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Abstract

Navier’s equations modelling linear elastic solid defor-
mations are embedded within an Extended Kalman Filter
(EKF) to compute a sequential Bayesian estimate for the
Non-Rigid Structure from Motion problem. The algorithm
processes every single frame of a sequence gathered with
a full perspective camera. No prior data association is
assumed because matches are computed within the EKF
prediction-match-update cycle.

Scene is coded as a Finite Element Method (FEM) elas-
tic thin-plate solid, where the discretization nodes are the
sparse set of scene points salient in the image. It is as-
sumed a set of Gaussian forces acting on solid nodes to
cause scene deformation. The EKF combines in a feedback
loop an approximate FEM model and the frame rate mea-
surements from the camera, resulting in an efficient method
to embed Navier’s equations without resorting to expensive
non-linear FEM models.

Classical FEM modelling has implied an interactive
identification of boundary points to constrain the scene
rigid motion, in this work this dissatisfying prior knowledge
is no longer needed. The scene and camera rigid motion
are combined in a unique pose vector and the estimation is
coded relative to the camera. Additionally, the deforming
effect of the Gaussian forces on the thin-plate is computed
by means of the Moore-Penrose pseudoinverse of the FEM
stiffness matrix.

The proposed algorithm is validated with three real se-
quences gathered with hand-held camera observing isomet-
ric and non-isometric deformations. It is also shown the
consistency of the EKF estimation with respect to ground
truth computed from stereo.

1. Introduction
Given a full perspective camera undergoing an unknown

trajectory while observing an also unknown rigid scene
(Fig. 1(a)). Both the camera trajectory xv and the scene
3D structure can be estimated, up to scale factor, just from
the sole input of the image sequence gathered by the cam-
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Figure 1. (a) A mobile camera observing a rigid scene. (b) A mo-
bile camera observing a non-rigid scene deformed under the action
of a Gaussian set of forces; boundary points prevent scene rigid
displacements ar . (c) Removing boundary points allows rigid mo-
tion for both the camera and the scene structure, on top of the
scene non-rigid deformation. (d) Rigid motions for the scene and
the camera are combined in the pose, xr . The scene non-rigid
deformation is coded in anr .

era, this is the classical rigid visual SLAM (Simultaneous
Localisation And Mapping) problem. Extended Kalman
Filter (EKF) based approaches [6, 7] were the first com-
puting SLAM in real-time, more recently keyframe based
approaches [15] are yielding more accurate and efficient
SLAM algorithms. In any case, Agudo et al. in [1] recently
proved that EKF SLAM can successfully deal with scenes



combining rigid and non-rigid points recovering both the
camera trajectory and scene structure (Fig. 1(b)). The
deformable scene is coded by means of Finite Element
Method (FEM) modelling, it is assumed a set of Gaus-
sian deforming forces acting on the non-rigid surface, re-
sulting in the scene incremental displacement a due to the
non-rigid displacement anr. In this case, rigid boundary
points – corresponding to boundary conditions– are neces-
sary for the proposed FEM formulation. However, identify-
ing which scene points are boundary points is a too strong
prior knowledge. It is our main contribution to remove the
boundary points from the EKF-FEM formulation.

If boundary points are removed from the formulation,
at each estimation step both the camera and the scene can
undergo a rigid motion, xv and ar respectively (Fig. 1(c)).
Additionally the scene can suffer a non-rigid deformation
anr.

The combined effect of the camera and scene rigid mo-
tion is coded in a unique pose vector xr and the non-rigid
deformation is coded in anr (Fig. 1(d)). We propose to
code both the pose and the non-rigid scene with respect to
the last camera location, following the robocentric formula-
tion, proposed by Castellanos et al. in [5].

2. Related work
Non-Rigid Structure from Motion (NRSfM) computes

time varying 3D structure and pose from the sole camera-
gathered image sequence, it is an ill-posed problem so addi-
tional smoothing constraints are necessary. A seminal work
was proposed by Bregler et al. [4] based on a low rank shape
model in which the time varying 3D structure is coded as a
linear combination of basis shapes. Paladini et al. in [18]
propose a sequential version of the factorization method
over a sliding window. These methods need to detect all the
scene points in all the processed images, and orthographic
cameras are assumed.

Bundle Adjustment (BA) has been applied to solve shape
basis approaches to NRSfM. BA can additionally incorpo-
rate temporal and spatial smoothness priors both on the de-
formations and motion [2, 8]. Torresani et al. in [22] intro-
duce an expectation maximization probabilistic linear dy-
namic model coding deformation weight as Gaussians. Re-
ported experiments, compared to closed form, exhibit bet-
ter noise rejection and improved accuracy. Also based on
global optimization, Fayad et al. in [10] replace the linear
model by a quadratic global model, achieving good results
when dealing with large scene deformations.

In contrast to global models, piecewise models can code
more accurately strong deformations composed of multiple
local deformations. Piecewise methods rely on common
features shared between patches to enforce spatial consis-
tency and create a continuous global surface. Varol et al. in
[23] propose planar piecewise patches. Fayad et al. in [9]

propose quadratic models. Taylor et al. in [21] propose a
triangle soup being each triangle assumed rigid.

Template-based methods, [19, 20] propose to compute
correspondences between the current image and a reference
image in which the 3D shape —the structure at rest— is
known. The 3D structure is coded as a triangular mesh.
Like in all other methods, both temporal and spatial smooth-
ing are applied. These methods can deal with projective
cameras.

Previous optimization methods –except template-based–
still relay mostly in an orthographic camera. Regarding data
association can tolerate partial observation of scene points
in the images but data association has to be given as prior.
More recently Moreno-Noguer and Porta [17] code the iso-
metric scene as a combination of prior known deformation
modes with a perspective camera.

In computer vision, physics-based models have been
proposed for recovering model deformations from images
[14, 16]. Ilić and Fua in [13] propose an expensive non-
linear FEM model for large deformations focused on 1D
beam like structures. The formulation includes the forces
and boundary conditions, resulting in a robust and accurate
2D tracking algorithm. Greminger and Nelson propose in
[12] coded an elastic solid by means of the Boundary El-
ement Method (BEM) for 2D deformable object tracking;
by enforcing a 3 rank deficiency, boundary conditions are
removed from the formulation.

Recently Agudo et al. in [1] propose linear FEM thin-
plate model to embed Navier’s equations within the EKF
estimation. They can deal with full perspective cameras
and compute the data association, every single frame in
the sequence is processed. Thanks to the Navier FEM
model they can cope both with isometric and non-isometric
scenes without assuming any scene deformation mode.
The method is piecewise and can be considered close to
template-based because the structure at rest is needed to
cope with the deforming scene. Template-based methods
register every image with respect to the initial 3D template.
EKF-FEM compares the current frame with respect to the
3D scene structure estimated, after processing the initial
structure at rest and all the previous frames in the image se-
quence. The method can combine both rigid and non-rigid
points, but prior knowledge about scene point classification
as boundary or non-boundary is mandatory. Every non-rigid
point is coded by means of a 6 d.o.f vector. In the current
work, we build on previous proposal but boundary points
are removed from the formulation, additionally the points
are coded only in 3 d.o.f, with the corresponding efficiency
increase.

3. Thin-Plate Formulation
The 3D displacements in an isotropic linear elastic solid

Ω under 3D external forces are modelled by the steady



state Navier’s equations Eq. (1) and the boundary condi-
tions Eq. (2) [24, 3]:

(λ+G)aj,ij +Gai,jj + fi = 0 in Ω, (1)

ai = āi on Γ. (2)

Equations are coded according to Einstein’s index conven-
tion. Γ is the solid boundary. ai is the displacement vector.
fi is the volumetric force vector. λ and G are the Lamé
parameters defining the material elastic properties:

λ =
νE

(1 + ν) (1− 2ν)
, G =

E

2 (1 + ν)
, (3)

where E is the Young’s modulus and ν the Poisson’s ratio.
Navier’s equations are approximated by means of FEM.

FEM discretizes the solid in finite elements Ωe (Fig. 2 (a))
defined by their nodes. The displacements are computed for
every node solving the sparse linear system:

K a = f (4)

where K is the global stiffness matrix, a is the nodal dis-
placements vector and f is the nodal forces vector. The
continuous displacement field is approximated by interpo-
lation from the nodal displacements by means of the shape
functions.

In [1] it is proposed a thin-plate formulation to reduce the
full 3D solid mechanic problem in a 2D problem, using the
2D plane stress model for membrane effect –displacement
within the plane– and the Kirchhoff–Love plate model for
bending effect –displacement off the plane. ai and forces
f i in each node i are 6 d.o.f vectors defined as:

ai =
(
ui vi wi θxi θyi θzi

)>
, (5)

f i =
(
fui fvi fwi Θxi Θyi Θzi

)>
. (6)

In this paper, we propose a novel simplification addi-
tional to the thin-plate formulation where (θxi, θyi, θzi) ro-
tations and moments (Θxi,Θyi,Θzi) are removed. For
each node only translational displacements can be detected,
in fact the rotations effects eventually are detected also as
translations. Similarly the effect of an acting moment can
be modelled as a force combination. Additionally to the half
cut down in the state size, the stiffness matrix conditioning
is also improved.

In [1] the K is assembled from Ke that is assembled
from:

Kmb
ij =

 KT ij

... KTRij

KTRij

... KRij

 . (7)

while in our proposal rows and columns corresponding to
the rotational displacements and moments are removed and
K is assembled from Ke∗, that is assembled from subma-
trix KT ij Eq. (7).
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Figure 2. (a) Thin-plate discretization. Detail for the displace-
ments and forces acting on a mesh node i. (b) according to [1].
(c) according to our proposal.

4. FEM Linear System Solution
A common FEM problem statement assumes two kinds

of nodes: boundary and non-boundary. Displacements for
boundary nodes are null Eq. (2) what provides additional
constraints in order to have an unique solution for Eq. (4), so
given forces acting on non-boundary nodes corresponding
displacements can be uniquely computed.

It is our goal to remove the constrained boundary point
displacements from the formulation, what implies that lin-
ear system Eq. (4) becomes under-constrained. In that case,
the full affine space solution can be computed as [11]:

a = ap + ah (8)
K ah = 0 (9)

ap = K+ f (10)

where ah is the homogeneous solution, a vector space di-
mension equal to the K rank deficiency. ah is the set dis-
placements vectors compatible with no force acting. As K
comes from a FEM formulation, ah corresponds to a rigid
transformation, so the homogeneous solution should be di-
mension 6, corresponding to the 6 d.o.f. of the 3D rigid
body motion. The particular solution, ap is computed by
means of the Moore–Penrose pseudoinverse K+.

Experimentally, it has been verified that K rank defi-
ciency is only 3, up to the numerical accuracy, instead of
the theoretical 6. In any case, the first 3 non-null singular
values are smaller than the rest. We attribute this excess in
rank to the thin-plate approximation with respect to the 3D
solid FEM formulation. For this reason, the 6 rank defi-
ciency has to be enforced. The 6 rank deficiency enforce-
ment has proven to be a key factor for proper experimental
performance.

Stiffness matrix K rank is enforced to r = 3n−6, where
n is the total number of nodes, by means of a Singular Value
Decomposition (SVD) exploiting the fact that K is sym-
metric:

K = U ΣU>. (11)



Hence the pseudoinverse is computed as:

K+ = U r Σ+ U r
>, (12)

where U r containing the first r columns of U and Σ+ is
a diagonal matrix composed of the first r singular values
inverses:

Σ+ = diag

(
1

σ1
, . . . ,

1

σr

)
. (13)

5. Cameracentric non-rigid EKF
This section is devoted to embedding the FEM free of

boundary points modelling for non-rigid scenes within the
sequential EKF estimation.

As no point in the scene can be assumed as static, only
the relative pose of the non-rigid scene with respect to the
camera can be estimated. For this reason, we propose a
robocentric EKF-based formulation [5], hence on we call it
cameracentric.

5.1. State Vector Definition

The state vector:

xCk

k =
(
xCk

rk

>
,yCk

k

>)>
, (14)

is composed of the camera pose xCk

rk and the n map point

locations yCk

k =
(
yCk

1k

>
, . . . ,yCk

nk

>)>
, coded as camera-

centric, i.e. all of them are expressed in the camera frame
coordinate system using Ck superscript.

xCk

rk models the pose that includes the combined effects
of the camera and scene rigid motions in 6 d.o.f. (Fig. 1(d)).
It is proposed to be modelled as a constant velocity model
so the state vector is composed of the pose and the corre-
sponding velocity vectors:

xCk

rk =
(
rCk

k

>
,qCk

k

>
,vCk

k

>
, ωCk

k

>
)>

, (15)

where rCk

k is the translation, qCk

k is the quaternion repre-
senting orientation, vCk

k and ωCk

k are linear and angular ve-
locities. We assume that linear and angular accelerations
aC and αC affect the pose, producing at each step an im-
pulse of linear velocity, VC = aC∆t, and angular velocity
ΩC = αC∆t, with a zero-mean Gaussian distribution being
Qxr

its covariance.
The state equation for the pose is:

gr =


rCk

k+1

qCk

k+1

vCk

k+1

ωCk

k+1

 =


rCk

k + (vCk

k + VC)∆t

qCk

k × q ((ωCk

k + ΩC)∆t)

vCk

k + VC

ωCk

k + ΩC

 , (16)

where q ((ωCk

k + ΩC)∆t) is the quaternion defined by the
rotation vector (ωCk

k + ΩC)∆t.
The state equation for the non-rigid scene is:

gy = yCk

k+1 = yCk

k + K+

k∆SC . (17)

where, the structure non-rigidity is coded by means of the
compliance matrix K+

k

(
ŷCk

k−1|k−1

)
, that depends on the

current structure geometry estimate ŷCk

k−1|k−1. The incre-
mental non-rigid displacement caused by the Gaussian set
of forces, anr (Fig. 1 (d)), is proposed to be modelled as
the particular solution Eq. (10) to the FEM linear system.

The vector of normalized forces, ∆SC , is causing recur-
sively at each step an incremental deformation. We assume
∆SC follows a zero-mean Gaussian distribution being Qy
its covariance.

The normalized forces:

∆SC
i =

1

Eh

(
∆fCxi, ∆f

C
yi, ∆f

C
zi

)>
, (18)

are defined to concentrate most the material tuning parame-
ters in the state noise vector, being h the surface thickness.
However, K still keeps a dependency on a h2 factor, be-
cause the h influence cannot be completely factorized out.

On the one hand, we propose to tune Qyi
as a diagonal

matrix, where the standard deviation codes the tangential
deformation, measured in length units, caused by typical
tangential force. On the other hand, if the typical force is
applied normal to the surface, the deformation will be big-
ger than the tangential deformation, approximately propor-
tional to 1

h2 . So h2 codes this anisotropy.
It should be noted that Eqs. (16) and (17) are state transi-

tion equations, where both the camera and scene states are
dynamic. It contrasts with the classical rigid SLAM case
where only the camera –a small fraction of the state– is dy-
namic.

5.2. EKF Formulation

To sum up, the state equations are Eq. (16) and Eq. (17),
and the corresponding Jacobians for the EKF are:

Fk =

(
∂gr

∂xr
0

0
∂gy

∂y

)
=


I 0 I∆t 0 0

0
∂qCk

k+1

∂qCk
k

0
∂qCk

k+1

∂ωCk
k

0

0 0 I 0 0
0 0 0 I 0
0 0 0 0 I

 ,

(19)

Gk =

(
∂gr

∂n
∂gy

∂n

)
=


I∆t 0 0

0
∂qCk

k+1

∂ΩC 0
I 0 0
0 I 0
0 0 K+

k

 , (20)
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Figure 3. Measurement equation in cameracentric EKF estimation.

where n = (aC> αC> ∆SC>)> is the state noise vector.

5.3. Measurement Equation

Each observed feature imposes a constraint between
the camera location and the corresponding map feature
(Fig. 3). The observation of a point y

Ck−1

ik =
(
Xi, Yi, Zi

)>
defines a ray coded by a directional vector hCk =(
hx hy hz

)>
in the camera frame Ck:

hCk = RCk

k−1

 Xi

Yi
Zi

− r
Ck−1

k

 , (21)

where RCk

k−1 is the rotation matrix corresponding to
q
Ck−1

k . The camera does not directly observe hCk but its
projection in the image according to the pinhole model.
Projection to a normalized retina and then camera calibra-
tion is applied:

h =

(
u
v

)
=

(
u0 − f

dx

hx

hz

v0 − f
dy

hy

hz

)
, (22)

where (u0, v0) is the camera principal point, f is the focal
length and (dx, dy) is the pixel size. Finally, a distortion
model has to be applied to deal with real camera lenses. In
this work we have used the standard two parameter distor-
tion model from photogrammetry.

5.4. Data Association

Data association is embedded within the EKF prediction-
update loop:

1. A texture patch around every map point is stored at
point creation.

2. EKF prediction step provides a prediction estimate in
the image for every map point along with its innovation
covariance.

Paper Paper
parameter (units) Silicone Bending Flag
h (m) 0.0015 0.0001 0.0001
ν 0.499 0.499 0.499
∆f
Eh (m) (std.) 1.5 · 10−5 2.0 · 10−9 2.0 · 10−9

Table 1. Parameter tuning.

3. Prediction and innovation covariance define a gated el-
liptical acceptance region in the image where is ex-
haustively search by normalized correlation with the
corresponding map point texture patch. In our experi-
ments, the significance level is fixed at 95% (Fig. 4)

4. Update correction for the estimates and their corre-
sponding covariances are computed from the matched
map points. It is worth noting that all map points are
updated even those not matched in the image.

5.5. Computational Cost

EKF estimation, if all the map points are detected in all
the images, is O

(
n3
)
, where n is the state vector size. The

proposed algorithm combining EKF and FEM needs the
SVD computation on top of the standard EKF operation.
Symmetric SVD is an O

(
12n3

)
algorithm [11] so the total

complexity of the algorithm is kept at sameO
(
n3
)

order. It
has to be noted that stiffness matrix is sparse so in a practical
implementation an important computation overhead reduc-
tion can be achieved if this sparsity pattern is exploited.

6. Experimental Results
The proposed free boundary point algorithm has been

experimentally validated with real image sequences 320 ×
240@30Hz in three real sequences 1. Data association is
completely automatic after selecting the non-rigid feature
set in the first image. In all the experiments, the first se-
quence frames correspond to a mobile camera observing
a static scene in order to estimate the structure at rest by
means of standard rigid EKF SLAM.

The first experiment (Sec. 6.1, Fig. 4) corresponds to a
silicone on a stretcher. The tuning allows to code the scene
non-isometric deformation. A quantitative comparison with
respect to fixed boundary points and ground truth is pro-
vided.

The other two experiments correspond to a deforming
piece of paper (Sec. 6.2, Figs. 5, 6). In both cases, the
scene deformation is modelled as isometric –geodesic dis-
tance between mesh points is constant– just by tuning (Ta-
ble 1): the thin-plate thickness h is low and the normalized
forces ∆f

Eh are low, so the corresponding deformation is ap-
proximately isometric.

1Videos of the experimental results can be found on website http:
//webdiis.unizar.es/˜josemari

http://webdiis.unizar.es/~josemari
http://webdiis.unizar.es/~josemari


6.1. Multiply Deformed Silicone Sequence

The purpose is to quantitatively validate the computed
structure and pose with respect to ground truth. The pro-
posed free boundary point algorithm is compared with re-
spect to the fixed boundary point algorithm [1].

A waving hand-held stereo rig observes a silicone cloth
fixed on a stretcher while four fingers elastically deforme
the silicone surface (see Fig. 4 and silicone.avi). The
stereo pair is used to compute scene ground truth at 640 ×
480 resolution for selected frames. Every frame in the left
camera monocular sequence, at half resolution 320 × 240,
is processed by the proposed algorithm.

It has to be stressed that the matches have been com-
puted automatically without using the codes associated with
the markers. The coded markers are used only to compute
the stereo ground truth. It has to be noted, that some of
the points are not detected in some of the images, mainly
because of the patch deformation that make the correlation
based matching approach to produce false negatives. How-
ever, this matching lost does not affect the estimation pro-
cess because all the structure points are correlated and their
estimation is improved indirectly by the measurements cor-
responding to other successfully matched mesh points.

The EKF provides, per frame, an estimation for the
structure along with its covariance. The quantitative com-
parison (Fig. 4) shows that for most of the structure points,
the ground truth is within the 95% acceptance region, ver-
ifying the estimate consistency. The free boundary point
case exhibits bigger covariance at boundary points than the
fixed case as expected. No significant differences in consis-
tency can be appreciated.

6.2. Paper Sequences

A static camera observes a deforming piece of paper (see
Fig. 5 and paper bending.avi). The map points cor-
respond to FAST points detected in the first image, so they
correspond to natural landmarks in the scene. The cor-
responding mesh is composed showing the ability to deal
with the irregular triangles defined by the estimated 3D map
points. FEM modelling is able to consider different stiffness
for every triangle and then consider the joint effect in the to-
tal stiffness matrix after assembling.

A waving camera observes a deforming scene (see Fig. 6
and flag paper.avi). As in the previous example, the
map points are FAST points detected in the first image.

7. Conclusions and Future Work
It has been proposed to cross-fertilize FEM modelling

with sequential Bayesian EKF estimation. Resulting in an
algorithm with a distinctive set of qualities: full perspective
camera, ability to estimate non-rigid structure and pose for
every single frame in the sequence –potentially in real-time

at frame rate–. Unlike most approaches that assume data
association as given prior, we compute data association; we
do not need to observe all the points in all the images. Com-
pared with methods based on deformation modes, we do not
need to enumerate which are the allowed deformation bases.
We do not need to constrain the deformations as isometric
like in template-based methods. For a given type of scene
we just tune two scene parameters: normalized forces and
thickness.

The proposed simplistic but cheap FEM model is unable
to model real solid deformations by itself. However the
feedback structure of the EKF can integrate accurate scene
measurements at frame rate, resulting in a system able to
produce accurate estimations that exploit the laws of solid
mechanic priors at a low computational cost, unlike other
previous work in the field that considered more exact but
too expensive FEM models. A second unsatisfactory de-
pendency, when using FEM models, has been the boundary
conditions, that normally imply identify rigid scene points.
This dependency has been completely removed in the cur-
rent work. So we can conclude that the advantages of FEM
based models have been exploited and most of the disad-
vantages have been alleviated.

BA approaches need to estimate the full scene structure
per each considered keyframe what increases complexity
with the number of images. In contrast, our sequential ap-
proach only estimates the scene at the current frame thanks
to dynamic state estimation capabilities of the EKF, avoid-
ing the growth in complexity with the number of processed
frames.

The obvious future work is to verify experimentally the
real-time performance. In a longer term, this method can be
quite profitable to deal with medical imagery where accu-
rate FEM models are readily available.
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Figure 5. Paper bending sequence. Top: Images gathered by the camera at four selected frames 3D mesh has been reprojected. Bottom:
General view of the 3D reconstructed deformed scene. Best viewed in color.
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Figure 6. Flag paper sequence. Top: Images gathered by the camera at three selected frames 3D mesh has been reprojected. Bottom:
General view of the 3D reconstructed deformed scene. Best viewed in color.
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