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Abstract

The advent of large-scale training has produced a cor-
nucopia of powerful visual recognition models. However,
generative models, such as GANs, have traditionally been
trained from scratch in an unsupervised manner. Can the
collective “knowledge” from a large bank of pretrained vi-
sion models be leveraged to improve GAN training? If so,
with so many models to choose from, which one(s) should
be selected, and in what manner are they most effective?
We find that pretrained computer vision models can signif-
icantly improve performance when used in an ensemble of
discriminators. Notably, the particular subset of selected
models greatly affects performance. We propose an effec-
tive selection mechanism, by probing the linear separability
between real and fake samples in pretrained model embed-
dings, choosing the most accurate model, and progressively
adding it to the discriminator ensemble. Interestingly, our
method can improve GAN training in both limited data and
large-scale settings. Given only 10k training samples, our
FID on LSUN CAT matches the StyleGAN2 trained on 1.6M
images. On the full dataset, our method improves FID by
1.5 to 2× on cat, church, and horse categories of LSUN.

1. Introduction

Image generation inherently requires being able to capture
and model complex statistics in real-world visual phenomena.
Computer vision models, driven by the success of supervised
and self-supervised learning techniques [16, 18, 34, 70, 83],
have proven effective at capturing useful representations
when trained on large-scale data [73, 98, 111]. What poten-
tial implications does this have on generative modeling? If
one day, perfect computer vision systems could answer any
question about any image, could this capability be leveraged
to improve image synthesis models?

Surprisingly, despite the aforementioned connection be-
tween synthesis and analysis, state-of-the-art generative ad-
versarial networks (GANs) [9, 41, 42, 109] are trained in an
unsupervised manner without the aid of such pretrained net-
works. With a plethora of useful models easily available in
the research ecosystem, this presents a missed opportunity
to explore. Can the knowledge of pretrained visual represen-
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Figure 1. Vision-aided GAN training. The model bank F con-
sists of widely used and state-of-the-art pretrained networks. We
automatically select a subset {F̂}Kk=1 from F , which can best dis-
tinguish between real and fake distribution. Our training procedure
consists of creating an ensemble of the original discriminator D
and discriminators D̂k = Ĉk ◦ F̂k based on the feature space of
selected off-the-shelf models. Ĉk is a shallow trainable network
over the frozen pretrained features.

tations actually benefit GAN training? If so, with so many
models, tasks, and datasets to choose from, which models
should be used, and in what manner are they most effective?

In this work, we study the use of a “bank” of pretrained
deep feature extractors to aid in generative model training.
Specifically, GANs are trained with a discriminator, aimed
at continuously learning the relevant statistics differentiating
real and generated samples, and a generator, which aims
to reduce this gap. Naı̈vely using such strong, pretrained
networks as a discriminator leads to the overfitting and over-
whelming the generator, especially in limited data settings.
We show that freezing the pretrained network (with a small,
lightweight learned classifier on top, as shown in Figure 1)
provides stable training when used with the original, learned
discriminator. In addition, ensembling multiple pretrained
networks encourages the generator to match the real distri-
bution in different, complementary feature spaces.

To choose which networks work best, we propose to use
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an automatic model selection strategy based on the linear
separability of real and fake images in the feature space, and
progressively add supervision from a set of available pre-
trained networks. In addition, we use label smoothing [76]
and differentiable augmentation [41, 109] to stabilize the
model training further and reduce overfitting.

We experiment on several datasets in both limited and
large-scale sample setting to show the effectiveness of our
method. We improve the state-of-the-art on FFHQ [43] and
LSUN [98] datasets given 1k training samples by 2-3× on
the FID metric [36]. For LSUN CATs, we match the FID of
StyleGAN2 trained on the full dataset (1.6M images) with
only 10k samples, as shown in Figure 2. In the full-scale
data setting, our method improves FID for LSUN CATs from
6.86 to 3.98, LSUN CHURCH from 4.28 to 1.72, and LSUN
HORSE from 4.09 to 2.11. Finally, we visualize the internal
representation of our learned models as well as training
dynamics. Our code is available on our website.

2. Related Work

Improving GAN training. Since the introduction of
GANs [31], significant advances have been induced by ar-
chitectural changes [42, 43, 71], training schemes [40, 102],
as well as objective functions [4, 5, 22, 25, 57, 58]. In pre-
vious works, the learning objectives often aim to minimize
different types of divergences between real and fake distri-
bution. The discriminators are typically trained from scratch
and do not use external pretrained networks. As a result, the
discriminator is prone to overfit the training set, especially
for the limited data setting [41, 96, 109].
Use of pretrained models in image synthesis. Pretrained
models have been widely used as perceptual loss func-
tions [24, 28, 39] to measure the distance between an output
image and a target image in deep feature space. The loss has
proven effective for conditional image synthesis tasks such as
super-resolution [50], image-to-image translation [15,66,91],
and neural style transfer [28]. Zhang et al. [106] show that
deep features can indeed match the human perception of
image similarity better than classic metrics. Sungatullina et
al. [85] propose a perceptual discriminator to combine per-
ceptual loss and adversarial loss for unpaired image-to-image
translation. This idea was recently used by a concurrent work
on CG2real [72]. Another recent work [27] proposes the use
of pretrained objects detectors to detect regions in the image
and train object-specific discriminators during GAN training.
Our work is inspired by the idea of perceptual discrimi-
nators [85] but differs in three ways. First, we focus on a
different application of unconditional GAN training rather
than image-to-image translation. Second, instead of using
a single VGG model, we ensemble a diverse set of feature
representations that complement each other. Finally, we pro-
pose an automatic model selection method to find models
useful for a given domain. A concurrent work [78] propose

to reduce overfitting of perceptual discriminators [85] us-
ing random projection and achieve better and faster GAN
training.

Loosely related to our work, other works have used pre-
trained models for clustering, encoding, and nearest neigh-
bor search during their model training. Logo-GAN [75] uses
deep features to get synthetic clustering labels for condi-
tional GAN training. InclusiveGAN [99] improves the recall
of generated samples by enforcing each real image to be
close to a generated image in deep feature space. Shocher
et al. [81] uses an encoder-decoder based generative model
with pretrained encoder for image-to-image translation tasks.
Pretrained features have also been used to condition the gen-
erator in GANs [13, 56]. Different from the above work, our
method empowers the discriminator with pretrained models
and requires no changes to the backbone generator.
Use of pretrained models in image editing. Pretrained
models have also been used in image editing once the genera-
tive model has been trained. Notable examples include image
projection with a perceptual distance [1,113], text-driven im-
age editing with CLIP [68], finding editable directions using
attribute classifier models [80], and extracting semantic edit-
ing regions with pretrained segmentation networks [114]. In
our work, we focus on using the rich knowledge of computer
vision models to improve model training.
Transfer learning. Large-scale supervised and self-
supervised models learn useful feature representations [11,
16, 35, 47, 70, 95] that can transfer well to unseen tasks,
datasets, and domains [23, 37, 45, 65, 74, 89, 97, 100, 101]. In
generative modeling, recent works propose transferring the
weights of pretrained generators and discriminators from a
source domain (e.g., faces) to a new domain (e.g., portraits of
one person) [32,53,60,63,64,92,93,107]. Together with dif-
ferentiable data augmentation techniques [41, 88, 109, 110],
they have shown faster convergence speed and better sam-
pling quality for limited-data settings. Different from them,
we transfer the knowledge of learned feature representations
of computer vision models. This enables us to leverage the
knowledge from a diverse set of sources at scale.

3. Method
Generative Adversarial Networks (GANs) aim to approx-

imate the distribution of real samples from a finite training
set x ∼ PX . The generator network G, maps latent vectors
z ∼ P(z) (e.g., a normal distribution) to samples G(z) ∼
Pθ. The discriminator network D is trained adversarially to
distinguish between the continuously changing generated dis-
tribution Pθ and target real distribution PX . GANs perform
the minimax optimization minGmaxD V (D,G), where

V (D,G) = Ex∼PX [logD(x)] + Ez∼P(z)[log(1−D(G(z)))].
(1)

Ideally, the discriminator should measure the gap be-
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Figure 2. Performance on LSUN CAT and LSUN CHURCH. We compare with the leading methods StyleGAN2-ADA [41] and DiffAug-
ment [109] on different sizes of training samples and full-dataset. Our method outperforms them by a large margin, especially in limited
sample setting. For LSUN CAT we achieve similar FID as StyleGAN2 [44] trained on full-dataset using only 0.7% of the dataset.
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Figure 3. Training and validation accuracy w.r.t. training iterations
for our DINO [11] based discriminator vs. baseline StyleGAN2-
ADA discriminator on FFHQ 1k dataset. Our discriminator based
on pretrained features has higher accuracy on validation real images
and thus shows better generalization. In the above training, vision-
aided adversarial loss is added at the 2M iteration.

tween PX and Pθ and guide the generator towards PX . How-
ever, in practice, large capacity discriminators can easily
overfit on a given training set, especially in the limited-
data regime [41, 109]. Unfortunately, as shown in Figure 3,
even when we adopt the latest differentiable data augmenta-
tion [41] to reduce overfitting, the discriminator still tends
to overfit, failing to perform well on a validation set. In addi-
tion, the discriminator can potentially focus on artifacts that
are indiscernible to humans but obvious for machines [90].

To address the above issues, we propose ensembling a
diverse set of deep feature representations as our discrimi-
nator. This new source of supervision can benefit us in two
manners. First, training a shallow classifier over pretrained
features is a common way to adapt deep networks to a small-
scale dataset, while reducing overfitting [17, 30]. As shown
in Figure 3, our method reduces the discriminator overfit-
ting significantly. Second, recent studies [6,101] have shown
that deep networks can capture meaningful visual concepts
from low-level visual cues (edges and textures) to high-level
concepts (objects and object parts). A discriminator built on
these features may better match human perception [106].

3.1. Formulation

Given a set of pretrained feature extractors F =
{Fn}Nn=1, which learns to tackle different vision tasks, we

train corresponding discriminators {Dn}Nn=1. We add small
classifier heads {Cn}Nn=1 to measure the gap between PX
and Pθ in the pretrained models’ feature spaces. During
discriminator training, the feature extractor Fn is frozen,
and only the classifier head is updated. The generator G is
updated with the gradients from D and the discriminators
{Dn} based on pretrained feature extractors. In this manner,
we propose to leverage pretrained models in an adversarial
fashion for GAN training, which we refer to as Vision-aided
Adversarial training:

min
G

max
D,{Cn}Nn=1

V (D,G) +

vision-aided adversarial loss︷ ︸︸ ︷
N∑
n=1

V (Dn, G) ,

where Dn = Cn ◦ Fn.

(2)

Here, Cn is a small trainable head over the pretrained
features. The above training objective involves the sum of
discriminator losses based on all available pretrained models
{Fn}. Solving for this at each training iteration would be
computationally and memory-intensive. Using all pretrained
models would force a significant reduction in batch size to fit
all models into memory, potentially hurting performance [9].
To bypass the computational bottleneck, we automatically
select a small subset of K models, where K < N :

min
G

max
D,{Ĉk}Kk=1

V (D,G) +

K∑
k=1

V (D̂k, G), (3)

where D̂k = Ĉk ◦ F̂k denotes the discriminator correspond-
ing to kth selected model, and k ∈ {1, . . . ,K}.
3.2. Model Selection

We choose the models whose off-the-shelf feature spaces
best distinguish samples from real and fake distributions.
Given the pretrained model’s features of real and fake images,
the strongest adversary from the set of models is F̂k, where

k = argmax
n
{max

C′
n

V (D′n, G)},

where D′n = C ′n ◦ Fn.
(4)
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Algorithm 1 GAN training with Vision-aided Adversarial loss.

Input: G, D trained with standard GAN loss for baseline num-
ber of iterations. Off-the-shelf model bank F = {Fn}Nn=1.
Training data {xi}.

Hyperparameters: K: maximum number of pretrained models
to use. {Tk : k = 1 · · ·K}: training intervals before adding
next pretrained model.

1: Selected model set F̂ =Ø
2: for k = 1 to K do
3: Select best model F̂k ∈ F using Eqn. 4
4: F̂ = F̂ ∪ {F̂k}
5: D̂k = Ĉk ◦ F̂k . Ĉk is a shallow trainable network
6: F = F \ F̂k

7: for t = 1 to Tk do
8: Sample x ∼ {xi}
9: Sample z ∼ P(z)

10: Update D, D̂j ∀j = 1, · · · , k using Eqn. 3
11: Sample z ∼ P(z)
12: Update G using Eqn. 3
13: end for
14: end for
Output: G with best training set FID

Here Fn is frozen, and C ′n is a linear trainable head over
the pretrained features. In the case of limited real samples
available and for computational efficiency, we use linear
probing to measure the separability of real and fake images
in the feature space of Fn.

We split the union of real training samples {xi} and gen-
erated images {G(zi)} into training and validation sets. For
each pretrained model Fn, we train a logistic linear discrim-
inator head to classify whether a sample comes from PX
or Pθ and measure V (D′n, G) on the validation split. The
above term measures the negative binary cross-entropy loss
and returns the model with the lowest error. A low validation
error correlates with higher accuracy of the linear probe,
indicating that the features are useful for distinguishing real
from generated samples and using these features will pro-
vide more useful feedback to the generator. We empirically
validate this on GAN training with 1k training samples of
FFHQ and LSUN CAT datasets. Figure 4 shows that the
GANs trained with the pretrained model Fn with higher
linear probe accuracy in general achieve better FID metrics.

To incorporate feedback from multiple off-the-shelf mod-
els, we explore two variants of model selection and en-
sembling strategies – (1) K-fixed model selection strategy
chooses the K best off-the-shelf models at the start of training
and trains until convergence and (2) K-progressive model
selection strategy iteratively selects and adds the best, unused
off-the-shelf model after a fixed number of iterations.
K-progressive model selection. We find including multi-
ple models in a progressive manner has lower computational
complexity compared to the K-fixed strategy. This also helps
in the selection of pretrained models, which captures differ-
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Figure 4. Model selection using linear probing of pretrained
features. We show correlation of FID with the accuracy of a logistic
linear model trained for real vs fake classification over the features
of off-the-shelf models. Top dotted line is the FID of StyleGAN2-
ADA generator used in model selection and from which we finetune
with our proposed vision-aided adversarial loss. Similar analysis
for LSUN CAT is shown in Figure 12 in the appendix.

ent aspects of the data distribution. For example, the first
two models selected through the progressive strategy are
usually a pair of self-supervised and supervised models. For
these reasons, we primarily perform all of our experiments
using the progressive strategy. We also show a comparison
between the two strategies in Section 4.4.
Discussion. The idea of linear separability as a metric
has been previously used for evaluating GAN via classifier
two-sample tests [55,108]. We adopt this in our work to eval-
uate the usefulness of available off-the-shelf discriminators,
rather than evaluating generators. “Linear probing” is also a
common technique for measuring the effectiveness of inter-
mediate features spaces in both self-supervised [16, 33, 105]
and supervised [3] contexts, and model selection has been ex-
plored in previous works to predict expert models for transfer
learning [26,62,69]. We explore this in context of generative
modeling and propose a progressive addition of next best
model to create an ensemble [12] of discriminators.

3.3. Training Algorithm

As shown in Algorithm 1, our final algorithm consists of
first training a GAN with standard adversarial loss [31, 44].
Given this baseline generator, we search for the best off-the-
shelf models using linear probing and introduce our proposed
loss objective during training. In the K-progressive strategy,
we add the next vision-aided discriminator after training for
a fixed number of iterations proportional to the number of
available real training samples. The new vision-aided dis-
criminator is added to the snapshot with the best training set
FID in the previous stage. During training, we perform data
augmentation through horizontal flipping and use differen-
tiable augmentation techniques [41,109] and one-sided label
smoothing [76] as a regularization. We also observe that
only using off-the-shelf models as the discriminator leads
to divergence. Thus, the benefit is brought by ensembling
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Dataset StyleGAN2 DiffAugment ADA Ours (w/ ADA) Ours (w/ DiffAugment)

+1st D +2nd D +3rd D +1st D +2nd D +3rd D

FF
H

Q 1k 62.16 27.20 19.57 11.43 10.39 10.58 12.33 13.39 12.76
2k 42.62 16.63 16.06 10.17 8.73 8.18 10.01 9.24 10.99

10k 16.07 8.15 8.38 6.90 6.39 5.90 6.94 6.26 6.43
L

SU
N

C
A

T 1k 185.75 43.32 41.14 15.49 12.90 12.19 13.52 12.52 11.01
2k 68.03 25.70 23.32 13.44 13.35 11.51 12.20 11.79 11.33

10k 18.59 12.56 13.25 8.37 7.13 6.86 8.19 7.90 7.79

L
SU

N
C

H
U

R
C

H 1k - 19.38 19.66 11.39 9.78 9.56 10.15 9.87 9.94
2k - 13.46 11.17 5.25 5.06 5.26 6.09 6.37 5.56

10k - 6.69 6.12 4.80 4.82 4.47 3.42 3.41 3.25

Table 1. FFHQ and LSUN results with varying training samples from 1k to 10k. FID↓ is measured with complete dataset as reference
distribution. We select the best snapshot according to training set FID, and report mean of 3 FID evaluations. In Ours (w/ ADA) we finetune
the StyleGAN2-ADA model, and in Ours (w/ DiffAugment) we finetune the model trained with DiffAgument while using the corresponding
policy for augmentation. Our method works with both ADA and DiffAugment strategy for augmenting images input to the discriminators.

the original discriminator and the newly added off-the-shelf
models. We show results with the use of three pretrained
models and observe minimal benefit with the progressive
addition of next model if the linear probe accuracy is low
and worse than the models already in the selected set.

4. Experiments

Here we conduct extensive experiments on multiple
datasets of different resolutions with the StyleGAN2 archi-
tecture. We show results on FFHQ [43], LSUN CAT, and
LSUN CHURCH datasets [98] while varying training sam-
ple size from 1k to 10k, as well as with the full dataset.
For real-world limited sample datasets, we perform exper-
iments on the cat, dog, and wild categories of AFHQ [19]
dataset at 512 resolution and METFACES [41] at 1024 resolu-
tion. In 100-400 low-shot settings, we perform experiments
on AnimalFace cat and dog [82], and 100-shot Bridge-of-
Sighs [109] dataset. We also show results with BigGAN [9]
architecture on CIFAR [46] datasets in Appendix B.
Baseline and metrics. We compare with state-of-the-art
methods for limited dataset GAN training, StyleGAN2-
ADA [41] and DiffAugment [109]. We compute the com-
monly used Fréchet Inception Distance (FID) metric [36]
using the clean-fid library [67] to evaluate models. In
low-shot settings we evaluate on KID [8] metric as well.
We report more evaluation metrics like precision and re-
call [49], and SwAV-FID [48, 61] using feature space of
SwAV [10] model which was not used during our training in
Appendix C.
Off-the-shelf models. We include eight large-scale self-
supervised and supervised networks. Specifically, we per-
form experiments with CLIP [70], VGG-16 [83] trained
for ImageNet [20] classification, and self-supervised mod-
els, DINO [11] and MoBY [95]. We also include face pars-
ing [51] and face normals prediction networks [2]. Finally,
we have Swin-Transformer [54] based segmentation model
trained on ADE-20K [112] and object detection model
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Figure 5. LSUN CAT, FFHQ, and LSUN CHURCH paired
sample comparison in 1k training dataset setting. For each
dataset, the top row shows the baseline StyleGAN2-ADA sam-
ples, and the bottom row shows the samples by Our method for the
same randomly sample latent code. We fine-tune the StyleGAN2-
ADA model with our vision-aided adversarial loss. For the same
latent code image quality improves with our method on average.

trained on MS-COCO [52]. Full details of all models is
given in Table 16 in Appendix D. We exclude the Inception
model [86] trained on ImageNet since Inception features
have already been used to calculate the FID metric.
Vision-aided discriminator’s architecture. For dis-
criminator D̂k based on pretrained model features, we
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and is selected first, then ViT (CLIP) and then Swin-T (MoBY).
As we train with vision-aided discriminators, linear probe accuracy
decreases for most of the pretrained models. Similar trend for all
our experiments are shown in the Appendix D.

extract spatial features from the last layer and use a small
Conv-LeakyReLU-Linear-LeakyReLU-Linear
architecture for binary classification. In the case of big
transformer networks, such as CLIP and DINO, we
explore a multi-scale architecture that works better. For all
experiments, we use three pretrained models selected by
the model selection strategy during training. Details about
the architecture, model training, memory requirements, and
hyperparameters are provided in Appendix D.

4.1. FFHQ and LSUN datasets

Table 1 shows the results of our method when the training
sample is varied from 1k to 10k for FFHQ, LSUN CAT,
and LSUN CHURCH datasets. The considerable gain in FID
for all settings shows the effectiveness of our method in the
limited data scenario. To qualitatively analyze the difference
between our method and StyleGAN2-ADA, we show ran-
domly generated samples from both models given the same
latent code in Figure 5. Our method improves the quality of
the worst samples, especially for FFHQ and LSUN CAT
(also see Figure 13, 14 in Appendix A). Figure 6 shows
the accuracy of linear probe over the pretrained models’s
features as we progressively add the next discriminator.

To analyze the overfitting behavior of discriminators, we
evaluate its training and validation accuracy across iterations.
Compared to the baseline StyleGAN2-ADA discriminator,
our vision-aided discriminator shows better generalization
on the validation set specifically for limited-data regime as
shown in Figure 3 for FFHQ 1k setting.
Full-dataset training. In the full-dataset setting, we fine-
tune the trained StyleGAN2 (config-F) [44] model with
our method. Table 2 shows the comparison of StyleGAN2
and ADM [21] with our method trained using three vision-
aided discriminators. We report both FID and Perceptual
Path Length (PPL) [43] (W space) metric. On LSUN CAT,
our method improves FID from 6.86 to 3.98, on LSUN

Dataset StyleGAN2 (F) Ours (w/ ADA) ADM

FID ↓ PPL ↓ FID ↓ PPL ↓ FID ↓
FFHQ-1024 2.98 144.62 3.01 127.58 -
LSUN CAT-256 6.86 437.13 3.98 420.15 5.57∗

LSUN CHURCH-256 4.28 343.02 1.72 388.94 -
LSUN HORSE-256 4.09 337.98 2.11 307.12 2.57∗

Table 2. Results on full-dataset setting. we improve the FID met-
ric on LSUN categories by a significant margin. On the FFHQ
dataset we improve the PPL metric. ∗ means directly reported from
the ADM paper [21].
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StyleGAN2: 254 units total 

Ours: 297 units total 

Figure 7. GAN Dissection visualization of improved units. We
analyze StyleGAN2 and our model trained on LSUN CHURCH

using GAN Dissection [7] and show here qualitative examples of
units with improved IoU to a semantic category. The total number
of detected units also increases from 254 to 297 for our model.

CHURCH from 4.28 to 1.72, and on LSUN HORSE from
4.09 to 2.11. For FFHQ dataset, our method improves the
PPL metric from 144.62 to 127.58 and has similar perfor-
mance on FID metric. Perceptual path length has been shown
to correlate with image quality and indicates a smooth map-
ping in generator latent space [44]. Random generated sam-
ples for all models are shown in Figure 18 in Appendix A.
GAN Dissection analysis on LSUN CHURCH. How does
the generator change with the use of off-the-shelf models
as discriminators? To analyze this, we use the existing tech-
nique of GAN Dissection [6, 7], which calculates the corre-
lation between convolutional feature maps of the generator
and scene parts obtained through a semantic segmentation
network [94]. Specifically, we select the convolutional layer
with 32 resolution in the generator trained with our method
and StyleGAN2 on the full LSUN CHURCH dataset. The
total number of interpretable units [7] increases from 254 to
297 by our method, suggesting that our model may learn a
richer representation of semantic concepts. Figure 7 shows
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Dataset Transfer StyleGAN2 StyleGAN2-ADA Ours (w/ ADA)

FID ↓ KID ↓ Recall ↑ FID ↓ KID ↓ Recall ↑ FID ↓ KID ↓ Recall ↑

AFHQ DOG
7 22.35 10.05 0.20 7.60 1.29 0.47 4.73 0.39 0.60
3 9.28 3.13 0.42 7.52 1.22 0.43 4.81 0.37 0.61

AFHQ CAT
7 5.16 1.72 0.26 3.29 0.72 0.41 2.53 0.47 0.52
3 3.48 1.07 0.47 3.02 0.38 0.45 2.69 0.62 0.50

AFHQ WILD
7 3.62 0.84 0.15 3.00 0.44 0.14 2.36 0.38 0.29
3 2.11 0.17 0.35 2.72 0.17 0.29 2.18 0.28 0.38

METFACES 3 57.26 2.50 0.34 17.56 1.55 0.22 15.44 1.03 0.30

Table 3. Results on AFHQ and METFACES. Our method, in general, results in lower FID and higher Recall. In transfer setup we fine-tune
from a FFHQ trained model of similar resolution with D updated according to FreezeD technique [60] similar to [41]. We select the snapshot
with the best FID and show an average of three evaluations. KID is shown in ×103 units following [41].
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Figure 8. Qualitative comparison of our method with
StyleGAN2-ADA on AFHQ. Left: randomly generated samples
for both methods. Right: For both our model and StyleGAN2-ADA,
we independently generate 5k samples and find the worst-case sam-
ples compared to real image distribution. We first fit a Gaussian
model using the Inception [86] feature space of real images. We
then calculate the log-likelihood of each sample given this Gaussian
prior and show the images with minimum log-likelihood (maxi-
mum Mahalanobis distance). We show more samples in Figure 19
and Figure 20 in Appendix A.

the complete statistics of detected units corresponding to
each semantic category and some of the example images
of improved units by our method. We observe an overall

Method Bridge AnimalFace Cat AnimalFace Dog

FID ↓ KID↓ FID ↓ KID ↓ FID↓ KID↓
DiffAugment 54.50 15.68 43.87 7.56 60.50 20.13
ADA - - 38.01 5.61 52.59 14.32

O
ur

s +1st D 44.18 9.27 30.62 1.15 34.23 2.01
+2nd D 33.89 2.35 28.01 0.37 33.03 1.37
+3rd D 34.35 2.96 27.35 0.34 32.56 1.67

Table 4. Low-shot generation results on 100-shot Bridge
dataset [109], AnimalFace cat and dog [82] categories. Our method
significantly improves FID and KID compared to leading methods
for few-shot GAN training. KID is shown in ×103 units.

increase in the number of detected units as well as units
corresponding to new semantic categories.
Human preference study. As suggested by [48] we per-
form a human preference study on Amazon Mechanical Turk
(AMT) to verify that our results agree with the human judg-
ment regarding the improved sample quality. We compare
StyleGAN2-ADA and our method trained on 1k samples of
LSUN CAT, LSUN CHURCH, and FFHQ datasets. Since
we fine-tune StyleGAN2-ADA with our method, the same
latent code corresponds to similar images for the two mod-
els, as also shown in Figure 5. For randomly sampled latent
codes, we show the two images generated by our method
and StyleGAN2-ADA for six seconds to the test subject and
ask to select the more realistic image. We perform this study
for 50 test subjects per dataset, and each subject is shown a
total of 55 images. On the FFHQ dataset, human preference
for our method is 53.8% ± 1.3. For the LSUN CHURCH
dataset, our method is preferred over StyleGAN2-ADA with
60.5%± 1.7, and for the LSUN CAT dataset 63.5%± 1.6.
These results correlate with the improved FID metric. Exam-
ple images from our study are shown in Figure 15.

4.2. AFHQ and METFACES

To further evaluate our method on real-world limited sam-
ple datasets, we perform experiments on METFACES (1336
images) and AFHQ dog, cat, wild categories with ∼ 5k im-
ages per category. We compare with StyleGAN2-ADA under

7
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Figure 9. FID↓ w.r.t. training time comparison between StyleGAN2-ADA and our method (w/ ADA and one pretrained model) when
applied from the start for FFHQ, LSUN CAT 1k, and LSUN CAT full-dataset setting. There is a warm-up of 0.5M images, and then our loss
is added. Our method results in similar FID at more than twice the speedup. We show training time in hours measured on one RTX 3090.

two settings, (1) Fine-tuning StyleGAN2-ADA model with
our loss (2) Fine-tuning from a StyleGAN2 model trained
on FFHQ dataset of same resolution (transfer setup) using
FreezeD [60]. The second setting evaluates the transfer learn-
ing capability when fine-tuned from a generator trained on
a different domain. Table 3 shows the comparison of our
method with StyleGAN2 and StyleGAN2-ADA on multiple
metrics. We outperform or perform on-par compared to the
existing methods in general. Figure 8 shows the qualitative
comparison between our method and StyleGAN2-ADA.

4.3. Low-shot Generation

To test our method to the limit of low-shot samples, we
evaluate our method when only 100-400 samples are avail-
able. We finetune StyleGAN2 model with our method on
AnimalFace cat (169 images) and dog (389 images) [82], and
100-shot Bridge-of-Sighs [109] datasets. For differentiable
augmentation, we use ADA except for the 100-shot dataset
where we find that the DiffAugment [109] works better than
ADA [41], and therefore employ that. Our method leads to
considerable improvement over existing methods on both
FID and KID metrics as shown in Table 4. We show nearest
neighbour test and latent space interpolations in Figure 23
and Figure 24 of Appendix A.

4.4. Ablation Study

Fine-tuning vs. training from scratch. In all our experi-
ments, we fine-tuned a well-trained StyleGAN2 model (both
generator and discriminator) with our additional loss. We
show here that our method works similarly well when train-
ing from scratch. Figure 9 shows the plot of FID with train-
ing time for StyleGAN2-ADA and our method with a sin-
gle vision-aided discriminator on FFHQ and LSUN CAT
trained with 1k samples, and LSUN CAT full-dataset setting.
Our method results in better FID and converges more than
2× faster. During training from scratch, we train with the
standard adversarial loss for the first 0.5M images and then
introduce the discriminator selected by the model selection
strategy. Training with three vision-aided discriminators for
same number of iterations as Table 1 we get similar FID of

0 10 20 30 40 50 60 70
Training time

10
12
14
16
18

FI
D

FFHQ 1k

K-progressive
K-fixed

0 10 20 30 40 50 60 70
Training Time

11
14
17
20
23

FI
D

LSUN Cat 1k

K-progressive
K-fixed
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Figure 10. K-progressive vs K-fixed comparison on FFHQ and
LSUN CAT 1k setting. Progressive addition of the next best model
is computationally efficient and results in similar FID at lower run
time. We show training time in hours measured on one RTX 3090.

Model FFHQ 1k LSUN CAT 1k

Selection +1st D +2nd D +3rd D +1st D +2nd D +3rd D

Best 11.43 10.39 10.58 15.49 12.90 12.19
Random 15.48 12.54 11.92 19.02 15.12 14.28
Worst 15.48 15.45 13.88 19.02 17.53 17.66

Table 5. FID↓ metric for models trained with different model
selection strategies in K-progressive vision-aided training. 1st

Row: model selection with best linear probe accuracy. 2nd Row:
randomly selecting from the bank of off-the-shelf models. 3rd Row:
model selection with least linear probe accuracy.

10.60 and 12.24 for FFHQ and LSUN CAT 1k respectively.
K-progressive vs. K-fixed model selection. We compare
the K-progressive and K-fixed model selection strategies in
this section. Figure 10 shows the comparison for FFHQ 1k
and LSUN CAT 1k trained for the same number of iterations
with two models from our model bank. We observe that
training with two fixed pretrained models from the start
results in a similar or slightly worse FID at the cost of extra
training time compared to the progressive addition.
Our model selection vs. random selection. We showed in
Figure 4 that FID correlates with model selection ranking in
vision-aided GAN training with a single pretrained model. To
show the effectiveness of model selection in K-progressive
strategy, we compare it with (1) random selection of models
during progressive addition and (2) selection of models with
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Figure 11. Ablation of augmentation and label smoothing on FFHQ and LSUN CAT with 1k training samples and LSUN CAT full-
dataset setting. We show the plot of FID w.r.t training iterations when ADA [41] augmentation and label smoothing [76] are individually
removed from our training. Without differentiable augmentation, model training quickly collapses in limited sample setting. Even for
full-dataset, using differentiable augmentation for vision-aided discriminator results in better FID. Label smoothing has a reasonable effect
in case of LSUN CAT 1k and is marginally helpful for FFHQ 1k. We also change the augmentation technique to DiffAugment [109] for
both original and vision-aided discriminator and observe that it performs comparable to ADA [41].

Method FFHQ
1k

LSUN CAT
1k

LSUN CAT
1.6M

StyleGAN2-ADA 19.57 41.14 6.86
Ours (w/ ViT (CLIP)) 11.63 15.49 4.61

Ours w/ fine-tune ViT (CLIP) 7 7 7
Ours w/ ViT random weights 19.10 33.77 6.35
Ours w/ multi-discriminator 17.59 37.01 7
Longer StyleGAN2-ADA 19.07 39.36 6.52

Table 6. Additional ablation studies evaluated on FID↓ metric.
Having two discriminators during training (frozen with random
weights or trainable) or standard adversarial training for more itera-
tions leads to only marginal benefits in FID. Thus the improvement
is through an ensemble of original and vision-aided discriminators.
7 means FID increased to twice the baseline, and therefore, we
stop the training run.

least linear probe accuracy. The results are as shown in Ta-
ble 5. We observe that random selection of pretrained models
from the model bank already provides benefit in FID, but
with our model selection, it can be improved further. Details
of selected models are given in Appendix D.
Role of data augmentation and label smoothing. Here,
we investigate the role of differentiable augmentation [41,88,
109, 110] which is one of the important factors that enable
the effective use of pretrained features. Label smoothing [76]
further improves the training dynamics, especially in a lim-
ited sample setting. We ablate each of these component and
show its contribution in Figure 11 on FFHQ and LSUN CAT
dataset in 1k sample setting, and LSUN CAT full-dataset
setting. Figure 11 shows that replacing ADA [41] augmen-
tation strategy with DiffAugment [109] in our method also
performs comparably. Moreover, in the limited sample set-
ting, without data augmentation, model collapses very early
in training, and FID diverges. The role of label smoothing is
more prominent in limited data setting e.g. LSUN CAT 1k.
Additional ablation study. Here we further analyze the im-

portance of our design choice. All the experiments are done
on LSUN CAT and FFHQ. We compare our method with
the following settings: (1) Fine-tuning ViT (CLIP) network
as well in our vision-aided adversarial loss; (2) Randomly
initializing the feature extractor network ViT (CLIP); (3)
Training with two discriminators, where the 2nd discrimina-
tor is of same architecture as StyleGAN2 original discrimi-
nator; (4) Training the StyleGAN2-ADA model longer for
the same number of iterations as ours with standard adver-
sarial loss. The results are as shown in Table 6. We observe
that the baseline methods provide marginal improvement,
whereas our method offers significant improvement over
StyleGAN2-ADA, as measured by FID.

5. Limitations and Discussion
In this work, we propose to use available off-the-shelf

models to help in the unconditional GAN training. Our
method significantly improves the quality of generated im-
ages, especially in the limited-data setting. While the use of
multiple pretrained models as discriminators improves the
generator, it has a few limitations. First, this increases mem-
ory requirement for training. Exploring the use of efficient
computer vision models [77, 87] will potentially make our
method more accessible. Second, our model selection strat-
egy is not ideal in the low-shot settings when only a dozen
samples are available. We observe increased variance in the
linear probe accuracy with sample size∼ 100 which can lead
to ineffective model selection. We plan to adopt few-shot
learning [29, 84] methods for these settings in future.

Nonetheless, as more and more self-supervised and su-
pervised computer vision models are readily available, they
should be used to good advantage for generative modeling.
This paper serves as a small step towards improving genera-
tive modeling by transferring the knowledge from large-scale
representation learning.
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Appendix
We show more visualizations and quantitative results to

show the efficacy of our method. Namely, Section A shows
qualitative comparisons between our method and leading
methods for GAN training i.e. StyleGAN2-ADA [41] and
DiffAugment [109]. In Section B we show results of our
vision-aided adversarial training with BigGAN architecture
on CIFAR-10 and CIFAR-100 datasets. In Section C, we
show more evaluation of our model on other metrics. Sec-
tion D details our training hyperparameters, discriminator
architectures, and selected models in each experiment. In
Section E, we discuss the societal impact of our work.

A. Qualitative Image Analysis
In Figure 13, we show more randomly generated images

by StyleGAN2-ADA and our method with the same latent
code for FFHQ, LSUN CAT, and LSUN CHURCH 1k train-
ing sample setting similar to Figure 5 of the main paper.
Figure 14 shows similar comparison between DiffAugment
and our method. In many cases, our method improves the
visual quality of samples compared to the baseline.

For the human preference study conducted on the 1k sam-
ple setting, Figure 15 shows the sample images for the cases
where users preferred our generated images or StyleGAN2-
ADA generated images. Figure 16 and Figure 17 show ran-
domly generated images by our method, StyleGAN2-ADA,
and DiffAugment for varying training sample settings of
FFHQ, LSUN CAT, and LSUN CHURCH.

For AFHQ and METFACES, Figure 19 and Figure 20
show the qualitative comparison between StyleGAN2-ADA
and our method (similar to Figure 8 in the main paper).
Figure 21 and Figure 22 show similar comparison for FFHQ,
LSUN CAT, and LSUN CHURCH 1k training sample setting.
We also qualitatively evaluate our low-shot trained models
on nearest neighbour test from training images in Figure 23.
Figure 24 shows the latent interpolation of models trained
by our method in the low-shot setting with 100− 400 real
samples. The smooth interpolation shows that the model is
probably not overfitting on the few real samples.

B. Vision-aided BigGAN
Here, we perform experiments with BigGAN architec-

ture [9] on CIFAR-10 and CIFAR-100 datasets [46]. Table 7
shows the comparison of vision-aided adversarial training
with the current leading method DiffAugment [109] in both
unconditional and conditional settings, with varying training
dataset sizes. We outperform DiffAugment across all settings
according to the FID metric. In the case of unconditional
training with BigGAN, we use self-modulation in the gen-
erator layers [61, 79]. During conditional training, we use
projection discriminator [59] in the vision-aided discrimi-
nator as well. The training is done for the same number of
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Figure 12. Model selection using linear probing of pretrained
features on LSUN CAT 1k training sample setting. We show corre-
lation of FID with the accuracy of a logistic linear model trained for
real vs fake classification over the features of off-the-shelf models.
Top dotted line is the FID of StyleGAN2-ADA generator used in
model selection and from which we finetune with our proposed
vision-aided adversarial loss. Thus, selecting models with higher
linear probe accuracy in general results in better generative model
with respect to FID metric.

iterations as DiffAugment [109].

C. Evaluation
We measure FID using clean-fid library [67] with

50k generated samples and complete training dataset as
the reference distribution in all our experiments similar to
StyleGAN2-ADA [41] except in low-shot setting. For low-
shot 100-400 sample setting we compute FID and KID with
5k generated samples and full available real dataset as the ref-
erence following DiffAugment [109]. In addition to the FID
metric reported in the main paper, we report in Table 9 and
Table 10, precision and recall metrics [49] for FFHQ and
LSUN experiments with varying training sample size and
full-dataset. We observe that our method improves the recall
metric in all cases and has similar or better precision, partic-
ularly in the limited sample settings. Recent studies [48, 61]
suggest reporting FID metrics in different feature spaces, in
order to avoid “attacking” the evaluation metric. As such,
we also report FID, but using the feature space of a self-
supervised model trained on ImageNet via SwAV [61], in
Table 11 to Table 14, and observe consistent improvements.
Moreover, as shown in Table 1 and Table 8, when using
CLIP (which is not trained on ImageNet) or using DINO
(a self-supervised method that does not require ImageNet
labels) in our vision-aided training, we also improve FID
scores. Table 15 shows the results on progressive addition of
vision-aided discriminator on METFACES and AFHQ.

D. Training and Hyperparameter details
Off-the-shelf models and discriminator head architec-
ture. We provide network details of off-the-shelf mod-
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BigGAN Conditional Unconditional
CIFAR-10 CIFAR-100 CIFAR-10 CIFAR-100

100 % 10 % 100 % 10 % 100 % 10 % 100 % 10 %

DiffAugment [109] 10.09 27.81 13.60 39.59 15.23 32.63 19.20 33.75
DiffAugment + CR [103] 9.68 22.89 12.65 30.53 -

O
ur

s +1st D 9.93 17.03 12.46 23.30 12.41 21.17 16.08 25.13
+2nd D 9.25 14.28 11.50 20.05 11.59 17.39 15.05 20.89
+3rd D 8.75 13.11 10.88 15.71 11.17 16.34 14.10 19.13

Table 7. Vision-aided GAN training on CIFAR-10 and CIFAR-100 [46] with the BigGAN architecture. We improve FID on both conditional
and unconditional training setups. FID is calculated using clean-fid with 10k generated samples and test set as the reference distribution.
The three off-the-shelf models selected by model selection are CLIP, DINO, and MoBY (Swin-T), respectively, in all settings.

Discriminator Architecture Dataset
LSUN CAT 1k FFHQ 1k

Single-scale (MLP) 17.21 13.31
Multi-scale 15.49 11.63

Table 8. FID↓ on Single-scale vs Multi-scale discriminator head
for ViT (CLIP). We observe slightly better FID with a multi-scale
discriminator head compared to a 2-layer MLP head on final classi-
fication token feature, without any significant increase in training
time. Therefore, we select the multi-scale discriminator head for all
our experiments on both CLIP and DINO with ViT-B architecture.

els we used in our experiments in Table 16. For ex-
tracting features, we resize both real and fake im-
ages to the resolution that the pretrained network was
trained on. For the trainable discriminator head, we use
a Conv-LeakyReLU-Linear-LeakyReLU-Linear
architecture over the spatial features after 2× downsampling
for all pretrained models except CLIP and DINO. In the case
of CLIP and DINO with ViT-B architecture, we observed
that a multi-scale architecture leads to marginally better re-
sults (as shown in Table 8). We extract the spatial features
at 4 and 8 layers and the final classifier token feature. For
each spatial feature, we use a Conv-LeakyReLU-Conv
with downsampling to predict a 3 × 3 real vs fake logits
similar to PatchGAN [38], and the loss is averaged over
the 3 × 3 spatial grid. On the classifier token, we use
Linear-LeakyReLU-Linear discriminator head for a
global real vs. fake prediction. The final loss is the sum of
losses at the three scales. Extracted feature size for each
model and exact architecture of the trainable discriminator
head is detailed in Table 16.

Linear accuracy analysis of all experiments Figure 25 -
Figure 29 show the linear probe accuracy of the pretrained
models and the selected model based on that. We calculate
linear probe accuracy on the average of 3 runs (variance is
always less than 1.% except in 100-400 low-sample setting
where it increases to ∼ 5 − 8% ). For the limited sample
setting, we use the complete set of real training samples and

the same amount of generated samples. For the full-dataset
setting, we randomly sample a subset of 10k real and gener-
ated samples during linear probe accuracy calculation. We
observe diminished variance in the linear classifier validation
accuracy with the increase in sample size. The computational
cost of calculating linear probe accuracy for a model varies
with the sample size and dataset resolution but is always
in the order of 5− 10 minutes, including the time for fake
image generation for training linear classifier as measured
on one RTX 3090.

Details of our model selection vs random selection ex-
periment in Section 4.4 In FFHQ 1k, our method selects
DINO, CLIP, and Swin-T (MoBY) during training. Ran-
dom selection consists of VGG-16, Swin-T (MoBY), and
U-Net (Face Parsing) networks and worst selection consists
of VGG-16, U-Net (Face Parsing), and U-Net (Face Nor-
mals) networks. For LSUN CAT 1k setting, CLIP, DINO,
and Swin-T (Segmentation) networks are selected by our
method during training. In random selection VGG-16, CLIP,
and Swin-T (Segmentation) networks are selected and worst
selection consists of VGG-16, Swin-T (Segmentation), and
Swin-T (Detection) networks.

Training hyperparameters and memory requirement.
We keep similar architecture and training hyperparameters as
StyleGAN2-ADA [41]. For experiments on FFHQ, LSUN
CAT, and LSUN CHURCH with varying sample size, num-
ber of feature maps at shallow layers is halved [41]. For 256
resolution datasets, the weight ofR1 regularization (γ) in the
original discriminator is 1, learning rate is 0.002 and path
length regularization is 2. For datasets with 512 resolution,
γ is 0.5 and learning rate is 0.0025. When using ADA in our
vision-aided adversarial loss, we employ cutout + bgc [41]
policy for augmentation, and if the linear probe accuracy of
the selected model is above 90% one-sided label smooth-
ing [76] is used as a regularization. The ADA target value
for the original discriminator in StyleGAN2-ADA is kept
the same at 0.6. For vision-aided discriminators, we use 0.3
as the target probability for ADA in all limited data exper-
iments. In case of finetuning from the StyleGAN2 model
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Dataset StyleGAN2 DiffAugment ADA Ours (w/ ADA)

+1st D +2nd D +3rd D

P ↑ R ↑ P ↑ R ↑ P ↑ R ↑ P ↑ R ↑ P ↑ R ↑ P ↑ R ↑
FF

H
Q 1k 0.580 0.000 0.681 0.034 0.675 0.088 0.719 0.139 0.740 0.139 0.694 0.173

2k 0.586 0.025 0.709 0.099 0.676 0.137 0.701 0.242 0.719 0.251 0.719 0.251
10k 0.669 0.191 0.704 0.256 0.700 0.255 0.683 0.334 0.687 0.342 0.697 0.351

L
SU

N
C

A
T 1k 0.290 0.000 0.539 0.015 0.468 0.012 0.653 0.033 0.627 0.053 0.624 0.058

2k 0.527 0.001 0.607 0.032 0.617 0.066 0.667 0.084 .645 0.105 0.652 0.120
10k 0.632 0.099 0.628 0.188 0.598 0.111 0.639 0.152 0.615 0.181 0.599 0.203

L
SU

N
C

hu
rc

h 1k - - 0.593 0.015 0.554 0.038 0.652 0.047 0.609 0.065 0.645 0.063
2k 0.613 0.042 0.604 0.075 0.637 0.100 0.626 0.107 0.649 0.114

10k - - 0.567 0.256 0.617 0.108 0.662 0.132 0.645 0.112 0.643 0.133

Table 9. Precision (P) and Recall (R) metrics for experiments on FFHQ and LSUN datasets with varying training samples from 1k to
10k. Complete training dataset is used as the reference distribution for calculating the above metrics and average of 3 evaluation runs is
reported. Our method results in higher recall and precision in all settings. In addition, we observe that as we add vision-aided discriminators,
recall increases at the cost of slight decrease in precision.

Dataset Resolution StyleGAN2 (F) Ours (w/ ADA)
+1st D +2nd D +3rd D

FID ↓ P ↑ R ↑ FID ↓ P↑ R ↑ FID ↓ P↑ R ↑ FID ↓ P↑ R ↑
FFHQ 1024 × 1024 2.98 0.684 0.495 3.11 0.656 0.519 3.01 0.678 0.499 3.09 0.665 0.507
LSUN CAT 256 × 256 6.86 0.606 0.318 4.61 0.626 0.341 4.19 0.608 0.355 3.98 0.598 0.381
LSUN CHURCH 256 × 256 4.28 0.594 0.391 2.05 0.596 0.447 1.81 0.603 0.451 1.72 0.612 0.451
LSUN HORSE 256 × 256 4.09 0.609 0.357 2.79 0.636 0.369 2.38 0.614 0.406 2.11 0.611 0.416

Table 10. FID, Preicison (P), and Recall (R) metrics on full-dataset setting. Our method results in improved recall for most cases and
has similar precision compared to StyleGAN2. A higher recall is usually preferred as with truncation precision can be recovered [44].

Dataset StyleGAN2 DiffAugment ADA Ours
(w/ ADA)

Ours
(w/ DiffAugment)

FF
H

Q 1k 14.42 6.31 4.15 1.18 1.95
2k 7.72 3.53 3.32 0.91 1.27

10k 3.85 1.95 1.59 0.61 0.73

L
SU

N
C

A
T 1k 22.71 10.74 10.33 3.27 2.82

2k 14.97 7.90 6.23 3.10 2.57
10k 6.92 4.97 4.50 1.78 1.96

L
SU

N
C

H
U

R
C

H 1k - 7.66 6.49 2.50 2.87
2k - 6.28 4.54 1.49 1.57

10k - 3.43 3.25 1.24 0.98

Table 11. SwAV-FID [61] of models trained on FFHQ, LSUN
datasets with varying training samples. FID↓ is measured in
SwAV ResNet-50 feature space with complete dataset as reference
distribution. We select the best snapshot according to training set
FID, and report mean of 3 FID evaluations. In Ours (w/ ADA) we
finetune the pretrained StyleGAN2-ADA model, and in Ours (w/
DiffAugment) we finetune the model trained with DiffAgument
while using the corresponding policy for augmentation.

in the full-dataset setting on FFHQ and LSUN categories,
the original discriminator has non-augmented real and fake
images as input and ADA target for additional discrimina-
tors is 0.1. In case of training with DiffAugment, we always

Dataset Transfer StyleGAN2-ADA Ours
(w/ ADA)

AFHQ DOG
7 2.02 1.04
3 1.89 1.03

AFHQ CAT
7 1.17 0.62
3 0.98 0.70

AFHQ WILD
7 1.89 1.10
3 1.23 0.97

METFACES 3 2.14 1.72

Table 12. SwAV-FID [61] of models trained on AFHQ cate-
gories and METFACES. FID↓ is measured in SwAV ResNet-50
feature space with complete dataset as reference distribution. We se-
lect the best snapshot according to training set FID, and report mean
of 3 FID evaluations. In transfer setup we fine-tune from a FFHQ
trained model of similar resolution with D updated according to
FreezeD technique [60] similar to [41].

use one-sided label smoothing and all three augmentations
color, translation, and cutout. All experiments are done with
a batch size of 16 (mini-batch std 4) on a single RTX 3090
GPU for 256 resolution, and 4 GPUs for 512, 1024 resolu-
tion datasets. In the case of LSUN HORSE, we fine-tuned
StyleGAN2 (config F) model with a batch size of 64 and use
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Dataset StyleGAN2 (F) Ours (w/ ADA)

FFHQ-1024 0.57 0.38
LSUN CAT-256 2.65 1.03
LSUN CHURCH-256 1.81 0.58
LSUN HORSE-256 1.65 0.71

Table 13. SwAV-FID [61] of models trained on full dataset of
FFHQ and LSUN categories. FID↓ is measured in SwAV ResNet-
50 feature space with complete dataset as reference distribution. We
select the best snapshot according to training set FID, and report
mean of 3 FID evaluations.

Method Bridge AnimalFace Cat AnimalFace Dog

FID ↓ KID ↓ FID ↓ KID ↓ FID ↓ KID ↓

DiffAugment 8.83 4.96 12.14 5.62 18.48 7.56
ADA - - 10.87 4.55 15.60 5.41
Ours 3.46 0.22 5.18 0.29 6.47 0.35

Table 14. SwAV-FID [61] and KID of models trained on low-
shot datasets. FID and KID are measured in SwAV ResNet-50
feature space with complete dataset as reference distribution and 5k
generated images. We select the best snapshot according to training
set FID, and report mean of 3 FID and KID evaluations. KID is
shown in ×103 units.

γ value of 100 following [44].
In all experiments, we train with an ensemble of three

vision-aided discriminators. The number of training itera-
tions after which we add the second model is 1 million (1M)
in low-shot generation settings, 4M for 1k training sample
setting, and 8M for the rest. With the second and third pre-
trained model, we train for 1M training iterations on < 1k
training sample setting and 2M otherwise. The GPU memory
requirement of our method is maximum when using VGG-
16 model at ∼ 2.5GB. Next, CLIP and DINO model with
ViT-B architecture have a memory requirement of ∼ 2GB.
Pretrained models based on tiny Swin-T architecture and
face normals and parsing model lead to < 1GB of overhead
in GPU memory during training. Compared to training the
StyleGAN2 (config F) model architecture on 256 resolution
images which required ∼ 10.5GB of GPU memory on a
single RTX 3090, the overhead in memory with a single
pretrained model is 10− 25% approximately. The maximum
overhead in memory is when CLIP, DINO, and Swin-T based
models are selected by model selection strategy. This results
in ∼ 4.5GB of additional memory requirement as measured
on one RTX 3090 while training with our default batch-size
of 16 on 256 resolution dataset. In the future, we hope to
explore the use of efficient [77, 87] computer vision models
to reduce the increased memory requirement of our method.

E. Societal Impact

Our proposed method is towards improving the image
quality of GANs, specifically in the limited sample setting.

This can help users in novel content creation where usually
only few relevant samples are available for inspiration. Also,
the faster convergence of our method when used in training
from scratch makes it accessible to a broad set of people
as the model can be trained at a lower computational cost.
This can lead to negative societal impact as well through the
creation of fake data and disinformation. One of the possible
solutions to mitigate this can be to ensure reliable detection
of fake generated data [14, 90].

F. Change log

v1: Original draft.
v2: We included additional visualization and revised text
in experiments and appendix section. Specifically, we added
Figure 14 to show qualitative comparison between our
method and DiffAugment. We also added Table 15 in Ap-
pendix to show intermediate results with progressive addition
of pretrained models for METFACES and AFHQ categories.
Figure 25 - Figure 29 in Appendix is updated to include
linear probe accuracy plots corresponding to experiments
with DiffAugment. We also updated relevant citations.
v3: We included additional results on CIFAR datasets with
BigGAN in Table 7. We also added the FID evaluation using
SwAV model in Table 11 to Table 14 and nearest neighbour
test for low-shot models in Figure 23.
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Dataset Transfer
Ours (w/ ADA)

+1st D +2nd D +3rd D

FID ↓ KID ↓ Recall ↑ FID ↓ KID ↓ Recall ↑ FID ↓ KID ↓ Recall ↑

AFHQ DOG
7 5.67 0.61 0.54 4.82 0.33 0.58 4.73 0.39 0.60
3 5.86 0.70 0.54 5.08 0.41 0.59 4.81 0.37 0.61

AFHQ CAT
7 2.95 0.57 0.46 2.70 0.61 0.49 2.53 0.47 0.52
3 2.93 0.82 0.48 2.93 0.94 0.50 2.69 0.62 0.50

AFHQ WILD
7 2.82 0.38 0.18 2.51 0.41 0.24 2.36 0.38 0.29
3 2.26 0.34 0.35 2.18 0.28 0.34 2.18 0.28 0.38

METFACES 3 17.10 2.18 0.30 15.82 1.37 0.29 15.44 1.03 0.30

Table 15. Results on AFHQ and METFACES with progressive addition of vision-aided discriminators. In transfer setup we fine-tune from
a FFHQ trained model of similar resolution with D updated according to FreezeD technique [60] similar to [41]. We select the snapshot with
the best FID and show an average of three evaluations. KID is shown in ×103 units following [41].

Vision task Network Params Extracted feature size Di Architecture

ImageNet [20] classifier VGG-16 [104] 138M 512× 7× 7


2× avg. downsampling
Conv3x3: ch→ 256

LeakyReLU(0.2)
Linear: 256× h× w→ 256

LeakyReLU(0.2)
Linear: 256→ 1


MoBY [95] tiny Swin-T 29M 768× 7× 7
Face parsing [51] U-Net 1.9M 256× 8× 8
Face normals [2] U-Net + ResNet 35M 512× 8× 8
Segmentation [54] tiny Swin-T 29M 768× 8× 8
Object detection [54] tiny Swin-T 29M 768× 8× 8

CLIP [70] ViT-B32 86M
768× 7× 7
768× 7× 7

512
2×


Conv3x3: ch→ 256

LeakyReLU(0.2)
2× avg. downsample
Conv3x3: 256→ 1

,

Linear: 512→ 256
LeakyReLU(0.2)
Linear: 256→ 1



DINO [11] ViT-B16 85M
768× 14× 14
768× 14× 14

768
2×


2× avg. downsample
Conv3x3: ch→ 128

LeakyReLU(0.2)
2× avg. downsample
Conv3x3: 128→ 1

,

Linear: 768→ 128
LeakyReLU(0.2)
Linear: 128→ 1


Table 16. Off-the-shelf Model Bank. We select state-of-the-art feature extractors and task specific networks to use as an ensemble of
off-the-shelf discriminators during GAN training. We keep the discriminator head architecture small and fairly similar across different
models. In the multi-scale architecture of CLIP and DINO, we extract the spatial features from 4 and 8 layers and final classification token
feature. In case of conditional training for CIFAR-10 and CIFAR-100 we use an additional embedding layer for number of classes and
employ projection discriminator [59].
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Figure 13. LSUN CAT, FFHQ, and LSUN CHURCH paired sample comparison in 1k training dataset setting with ADA. For each
dataset, the top row shows random samples of the baseline StyleGAN2-ADA, and the bottom row shows the samples by our method for the
same latent code. We fine-tune StyleGAN2-ADA model with our vision-aided adversarial loss. On average we observe improved image
quality with our method for the same latent code.
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Figure 14. LSUN CAT, FFHQ, and LSUN CHURCH paired sample comparison in 1k training dataset setting with DiffAugment.
For each dataset, the top row shows random samples of the baseline DiffAugment model with StyleGAN2 architecture, and the bottom row
shows the samples by our method for the same latent code. We fine-tune StyleGAN2-DiffAugment model with our vision-aided adversarial
loss. On average we observe improved image quality with our method for the same latent code.
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User preferred our image User preferred StyleGAN2-ADA image

Figure 15. Example images shown to users in the human preference study between our method (w/ ADA) and StyleGAN2-ADA on
LSUN CAT, FFHQ, and LSUN CHURCH 1k training sample setting. Left: example instances where images generated by our method is
preferred by users. Right: where images generated by StyleGAN2-ADA is preferred. For each dataset, top and bottom row show the two
images generated by StyleGAN2-ADA and our method from the same random latent code and shown to the user. For LSUN CAT, FFHQ,
and LSUN CHURCH our method is preferred with 63.5%, 53.8%, and 60.5% as mentioned in the main paper.

21



FF
H

Q
 1

0k
LS

U
N

 C
AT

2k
LS

U
N

 C
AT

10
k

DiffAugment Ours
FF

H
Q

 2
k

SG2-ADA

Figure 16. Randomly generated samples by DiffAugment [109], StyleGAN2-ADA [41] and Our method (w/ ADA) on 2k and 10k sample
setting of FFHQ and LSUN CAT.
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Figure 17. Randomly generated samples by DiffAugment [109], StyleGAN2-ADA [41] and Our method (w/ ADA) on LSUN CHURCH

2k and 10k training sample setting.
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Figure 18. Uncurated samples generated by StyleGAN2 [44] and Our method (w/ ADA) trained on full-dataset of FFHQ, LSUN CAT,
LSUN CHURCH, and LSUN HORSE.
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Figure 19. Qualitative comparison of our method (w/ ADA) with StyleGAN2-ADA on AFHQ DOG and AFHQ CAT. Left: randomly
generated samples for both methods. Right: Worst FID samples. For both our model and StyleGAN2-ADA, we independently generate 5k
samples and find the worst-case samples compared to real image distribution. We first fit a Gaussian model using the Inception [86] feature
space of real images. We then calculate the log-likelihood of each sample given this Gaussian prior and show the images with minimum
log-likelihood (maximum Mahalanobis distance). Our method shows better image quality on average compared to StyleGAN2-ADA.
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Figure 20. Qualitative comparison of our method (w/ ADA) with StyleGAN2-ADA on AFHQ WILD and METFACES Left: randomly
generated samples for both methods. Right: samples with maximum Mahalanobis distance as described in Figure 19.
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Figure 21. Qualitative comparison of our method (w/ ADA) with StyleGAN2-ADA on FFHQ and LSUN CAT 1k training sample
setting Left: randomly generated samples for both methods. Right: samples with maximum Mahalanobis distance as described in Figure 19.
Our method to a large extent prevents generation of rotated images with extreme artifacts in case of FFHQ 1k training sample setting.
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Figure 22. Qualitative comparison of our method (w/ ADA) with StyleGAN2-ADA on LSUN CHURCH 1k Left: randomly generated
samples for both methods. Right: samples with maximum Mahalanobis distance as described in Figure 19. Our method has relatively better
worst case samples compared to StyleGAN2-ADA.
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Figure 23. Nearest neighbor test on low-shot data settings. Left column: generated images by our model. Middle column: LPIPS based
nearest neighbors from the training set. Right column: pixel wise L1 distance based nearest neighbors. We observe that the generated images
are different from the training set. Thus our model is not simply memorizing the training set.
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Figure 24. Latent interpolation results of models trained with our method on AnimalFace Cat (169 images), AnimalFace Dog (389
images) [82] and 100-shot Bridge-of-Sighs [109] datasets. The smooth interpolation suggests that there is probably little overfitting in the
trained generator.
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Figure 25. Linear probe accuracy of off-the-shelf models during our K-progressive ensemble training on FFHQ with different training
sample setting for both ADA and DiffAugment. The selected model at each stage is annotated at the top of the bar-plot. As we include more
vision-aided discriminators during GAN training, linear probe accuracy of the pretrained models decreases.
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Figure 26. Linear probe accuracy of off-the-shelf models during our K-progressive ensemble training on LSUN CAT with different
training sample setting for both ADA and DiffAugment. The selected model at each stage is annotated at the top of the bar-plot. As we
include more vision-aided discriminators during GAN training, linear probe accuracy of the pretrained models decreases.
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Figure 27. Linear probe accuracy of off-the-shelf models during our K-progressive ensemble training on LSUN CHURCH with
different training sample setting for both ADA and DiffAugment. The selected model at each stage is annotated at the top of the bar-plot. As
we include more vision-aided discriminators during GAN training, linear probe accuracy of the pretrained models decreases.
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Figure 28. Linear probe accuracy of off-the-shelf models during our K-progressive ensemble training on full-dataset of FFHQ, LSUN
categories and AFHQ, METFACES (transfer from FFHQ trained generator). In case of transfer from FFHQ, linear probe accuracy is 100%
at the start as human faces and AFHQ categories have a significant domain gap. The selected model at each stage is annotated at the top of
the bar-plot. As we include more vision-aided discriminators during GAN training, linear probe accuracy of the pretrained models decreases.
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Figure 29. Linear probe accuracy of off-the-shelf models during our K-progressive ensemble training on AnimalFace Cat, Dog [82]
and 100-shot Bridge-of-Sighs [109] low-shot datasets, and AFHQ categories. The selected model at each stage is annotated at the top of the
bar-plot. As we include more vision-aided discriminators during GAN training, linear probe accuracy of the pretrained models decreases.
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