1. It requires that the adversary cannot distinguish
between any two instances of the real protocol (the protocol
with two different input tuples for the honest parties).

In this section, we will define two more properties. The
third property will be defined in Def. 8 and it is equivalent to
the second property but it will explicitly specify the class of
adversaries (active and deterministic) and restrict the class of
protocol implementations to aadags (arithmetic circuits).

The fourth property will be defined in Def. 9 and it is
the actual property recognized by the algorithm. It requires
that sensitive values (whose computation uses inputs of honest
parties) sent to the adversary be masked by randomness, not
in another (ad-hoc) way. It is stronger than the third property
because we can construct a protocol that sends to the adversary
a non-randomized value that does not depend on the inputs of
honest parties but whose computation still uses them, e.g. a
value x − x where x is an input of an honest party. Such
protocols, however, most probably contain bugs and thus it is
not a shortcoming that the algorithm rejects them. Furthermore,
it is not possible to find a polynomial algorithm for checking
the third property, unless P = NP, because we can reduce an
NP-complete problem (e.g. 3-SAT) to the problem of checking
the third property. The reduction transforms an instance of the
NP-complete problem into a protocol that leaks a private input
with a non-zero (albeit very small) probability if and only if
the answer to the instance is yes.

The four properties are related by Lemma 1, Lemma 7, and
Theorem 1, such that the fourth implies the third, which im-
plies the second, which implies the first. Thus if the algorithm
accepts a protocol then this protocol is black-box private.

Input privacy against passive adversaries requires that the
view of the adversary be independent of non-adversarial inputs.
We define input privacy against active adversaries. For this we
must quantify the requirement over all adversaries because the
view of the adversary now depends on the adversary whereas
in the passive case it depends only on the protocol. We restrict
the quantification to only deterministic adversaries, which is
enough, as we saw in Sec. IV.

Definition 8: A protocol given as an aadag is private
against active adversaries iff for every active adversary, where

• for every positive integer T , the adversary’s output at
time T (the list of adversarial sources whose timing
is T and their values) is uniquely determined by the
adversary’s input by time T−1 (the values and timings
of vertices whose timing is T − 1 or less from which
there is an edge into the adversarial sink),

• and the adversary outputs nothing at time 0 or earlier,

the tuple of values of vertices from which there is an edge into
the adversarial sink is independent of the tuple of values of
non-adversarial input vertices.

Lemma 7: If a protocol given as an aadag is private against
active adversaries (according to Def. 8) then the protocol is
also black-box private as defined in Sec. II.

Proof: Consider any protocol π and the corresponding
aadag that is private against active adversaries. Consider any
adversary A and any set of vertices A that the adversary may
corrupt. The messages sent from the parties in P\A (where
P is the set of all parties) to the parties in A are exactly
the values of vertices from which there is an edge into the
adversarial sink.
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Let the probability distribution of these messages be
Dπ,A

A,P\A(�x, �y), where �x is the tuple of inputs to parties in A

and �y is the tuple of inputs to parties in P\A, i.e. the values of

non-adversarial input vertices. By Def. 8, Dπ,A
A,P\A(�x, �y) does

not depend on �y, thus Dπ,A
A,P\A(�x, �y1) = Dπ,A

A,P\A(�x, �y2) for

all �x, �y1, and �y2, and by Lemma 1, the protocol is black-box
private.

The next lemma relates the non-existence of paths between
certain vertices of the aadag and statistical independence of the
values of those vertices.

Lemma 8: Let X1, . . . , Xm be the values of nullary ver-
tices v1, . . . , vm (with Xi the value of vi) in the aadag and
Y1, . . . , Yn be the values of any vertices w1, . . . , wn (with Yj

the value of wj) in the aadag. If for each i ∈ {1, . . . ,m} and
each j ∈ {1, . . . , n}: there is no path in the aadag from vi
to wj then the tuple (Y1, . . . , Yn) is independent of the tuple
(X1, . . . , Xm).

Proof: If we fix the values of all nullary vertices (ad-
versarial sources, input vertices, and random vertices) in
the aadag then the values of all vertices are automatically
determined because all non-nullary operations in the aadag
are deterministic. The probability distribution of Y1, . . . , Yn

is determined by the probability distribution of the nullary
vertices. Because there is no path in the aadag from any of the
vertices corresponding to X1, . . . , Xm to any of the vertices
corresponding to Y1, . . . , Yn, the values Y1, . . . , Yn do not
change if we change X1, . . . , Xm but keep all other values of
nullary vertices unchanged. Thus the conditional probability
distribution of (Y1, . . . , Yn) given (X1, . . . , Xm) is the same
as the unconditional probability distribution of (Y1, . . . , Yn),
i.e. (Y1, . . . , Yn) is independent of (X1, . . . , Xm).

Definition 9: We say that the algorithm recognizes an
aadag G as private iff the algorithm run with G as input returns
the protocol is private.

Theorem 1: If the algorithm in Figures 2, 3, and 4 recog-
nizes an aadag G as private then the protocol corresponding to
G is private against active adversaries (according to Def. 8).
Also, the algorithm never reaches fail.

Proof: By Lemma 5 (the third and the fourth statement at
the end of the final iteration), the aadag G2 before the final if
can simulate the original aadag G1 and the algorithm has not
failed by the point after the while loop. Thus the algorithm
never fails because there are no fail statements after the while
loop.

Now we turn our attention to the final if. The first statement
of Lemma 4 and the condition of the if give that there is no
path from the non-adversarial input vertices to the vertices in
S (which, by the second statement of Lemma 5 at the end
of the final iteration, is the set of non-random vertices from
which there is an edge into the adversarial sink). There is also
no path from the non-adversarial input vertices to the random
vertices from which there is an edge into the adversarial sink
because a random vertex has no incoming edges and a random
vertex also cannot be an input vertex.

By Lemma 8, the tuple of values of vertices from which
there is an edge into the adversarial sink is independent of the

tuple of values of non-adversarial input vertices. Thus the final
aadag G2 is private.

Suppose the initial aadag G1 is not private, i.e. there exists
an adversary A that can gain information about the secret
inputs. Fix a protocol run timing function F . By Lemma 6,
the timings of the vertices from which there is a edge into the
adversarial sink in G2 are less than or equal to the timings of
the same vertices in G1. We construct an adversary A′ that
uses A as an oracle, and for every message that A′ receives
from a vertex v in G2, it waits 0 or more units of time and
forwards the message to A at time equal to the timing of v
in G1. Every message that A sends out, is immediately (in 0
units of time) forwarded by A′ to an adversarial source in G2.

Consider any possible protocol run in G1. Because G2 can
simulate G1, this run is also possible in G2. To get this run, we
set the secret input to the same values as in the original run,
and set the random values to the values of the corresponding
vertices in the original run (which might not have been random
there). We use A′ as the adversary (with A as its oracle). After
all these inputs are fixed, the adversary and the non-adversarial
aadag are deterministic.

We use induction over time moments (non-negative in-
tegers) to prove that at each time moment T , the values
of vertices whose timing is T or less are the same in the
original run (produced with G1 and A) and the simulating run
(produced with G2 and A′). At T = 0, this holds because all
timings are positive and thus no vertices have yet been given
values. Suppose that the induction hypothesis holds for at time
T − 1. Then at time T , the values of the vertices with timing
T are determined. These values are the same in the original
and the simulating run because of the induction hypothesis, the
construction of A′, and the restriction on adversaries given in
Def. 8. Thus the induction statement holds also at time T and,
by induction, also for all T .

If the runs terminate (if one does then so does the other),
i.e. all vertices receive a value after a finite amount of time,
then they produce the same protocol runs. Thus the adversary
gains the same information about the secret inputs as in
the initial aadag. Thus the final aadag G2 is not private.
Contradiction.

If the runs do not terminate then (because the aadags are
finite) there exists a time moment T after which no more
vertices receive a value. Then the produced protocol runs on
the subgraphs of G1 and G2 (induced by the vertices whose
values are determined) are the same for G1 and G2. Thus
the adversary still gains the same information about the secret
inputs as in the initial aadag. Thus the final aadag G2 is not
private. Contradiction.

F. Composability

The property verified by our algorithm is composable, as
stated by the following theorem. As the algorithm does not
depend on which vertices are output vertices, we can use any
vertices (except the adversarial sink) as output vertices.

Theorem 2: If the algorithm in Figures 2, 3, and 4 rec-
ognizes the aadags G1 and G2 as private then the aadag G
obtained from G1 and G2 by uniting the output vertices of G1
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with the input vertices of G2 and the adversarial sink of G1

with that of G2, is also recognized by the algorithm as private.

Proof: Suppose that G1 and G2 are recognized by the
algorithm as private. If v and the ith random vertex (we can
assume w.l.o.g. that for each random vertex, its index is the
same in all considered aadags) are in the same subgraph Gj

then the truth value of the statement i ∈ usableRandoms[v] is
the same in the algorithm run for Gj and that for G (this can
be proved by induction over v in G, in the topological order).
The same can be proved for i ∈ leakRandoms[v].

If v is a non-random vertex in G1 and the ith random vertex
is in G2 then it is easy to see that i ∈ usableRandoms[v] and
i ∈ leakRandoms[v] because there cannot be a path from the
ith random vertex to v.

Note that the condition of the while loop

i ∈ usableRandoms[v] ∧
for each vertex w ∈ S different from v:

i ∈ leakRandoms[w] ∧ i ∈ usableRandoms[w]

is monotonic in time, i.e. if it becomes true for some v and i
at some point in the algorithm run then it cannot become false
any more for these v and i because S can only become smaller
and other parameters in the condition are constant. Thus if the
condition becomes true for some v and i then the vertex v will
eventually be removed from S.

Let u1, . . . , uk (in this order) be the vertices removed from
S in the run for G2. We use induction over this list to prove
that for every k′ ≤ k, the vertices u1, . . . , uk′ (not necessarily
in this order) will eventually be removed from S in the run for
G. At the point in the run for G2 where uk′ is removed, the
condition of the while loop holds for uk′ and some i, where
the ith random vertex is in G2. Denote the set S at this point
by S2. Then S2 contains all vertices of G2 whose value is
sent to the adversary except u1, . . . , uk′−1. By the induction
hypothesis, there exists a point p1 in the run for G where
u1, . . . , uk′−1 have been removed from S. Denote the set S
at this point by S1. Then for every w ∈ S1, either w ∈ S2 or
w is not a vertex of G2. In both cases, i ∈ leakRandoms[w]∧
i ∈ usableRandoms[w] holds. Also, i ∈ usableRandoms[uk′ ]
holds. Thus the condition holds for uk′ and i at point p1 and
the vertex uk′ will eventually be removed from S in the run
for G. This proves the induction statement.

Denote by S0 the set S after the while loop (i.e. after
removing u1, . . . , uk) in the run for G2. Because G2 is
recognized as private by the algorithm, isSensitive[v] = false
for every v ∈ S0 in the run for G2. Thus, by Lemma 4, there is
no path from any input vertex of G2 to any vertex in S0. Every
path from a vertex of G1 to a vertex of G2 must go through an
input vertex of G2. Thus, if v ∈ S0 and the ith random vertex
is in G1 then there is no path from the ith random vertex to
v and thus i ∈ usableRandoms[v] and i ∈ leakRandoms[v].

Now let q1, . . . , qm (in this order) be the vertices removed
from S in the run for G1. We use induction over this list to
prove that for every m′ ≤ m, the vertices q1, . . . , qm′ (not
necessarily in this order) will eventually be removed from S
in the run for G. At the point in the run for G1 where qm′

is removed, the condition of the while loop holds for qm′ and
some i, where the ith random vertex is in G1. Denote the set
S at this point by S3. Then S3 contains all vertices of G1

whose value is sent to the adversary except q1, . . . , qk′−1. By
the induction hypothesis, there exists a point p4 in the run for
G where q1, . . . , qk′−1 and also u1, . . . , uk have been removed
from S. Denote the set S at this point by S4. Then for every
w ∈ S4, either w ∈ S3 or w is not a vertex of G1. In the second
case, we have w ∈ S0. In both cases, i ∈ leakRandoms[w] ∧
i ∈ usableRandoms[w] holds. Also, i ∈ usableRandoms[qm′ ]
holds. Thus the condition holds for qm′ and i at point p4 and
the vertex qm′ will eventually be removed from S in the run
for G. This proves the induction statement.

Thus all vertices that are removed from S in the runs of
G1 and G2, are also removed in the run for G. Thus the value
of S that is used in the final if in the run for G is a subset
of the union of the final values of S in the runs for G1 and
G2. Let the three values of S be S6, S7, S8, respectively. Then
S6 ⊆ S7 ∪ S8. Because G1 and G2 are recognized as private
by the algorithm, isSensitive[v] = false for every v ∈ S7 in
the run for G1 and every v ∈ S8 in the run for G2.

Suppose that there exists v ∈ S6 (and thus either v ∈ S7

or v ∈ S8) such that isSensitive[v] = true in the run for G. By
Lemma 4, there is a path from an input vertex u of G (which
is also an input vertex of G1) to v in G. If v ∈ S7 then the
whole path is in G1 and thus isSensitive[v] = true also in the
run for G1. Contradiction. If v ∈ S8 then the path from u to
v goes through a vertex w that is an input vertex of G2. Thus
there is a path from an input vertex of G2 to v in G2 and
isSensitive[v] = true also in the run for G2. Contradiction.

Thus for all v ∈ S, isSensitive[v] = false for every v ∈ S6

in the run for G. Thus the condition of the final if is satisfied
in the run for G and the algorithm recognizes G as private.

The proof is easily generalized to the case where we have
a modular composition of any number of protocols where the
input of any sub-protocol may come from the outputs of several
other sub-protocols or from global inputs. The composition
must still not contain cycles.

VI. AN EXAMPLE

In Fig. 5, we give an example of a bigger protocol
composed of two smaller protocols. Each of the subprotocols
is represented in the figure as a large box containing an
arithmetic circuit. The upper box represents a circuit that
takes as input a 1-bit integer u secret-shared modulo 2 (u =
(u1+u2+u3) mod 2) and outputs u secret-shared modulo 2n

(u = (w1 + w2 + w3) mod 2n).

The lower box represents the multiplication of two integers
secret-shared modulo 2n ((u1 + u2 + u3) · (v1 + v2 + v3) ≡
w1 + w2 + w3 (mod 2n)). It differs from Fig. 1 by omitting
the resharing (re-randomization) at the end. This is still private
and recognized as such by our algorithm, as long as the output
is not declassified (it may still be used as input of other
protocols working on shares, which do this re-randomization
at the beginning).

The combined protocol is a simplified version of oblivious
choice. It takes as input a 1-bit integer a (secret-shared modulo
2, as it would be when it is the boolean result of a comparison
protocol) and an n-bit integer b and returns b if a = 1 and 0
if a = 0. The output is a · b but we first need to convert a to
an n-bit integer, thus the need for two subprotocols.
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Figure 5. An example of composed arithmetic circuits

The labels of the nodes +, -, *, &, ˆ, neg, 0, 1, $ denote n-
bit integer addition, subtraction, multiplication, bitwise AND,
bitwise XOR, negation, constant 0, constant 1, random number
generation, respectively. The labels with suffix 1 denote the
same operations with 1-bit integers instead of n-bit. The labels
SE and ZE denote sign extension and zero extension of 1-bit
integers into n-bit integers.

At the top of the figure, there are six hand-drawn dotted
lines (without arrows on either end) entering the upper box
from above. These are the inputs of the composed protocol.
Three of those lead to the inputs of the first box, labeled u 1.
The other three go through the upper box to some of the inputs
of the lower box, labeled v. Similar lines go from the outputs
of the upper box to the inputs (labeled u) of the lower box.
These show the pairs of vertices that are united in Theorem 2.
And then there are three lines from the outputs of the lower
box exiting the box through the bottom. These are the outputs
of the composed protocol.

To check the privacy of the composed protocol, we can
either check it directly, or check the privacy of each of the
two subprotocols separately and then use Theorem 2 to get
the privacy of the whole protocol. In the second case, we can
check the privacy of the upper box either with or without the
three values that are passed through the protocol unmodified,
as these do not change the output of the algorithm. Checking
components separately also has the advantage that we learn
in which component a potential privacy leak occurs if the
algorithm fails to prove the privacy.

Now we illustrate what kind of mistakes can be detected
by the algorithm. These privacy leaks occur when the protocol
does not use enough randomness to mask the values sent to
other parties. In Fig. 5, the multiplication protocol uses 6
random nodes, 2 for each party. As the protocol is symmetrical,
a programming mistake would probably leave out 3 random
nodes (1 for each party) instead of only one and is thus
not likely to go unnoticed by the programmer. Thus the
multiplication protocol is not very error-prone.

On the other hand, the upper box (converting 1-bit integers
to n-bit) is not symmetrical, and it contains three random
nodes owned by the box party (the party whose nodes are
box-shaped). For better illustration, we give also the protocol
DSL source code of the graph in the upper box:

def shareconv (u : uint[1]) : uint[n+1] = {
let {1}

b = rng () //
m = zextend (b ˆ u) // m = zextend (u)
m12 = rng ()
m13 = m - m12
b12 = rng ()
b13 = b ˆ b12; // ;

let {2}
s23 = (b12 from 1) ˆ u;

let {3}
s32 = (b13 from 1) ˆ u; // s32 = (b12 from 1) ˆ u;

let {2,3}
s = (s23 from 2) ˆ (s32 from 3);

return
party:

1 -> 0
2 -> if (s == 1) (1 - (m12 from 1)) else (m12 from 1)
3 -> if (s == 1) (0 - (m13 from 1)) else (m13 from 1)

}

Here let {i} denotes that the block is evaluated only by
party i (i = 1, 2, 3); (v from i) denotes that the value of
the variable v is received from party i; party: 1 -> . . . 2
-> . . . 3 -> . . . denotes that each party evaluates a separate
expression. rng () denotes random number generation. The
variable u has a different value for each party (that party’s
share of the input). The other variables have only one value.
Comments begin with // and continue until the end of line.

The three random variables b, m12, and b12 are used to
split the input (u) of party 1 into 4 random shares (b12, b13,
m12, m13), such that all 4 are needed to reconstruct the input.

It seems counter-intuitive to need 4 shares when there are
only 3 parties but actually they are all essential. If any of the
random nodes is replaced with a constant or omitted (changing
a subexpression of the form a ˆ r or a - r, where r is
random, to just a) then the protocol is no longer private. Thus
programming mistakes are likely to occur here.

The code above passes the privacy check and the comments
may be deleted. The comments show the changes that can be
made to make the program insecure but still correct: the text
before // should be replaced with the text after // (which
may be empty). These changes occur when the programmer
forgets to include the random node b. The privacy leak here
is non-trivial because all sensitive values sent from one party
to another are masked by randomness and only by combining
two received values (e.g. (b12 from 1) and (s23 from
2)) can party 3 cancel out the randomness and leak a sensitive
value. The protocol is still correct (the outputs reconstructed
from shares are the same as in the original protocol) but not
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private. Our algorithm will detect the privacy leaks introduced
by such mistakes.

It would also be possible to get some information about
the location of the potential privacy leaks. We can modify
the algorithm in Fig. 3 to output at the end the set {v ∈ S:
isSensitive[v] = true}, which is non-empty if the privacy check
fails. It contains the nodes whose values are sensitive and
are sent to the adversary but for which the algorithm could
not determine that they are masked by enough independent
randomness. We can also modify the compiler to connect the
nodes in the arithmetic circuit to variables in the DSL code.
Then, in the DSL example where we omitted the variable b, the
algorithm would flag the variable s32 when checking against
party 2, s23 against party 3, and the protocol would be private
against party 1 (because the omitted random variable b belongs
to that party).

VII. PRIVACY AND SECURITY OF FULL SMC PROTOCOLS

The notion of privacy as defined in this paper, checked by
the proposed algorithm, and preserved by composition, applies
to protocols that receive their inputs in secret-shared form
and produce their outputs in the same form. Clearly, it also
applies to the initial sharing step that the input parties perform
to their inputs. It does not apply to the reconstruction step
that is necessary for the output parties to learn their respective
outputs. As this reconstruction step is part of any useful SMC
application, we have to consider how to deploy a set of actively
private protocols working on shared data, in order to reap the
most benefits from the privacy property they satisfy.

In principle, there are two different approaches to deal with
the privacy leak that may come with the reconstruction. The
first approach is to ignore it. If the output of the computation is
� bits long, and this output is made available to the adversary,
then the adversary is able to learn � bits about the inputs. This
is true even for the passive adversary, but an active adversary
may be able to influence, which bits it learns. Whether this
approach is acceptable or not, depends on the application. It
may be acceptable if the size of the input to SMC is large,
the size of the output is small (e.g. it is the result of running
a Boolean query) and the leakage of a small number of bits
about the input is deemed acceptable. In this case, actively
private protocols ensure a much smaller leakage to an active
adversary than protocols that are only passively secure.

The second approach to deal with the privacy leak is to
verify the behaviour of the computing parties after the compu-
tation but before the reconstruction of outputs. In such model
of consistent computations [14], the detection of misbehaviours
[12], [13] means that the outputs are not reconstructed, thus
also not learned by the adversary. Depending on the methods of
verification, the adversary is going to learn either nothing about
the inputs, or at most one bit (whether outputs were consistent
with the inputs or not). Such verification, performed after
the computation, can be much cheaper than actively secure
protocols which ensure the correct behaviour of the parties
throughout the computation.

Let us now consider the case where we need to execute
several SMC protocols (or one protocol several times), e.g.
make multiple queries on a secret-shared database. The com-
posability described in Sec. V-F applies to the part of the

protocol before output reconstruction. Thus, if we do not need
the output of the previous protocol to decide which protocol
to execute next (the outputs of previous protocols may still be
used to determine the parameters of the next protocol) then
we can combine all the protocols into a single protocol and
reconstruct all outputs only after the whole combined protocol
has been executed. In this case, we can still leak only one bit.

If we need to reconstruct the intermediate outputs, e.g. if
there is a human who uses the results of the previous queries
to decide which queries to make next, then we may leak more
than one bit. One way to limit the leakage is to block further
execution of queries after there has been a certain number of
protocol failures (active attacks that change outputs). If we
need to execute n queries and allow at most k failures then
the number of possible outcomes for the adversary is not more
than (n+k)k because it learns only the numbers of the queries
that failed. Thus no more than k log2(n + k) bits are leaked.
If k is constant then the adversary needs to actively attack an
exponential number of queries to learn a certain number of
bits, thus the attack would not be very practical.

VIII. IMPLEMENTATION

We have implemented the algorithm and it can prove
privacy of several useful protocols on additively shared secrets,
including all protocols in [16]. The protocols are used as
building blocks in the SHAREMIND framework [22], [23], [16].

We have tested the algorithm for input sizes of 8, 16, 32,
or 64 bits. The algorithm must be run separately for each
input size because the circuit generated for a protocol may
be different for different input sizes (the protocol may use
recursion over the bits, which must be unfolded in the circuit).
We have tested the algorithm only in the case of three parties,
of which one can be corrupted, but the algorithm (and its
implementation) is actually general enough to be used for
any number of parties, of which less than half are corrupted.
The algorithm takes the subset of the corrupted parties as an
argument, thus it must be executed separately for each subset
of corrupted parties for which privacy is required, unless the
protocol is symmetrical in the parties.

In the implementation we use bit vectors (of length
numRandoms) to encode the sets leakRandoms[v] and
usableRandoms[v]. Set operations then become bitwise
boolean operations. The implementation also skips the modifi-
cations of the aadag because these do not change the output of
the algorithm and were needed only for proving the soundness
of the algorithm.

The time complexity of the algorithm (as stated in Fig. 3
but without modifications of the aadag) is O(N · R), where
N = numVertices and R = numRandoms. To find the val-
ues v and i satisfying the condition of the while in O(N +R)
time instead of O(N · R), we use helper arrays that contain
for each index i the number of vertices v ∈ S for which
i ∈ leakRandoms[v] and the number of vertices v ∈ S for
which i ∈ usableRandoms[v].

The largest circuit we tested (corresponding to a private
integer division protocol for 64 bits) had N = 102709 and
R = 4952. Three runs of the algorithm (one against each of
three parties as an adversary) on this circuit took a total of 7.7
seconds on a 2.50 GHz laptop.
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While in this paper we consider only integer protocols, the
algorithm can also be extended to protocols on other data types
that can be secret shared using reversible operations. Thus we
have also used the implemented algorithm to prove the privacy
of protocols on secret-shared floating-point numbers (which
consist of a sign bit, significand, and exponent as separate
secret-shared integers). The reversible operations supported by
the implementation are addition, subtraction, negation, bitwise
exclusive or, and bitwise not.

We have used the algorithm to prove the privacy of all
primitive protocols on secret-shared integers and floating-point
numbers that we tried, after they were correctly implemented.
The protocols include arithmetic operations, comparison, bit-
wise operations, shifts, square root, and some others, including
some faster protocols for the cases where only one of the
arguments is secret-shared and the other is public.

If a protocol implementation contains a bug that introduces
a privacy leak then the algorithm fails to prove the privacy.
Thus the algorithm can be used by the programmer to detect
such bugs, similarly to a static type checker.

Although there exist protocols that are private but are
rejected by our algorithm, this incompleteness has never been
an issue. We do not use, nor do we foresee using constructions
that are private, but cannot be handled by our checker after
straightforward protocol optimizations.

IX. RELATED WORK

Our privacy checker is a solid example of the sequence-of-
games approach to cryptographic proofs [24], the examples of
which are many [25], [26], [27], [28]. We make a sequence of
small modifications to the non-adversarial part of the protocol
circuit. The modifications do not change the view of the
adversary but may change how it is computed. After all these
modifications, the view is computed without any reference to
the inputs of honest parties, and input privacy is now obvious.
Our analyser does not actually modify the protocol during its
run; in this sense, it is similar to [29].

Our analysis tracks, which values are masked by which
random values using reversible operations. There are some
similarities to [30]; they can even claim completeness for a
certain verification procedure, but applied to a much simpler
and more regular language. In [31], automatic introduction of
masks is considered, but the setting is again quite different
from us.

Security and composition of multi-party protocols is inves-
tigated in [32]. They consider passive, active, non-adaptive,
and adaptive adversaries, in the secure-channels and com-
putational settings. For active adversaries, they require both
secrecy (input privacy) and correctness. They use the ideal-
real paradigm to give definitions of security and prove the
composability of their security notions. In [33], it is shown how
to actually construct universally composable secure multiparty
computation protocols for all functions f . Compared to [32],
we consider only active non-adaptive adversaries in the secure-
channels setting, and we are only interested in privacy, not
correctness.

Our algorithm is targeted towards multi-party protocols
operating on secret shared values. Secret sharing in the secure-

channels setting (and information-theoretic security) is consid-
ered in [34], which also proves some completeness theorems
in this setting. Composability for input private (against passive
adversaries) protocols on shares is considered in [11]; their
treatment is also applicable to active adversaries. We prove
composability not for the actual security property (Def. 8) but
rather for the property (Def. 9) verified by the algorithm (which
implies the security property).

It has also been proposed to use a type system for secure
computation [35]. They consider only two-party protocols
in the semi-honest model. They require all values that are
sent to another party to be explicitly made random using
a re-randomize operation. A value derived from the same
randomness cannot be sent out more than once because it is
zeroed after sending. In the three-party multiplication protocol
in our Fig. 1, a party sends two values derived from the same
randomness to both of the other parties (one to each party).
Thus it would be difficult to extend the type system to the case
of three (or more) parties.

On the other hand, it seems possible to adapt our algorithm
to the two-party protocols considered in [35], which use both
secret sharing and homomorphic encryption. The re-randomize
operation for ciphertexts (multiplication by an encryption of a
random value) can be considered as a reversible operation, with
a slight complication that it is reversible only by another party
(the one who has the private key). Thus, although the algorithm
was designed for the SHAREMIND protocol set (three-party
protocols using additive secret sharing), it may be useful also
for some other SMC frameworks.

Compared to [35], our algorithm provides type inference
(the programmer does not have to specify which values are
used for re-randomization, the algorithm can automatically
infer this), is fully static (no need to zero sent values at
run time), and allows using the same randomness to hide
information from two different non-colluding parties (which is
needed for three-party secret-shared protocols). Our algorithm
can be considered as a combined type-inference and type-
checking algorithm for an implicit type system. This type
system would be too complex and artificial to write out.

X. CONCLUSIONS

We have designed and implemented an algorithm that suc-
ceeds in proving the input privacy of all tried basic building-
block three-party protocols on additively secret-shared integers
against an active adversary that corrupts one of the parties.
The algorithm takes as input the low-level specification of
the protocol, thus it can detect any potential privacy leaks
introduced by a translation from a high-level specification.
We have proved that the property verified by our algorithm
implies input privacy and is composable. Thus protocols on
shares composed from the building blocks would also have
input privacy and composed SMC programs that also combine
shares to reveal some values leak only a small number of bits
compared to the communication volume.

Our analysis also validates the design decisions of SHARE-
MIND and its three-party protocol set from the provable
security side. It shows that these protocols are secure in more
demanding models of security, and paves the way towards fully
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active security without sacrificing the high performance of the
current protocol set.
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