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Abstract

Visual recognition in low-data regimes requires deep neural
networks to learn generalized representations from limited
training samples. Recently, CLIP-based methods have
shown promising few-shot performance benefited from the
contrastive language-image pre-training. We then question,
if the more diverse pre-training knowledge can be cascaded
to further assist few-shot representation learning. In this
paper, we propose CaFo, a Cascade of Foundation models
that incorporates diverse prior knowledge of various pre-
training paradigms for better few-shot learning. Our CaFo
incorporates CLIP’s language-contrastive knowledge,
DINO’s vision-contrastive knowledge, DALL-E’s vision-
generative knowledge, and GPT-3’s language-generative
knowledge. Specifically, CaFo works by ‘Prompt, Generate,
then Cache’. Firstly, we leverage GPT-3 to produce textual
inputs for prompting CLIP with rich downstream linguistic
semantics. Then, we generate synthetic images via DALL-E
to expand the few-shot training data without any manpower.
At last, we introduce a learnable cache model to adaptively
blend the predictions from CLIP and DINO. By such col-
laboration, CaFo can fully unleash the potential of different
pre-training methods and unify them to perform state-of-
the-art for few-shot classification. Code is available at
https://github.com/ZrrSkywalker/CaFo.

1. Introduction

Convolutional neural networks [42] and transform-
ers [67] have attained great success on a wide range of vi-
sion tasks with abundant datasets [15]. Instead, for some
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Figure 1. The Cascade Paradigm of CaFo. We adaptively incor-
porate the knowledge from four types of pre-training methods and
achieve a strong few-shot learner.

data-deficient and resource-finite scenarios, few-shot learn-
ing [62,69] also becomes a research hotspot, where the net-
works are constrained to learn from limited images with
annotations. Many previous works have been proposed
in this field to enhance model’s generalization capability
by meta learning [20, 70], metric learning [73], and data
augmentation [28, 72]. Recently, CLIP [56] pre-trained
by large-scale language-image pairs shows favorable zero-
shot transfer ability for open-vocabulary visual recogni-
tion. The follow-up CoOp [81], CLIP-Adapter [22] and
Tip-Adapter [75] further extend it for few-shot classifica-
tion and achieve superior performance on various down-
stream datasets. This indicates that, even if the few-shot
training data is insufficient, the large-scale pre-training has
endowed the network with strong representation ability,
which highly benefits the few-shot learning on downstream
domains. Now that there exist various self-supervisory
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paradigms besides CLIP, could we adaptively integrate their
pre-learned knowledge and collaborate them to be a better
few-shot learner?

To tackle this issue, we propose CaFo, a Cascade of
Fooundation models blending the knowledge from mul-
tiple pre-training paradigms with a ‘Prompt, Generate,
then Cache’ pipeline. As shown in Figure 1, we in-
tegrate CLIP [56], DINO [7], DALL-E [57], and GPT-
3 [4] to provide four types of prior knowledge for CaFo.
Therein, CLIP [56] is pre-trained to produce paired fea-
tures in the embedding space for every image and its de-
scriptive text. Guided by texts with different categor-
ical semantics, CLIP [56] can well classify the images
aided by language-contrastive knowledge. DINO fol-
lows contrastive self-supervised learning [7] to match the
representations between two transformations of one same
image, which is expert at distinguishing different images
with vision-contrastive knowledge. Similar to CLIP [56],
DALL-E [57] is also pre-trained by image-text pairs but
learns to predict the encoded image tokens based on the
given text tokens. Conditioned on the input text, DALL-
E [57] could leverage the vision-generative knowledge to
create high-quality synthetic images in a zero-shot manner.
Pre-trained by large-scale language corpus, GPT-3 [4] takes
a few hand-written templates as input, and autoregressively
generates human-like texts, which contain rich language-
generative knowledge. Therefore, the four models have
distinctive pre-training goals and can provide complemen-
tary knowledge to assist the few-shot visual recognition.

In detail, we cascade them by three steps.: 1) Prompt.
We adopt GPT-3 [4] to produce textual prompts for CLIP
based on a few hand-written templates. These prompts with
richer language knowledge are fed into CLIP’s textual en-
coder. 2) Generate. We adopt DALL-E [57] to gener-
ate additional training images for different categories based
on the domain-specific texts, which enlarges the few-shot
training data, but costs no extra manpower for collection
and annotation. 3) Cache. We utilize a cache model to
adaptively incorporate the predictions from both CLIP [56]
and DINO [7]. Referring to Tip-Adapter [75], we build
the cache model with two kinds of keys respectively for
the two pre-trained models. Regarding zero-shot CLIP as
the distribution baseline, we adaptively ensemble the pre-
dictions of two cached keys as the final output. By only
fine-tuning the lightweight cache model via expanded train-
ing data, CaFo can learn to fuse diverse prior knowledge
and leverage their complementary characteristics for better
few-shot visual recognition.

Our main contributions are summarized as follows:

• We propose CaFo to incorporate the prior knowledge
learned from various pre-training paradigms for better
few-shot learning.

• By collaborating CLIP, DINO, GPT-3 and DALL-E,
CaFo utilizes more semantic prompts, enriches the
limited few-shot training data, and adaptively ensem-
bles diverse predictions via the cache model.

• We conduct thorough experiments on 11 datasets for
few-shot classification, where CaFo achieves state-of-
the-art without using extra annotated data.

2. Related Work
Pre-training of Vision Models. With the breakthroughs
in deep learning models [18, 33, 46], most modern vision
models are based on the paradigm of pre-training on Ima-
geNet [15] and fine-tuning on downstream tasks [32]. Pre-
trained models have shown promising adaptability for var-
ious downstream tasks, such as object detection [44], se-
mantic segmentation [8], and 3D recognition [26, 76, 79].
To improve the representation capability by overcoming the
constraints of annotation, self-supervised pre-training has
attracted wide attention using large-scale unlabeled datasets
[40]. Self-supervised learning is initialized by pretext tasks,
such as image restoration from corruption [30, 54, 68],
pseudo labels [17, 52] and clustering [5]. Recently, contrast
learning, which learns representations by contrasting posi-
tive pairs against negative pairs, has gotten well studied for
diverse visual representation learning [7, 9, 10, 25, 31, 66].
Besides, language-supervised visual pre-training emerges
as a novel paradigm closer to natural visual understand-
ing [2, 49, 58, 61], among which CLIP [56] obtains power-
ful zero-shot transferability by contrastive pre-training on
image-text pairs from the Internet. In addition, vision-
language pre-training can also promote the zero-shot im-
age generation from text. Open generative models, such
as DALL-E [57] and CogView [16] pre-trained on large-
scale image-text pairs are able to generate images with di-
verse contents by given texts. In this paper, CaFo cascade
three visual pre-training models, CLIP, DINO, and DALL-
E, which contributes to better few-shot learning capacity.

Language-assisted Vision Models. As different form of
data, linguistic knowledge normally contains complemen-
tary knowledge to images. For vision-language models,
several works [4,23,56] have showed the format of prompts
would highly affect the accuracy on vision tasks. Thus,
prompt engineering is worth putting in great effort. Some
efforts [37,59,78,82] utilize learnable textual inputs and op-
timize them during training. Other works [48, 55] propose
to leverage linguistic knowledge pre-trained from large lan-
guage models to generate prompts for each visual category,
which enhances vision-language models without any addi-
tional training or labeling. Our CaFo refers to CuPL [55] to
produce semantic-rich texts to prompt CLIP for better text-
image alignment.
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Few-shot Learning. Few-shot learning highly relies on
the transferability of the trained neural networks. From the
perspective of distance measurement, some metric learning
methods learn a metric space by computing the distances
from the instances to novel categories [62, 64, 69]. Also,
meta-learning is proposed to improve the few-shot adapta-
tion ability of the models by finding a set of initialized pa-
rameters that can rapidly adapt to novel domains [12,21,38,
43]. More recently, with the vision-language pre-training
model CLIP [56] exhibiting strong zero-shot adaptation per-
formance, several efforts have started to find efficient strate-
gies to adapt it to downstream few-shot datasets. CoOp [81]
is proposed as a prompt tuning adaptation method by op-
timizing a set of learnable prompt tokens. Subsequently,
to inject textual branch with visual signals, CoCoOp [83]
and VT-CLIP [78] propose to train a intermediate network
to generate image tokens as conditional inputs for the tex-
tual vectors. Referring to adapters [36] in natural lan-
guage processing, CLIP-Adapter [22] is introduced to fine-
tune CLIP by applying lightweight residual-style adapters.
Tip-Adapter [75] is then proposed as a training-free adap-
tion method with a constructed key-value cache model. It
can also be regarded as a better initialization of CLIP-
Adapter with much faster convergence when fine-tuning.
CALIP [27] proposes a parameter-free attention to enhance
CLIP in a zero-shot manner, and its parametric solution
further attains higher few-shot accuracy. SuS-X [65] con-
structs a dynamic support set and extends Tip-Adapter by
leveraging image-text distances. Besides, many follow-up
works [37, 45, 65, 74, 77, 80, 84] have also been proposed
for further adapting CLIP to various vision tasks. Different
from all existing methods, we integrate other powerful pre-
training paradigms with CLIP and collaborate them with
customized pipelines.

3. Cascade of Foundation Models

In this section, we first briefly revisit four types of pre-
training paradigms in CaFo. Then, we specifically introduce
how we cascade them by ‘Prompt, Generate, then Cache’.

3.1. Different Pre-training Paradigms

Contrastive Vision-Language Pre-training. The se-
ries [9] of contrastive learning between vision and lan-
guage learn to map the two modalities into the same em-
bedding space via a contrastive loss. Driven by web-scale
datasets, e.g., 400 million for CLIP [56] and 1.8 billion for
ALIGN [39], the basic pre-training target is to minimize the
embedding distances of images and their textual descrip-
tions, while maximize those unpaired ones. By the cross-
modal alignment, we can discriminate images of different
categorizes by the texts with different semantics. We de-
note such learned prior as language-contrastive knowledge

(1)	Prompt

GPT-3

What	a	[CLASS]	looks	like?

𝑐𝑎𝑡 𝑑𝑜𝑔 𝑝𝑎𝑛𝑑𝑎 𝑟𝑎𝑏𝑏𝑖𝑡
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Figure 2. Prompt with GPT-3 [4]. As the first step in CaFo, we
utilize the pre-trained GPT-3 to produce prompts with rich linguis-
tic semantics for CLIP’s textual encoder.

and adopt CLIP as the representative model for such pre-
training method.

Contrastive Vision Pre-training. As the traditional self-
supervised learning methods, vision-contrastive models [9]
focus on the discrimination between different images. Nor-
mally, the positive pairs to be drawn close are two trans-
formations of the same image, while the optimization of
negative pairs [24] is optional, which can be replaced by
a momentum encoder [31] or cluster assignments [6]. Re-
cent works reveal that we can learn self-supervised fea-
tures without negative pairs between images [7, 25]. Given
the strong linear classification capacity, the pre-trained
DINO [7] is adopted here to provide vision-contrastive
knowledge for collaboration.

Generative Language Pre-training. With 175 billion
parameters, the large-scale pre-trained GPT-3 [4] is pow-
erful to produce human-like texts with diverse contents and
incredible quality. Taking as input a few designed language
commands, GPT-3 is able to output prompts with rich lin-
guistic semantics for vision-language models. CLIP uti-
lizes handcrafted templates as prompts, e.g., “a photo of a
[CLASS]”, which however lacks sufficient textual seman-
tics to align with input images. We thus leverage GPT-3 to
produce CLIP’s prompts to better align with visual informa-
tion from images.

Generative Vision-Language Pre-training. Learned
from millions of image-caption pairs, the DALL-E series
can generate language-conditioned images in a zero-shot
manner. They are pre-trained to autoregressively predict
the encoded image tokens from the textual tokens of the
captions. With such language-generative knowledge, the
pre-trained DALL-E can be viewed as a free lunch to en-
large the training data without any manpower. Considering
publicity, we select DALL-E-mini [14] as the representative
among DALL-E models.
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Figure 3. Generate via DALL-E [57], then Cache by CLIP [56] and DINO [7]. We adopt DALL-E to generate synthetic images to
expand the limited few-shot training samples. Then, we construct the cache model with two kinds of keys to adaptively fuse the knowledge
from CLIP and DINO.

3.2. Prompt, Generate, then Cache

To cascade different pre-training paradigms, we intro-
duce CaFo with a pipeline of ‘Prompt, Generate, then
Cache’, which respectively unleashes the powers of differ-
ent self-supervised knowledge.

Prompt with GPT-3. Under the N -way K-shot settings,
we have the few-shot training images IN,K with labels
LN,K that contain K samples for each N categories. As
shown in Figure 2, for N categories, we adopt a unified se-
ries of templates as the language command for GPT-3 [4],
e.g., “What a [CLASS] looks like?”, “How can you identify
a [CLASS]?”, and “A caption of an image of a [CLASS]:”.
We denote the created prompts for N categories as PN , for-
mulated as

PN = GPT-3(Commands). (1)

Then, we adopt PN as the input of CLIP’s textual encoder.
Further, for some downstream data with specialized cate-
gories, we can customize the language commands for pro-
ducing prompts with more domain-specific semantics. For
example, in OxfordPets [53] dataset of pet images, we adopt
the input of GPT-3 as “This is a pet bulldog, it has thin neck,
short face, floppy ears. It’s coat is short, straight, and in
brindle color. This is a pet [CLASS],”. Based on that, GPT-
3 continues to describe more details of the [CLASS] pet.

Generate via DALL-E Via the zero-shot DALL-E [14],
we generate synthesis images to enrich our limited train-
ing images IN,K , as shown in Figure 3 (1). For different
categories, we adopt a simple template, e.g., “a photo of

a [CLASS].”. After the generation, we utilize CLIP to fil-
ter the top-K ′ best-quality images as the newly-expanded
training samples for each category. Then, we obtain the N -
category (K +K ′)-sample training images, formulated as

IN,(K+K′) = {DALL-E(TN ), IN,K}, , (2)

where TN denotes the N -category textual inputs. We keep
K ′ comparable with K to ensure the synthesis quality and
also preserve the low-data regimes. By the pre-trained
language-generative knowledge, the data expansion is to-
tally zero-shot, which requires no manpower to collect or
annotate the data, and alleviates the data deficiency issue
inherently for few-shot learning.

Cache by CLIP and DINO. We construct a key-value
cache model for adaptive knowledge ensemble. Different
from Tip-Adapter [75] only adapting CLIP, our cache model
contains the pre-learned knowledge from both CLIP and
DINO by caching two kinds of keys. Specifically in Fig-
ure 4 (2), we first utilize CLIP and DINO to independently
extract visual features of the few-shot training images, for-
mulated as

FCLIP = CLIPvis(IN,(K+K′)); (3)
FDINO = DINO(IN,(K+K′)), (4)

where CLIPvis denotes the CLIP’s visual encoder and
FCLIP, FDINO ∈ RN(K+K′)×C . Besides the two keys, we
convert the few-shot training labels into one-hot encodings
Lonehot ∈ RN(K+K′)×N , and regard them as the same val-
ues for both keys. During training, we follow Tip-Adapter
that only enables the cached keys in the adapter to be learn-
able and keeps the pre-trained models frozen.
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3.3. Adaptive Inference

For a test image in Figure 4, we first extract its two
visual features fCLIP, fDINO ∈ R1×C and regard them as
queries to retrieve diverse knowledge from the cache model.
Then, we could acquire three predicted classification log-
its pZS, pCLIP, pDINO ∈ R1×N , which are respectively from
CLIP’s zero-shot alignment and the two keys of cache
model. We formulate them as

pZS = fCLIP CLIPtex(PN )T ; (5)

pCLIP = ϕ(fCLIPF
T
CLIP) Lonehot; (6)

pDINO = ϕ(fDINOF
T
DINO) Lonehot, (7)

where CLIPtex represents CLIP’s textual encoder, PN de-
notes GPT-3’s created prompts, and fCLIPF

T
CLIP denotes the

query-key affinity matrix of the CLIP’s keys, analogous to
DINO’s. ϕ(x) = exp(−β · (1 − x)) serves as a non-linear
modulator to control the sharpness of affinity matrix.

As the language-contrastive pZS is pre-trained by 400
million data and can perform strong zero-shot transfer abil-
ity, we regard pZS as the prediction baseline and calculate
the weights of pCLIP, pDINO for ensemble based on their dis-
tribution similarity with pZS. By this, we can suppress some
obviously false category possibilities in pCLIP, pDINO and
also amplify the moderately correct ones during ensemble.
Firstly, we respectively normalize the scales of three clas-
sification logits into -1∼1 by their each mean and standard
deviation. We then calculate the distribution similarities as
the ensemble weights for the two logits of the cache as

wCLIP = pCLIP p
T
ZS; wDINO = pDINO p

T
ZS. (8)

Finally, we adopt the softmax function to normalize the
weights and obtain the final ensemble logits as

pen = pZS +
∑
i

pi · softmax(wi), (9)

where i ∈ {CLIP,DINO}. By such similarity-based en-
semble, pen can adaptively fuse the prior knowledge learned
by CLIP and DINO’s pre-training and achieve stronger few-
shot image classification.

4. Experiments

4.1. Settings

Datasets. We conduct few-shot experiments on 11 pub-
licly available datasets: ImageNet [15], Standford-
Cars [41], UCF101 [63], Caltech101 [19], Flowers102 [51],
SUN397 [71], DTD [13], EuroSAT [34], FGVCAir-
craft [47], OxfordPets [53], and Food101 [3]. We follow
Tip-Adapter [75] to train CaFo with 1, 2, 4, 8, 16 shots and
test on the full test set. As we adopt DALL-E to generate
training images in a zero-shot manner, we can train CaFo
only by the generated images and report its zero-shot per-
formance without few-shot training set.

Implementation. Our CaFo integrates the knowledge
from pre-trained CLIP [56], DINO [7], DALL-E [57], and
GPT-3 [4]. For CLIP, we utilize ResNet-50 [33] as the vi-
sual encoder and its aligned transformer as the textual en-
coder. To align with the visual representation from CLIP,
we also adopt DINO pre-trained upon ResNet-50. For
DALL-E, we adopt different domain-specific textual tem-
plates as the input for different datasets, which correspond
to the original textual prompts for CLIP’s textual encoder.
For GPT-3, we adopt five simple templates as the language
commands shared by different categories. Each command
outputs ten prompts, which obtains fifty prompts in total.
For each category, we simply ensemble the features of dif-
ferent prompts following CuPL [4]. During training, we
only set the two kinds of keys in cache model to be learnable
and utilize the data augmentation following Tip-Adapter-
F. We train CaFo using batch size 64 only for 20 epochs,
and adopt AdamW optimizer with the initial learning rate
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Figure 5. Performance (%) Comparison on ImageNet. We
compare CaFo with other methods for different few-shot settings.

Models Epochs Time Accuracy Gain

Zero-shot CLIP 0 0 60.33 -
Zero-shot CALIP 0 0 60.57 -

Linear-probe CLIP - 13min 56.13 -4.20
CoOp 200 14h 40min 62.95 +2.62
CLIP-Adapter 200 50min 63.59 +3.26
Tip-Adapter-F 20 5min 65.51 +5.18
CALIP-FS 200 1h 65.81 +5.48

CaFo 20 10min 68.79 +8.46

Table 1. Efficiency Comparison on ImageNet. We test the train-
ing time with a single A100 GPU under 16-shot setting.

0.0001 with a cosine scheduler. Note that, we tune the hy-
perparameters in CaFo by the official validation sets.

4.2. Performance

On ImageNet. We compare CaFo with other CLIP-
based adaption methods on the most representative Im-
ageNet [15]: CALIP [27], Linear-probe CLIP [56],
CoOp [81], CLIP-Adapter [22], Tip-Adapter-F [75], and
CALIP-FS [27]. All these methods are based on the pre-
trained CLIP [56] with ResNet-50 visual encoders. As re-
ported in Figure 5 and Table 2, CaFo surpasses all exist-
ing methods for different shot settings. Remarkably, CaFo
with 1 shot even outperforms the 8-shot Linear-probe CLIP
and CoOp, and CaFo with 8 shots is better than all meth-
ods with 16 shots. For zero-shot learning, CaFo sigiifi-
cantly surpasses CLIP and CALIP, demonstrating the im-
portance of DALL-E’s generation. In Table 1, we present
the efficiency of CaFo concerning training epochs and time.
Our CaFo achieves the best performance-efficiency trade-
off with 68.79% accuracy and only 10 minutes training.

Shot 0 1 2 4 8 16

Zero-shot CLIP 60.33 - - - - -
Zero-shot CALAP 60.57 - - - - -

Linear-probe CLIP - 22.17 31.90 41.20 49.52 56.13
CoOp - 57.15 57.81 59.99 61.56 62.95
CLIP-Adapter - 61.20 61.52 61.84 62.68 63.59
VT-CLIP - 60.53 61.29 62.02 62.81 63.92
Tip-Adapter-F - 61.32 61.69 62.52 64.00 65.51
CALIP-FS - 61.35 62.03 63.13 64.11 65.81

CaFo 62.99 63.80 64.34 65.64 66.86 68.79

Table 2. Quantative Performance (%) Comparison on Ima-
geNet. For zero-shot performance, CaFo is trained with images
generated by DALL-E without any few-shot data.

Datasets Source Target

ImageNet -V2 -Sketch

Zero-shot CLIP 60.33 53.27 35.44
Zero-shot CALIP 60.57 53.70 35.61

CoOp 62.95 54.58 31.04
CLIP-Adapter 63.59 55.69 35.68
CALIP-FS 65.81 55.98 35.37
Tip-Adapter-F 65.51 57.11 36.00

CaFo 68.79 57.99 39.43

Table 3. Distribution Shift (%) Comparison. We train the mod-
els on “Source” dataset and test on “Target” datasets.

On Other Datasets. To further assess the robustness in
different scenarios, we test CaFo on extra 10 datasets in Fig-
ure 6. For different semantic domains including real-world
scenes, detailed textures, and satellite-captured landscapes,
CaFo consistently shows leading performance and indicates
excellent robustness via the collaboration of diverse knowl-
edge. Notably, on some datasets, e.g., Caltech101 and Ox-
fordPets, the zero-shot CaFo perform even comparably to
other methods with 4 shots, demonstrating the effectiveness
of zero-shot DALL-E for few-shot data expansion.

Distribution Shift. We further evaluate the robustness of
CaFo to distribution shift by training on “Source” dataset and test-
ing on “Target” datasets. In Table 3, we select the “Source” as
ImageNet and the “Target” as ImageNet-V2 [60] and ImageNet-
Sketch [35]. As we can utilize some prior knowledge of the tar-
get domain for GPT-3 and DALL-E for prompting and generation,
CaFo achieves the best out-of-distribution performance on the two
“Target” datasets, surpassing the second-best Tip-Adapter-F by
+3.28%, +0.88%, and +3.43%, respectively.
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Figure 6. Performance (%) Comparison on 10 Datasets. Our method shows state-of-the-art performance for all few-shot settings on
different datasets, which indicates superior generalization capacity.

Pre-trained Models Shot

CLIP DINO DALL-E GPT-3 1 4 16

X 61.32 62.52 65.51
X 34.14 40.47 53.27

X X 61.39 63.96 68.08
X X X 63.24 65.23 68.42
X X X 62.32 64.64 68.51

X X X X 63.80 65.64 68.79

Table 4. Ablation Study (%) of Cascaded Models. We ablate
different pre-trained models on ImageNet with 1, 4, and 16 shots.

4.3. Ablation study
Cascaded Models. In Table 4, we explore how each pre-
trained model contributes to the collaboration on different shots
of ImageNet. Therein, “CLIP” denotes the zero-shot CLIP with
cache model containing only CLIP’s keys, and “DINO” denotes
only the cache model with DINO’s keys. As shown in the first
three rows, the CLIP’s language-contrastive knowledge performs
stronger than DINO’s vision-contrastive knowledge, which might
benefit from millions of pre-training data. Their adaptive ensem-
ble by cache model can bring larger improvement when the shot
number increases. For the next two rows, DALL-E and GPT-3 can
independently boost both CLIP and DINO for nearly all shots with
the prompts and generated synthetic images. The last row repre-
sents our final solution, CaFo that incorporates all three pre-trained
models with the best performance for all shots.

Generated Number via DALL-E. We utilize DALL-E to
generate synthetic images as the expanded few-shot training data.
In Table 6, we explore the best synthetic number K′ for each cat-

Method
Shot

1 2 4 8 16

CLIP 61.36 61.78 62.83 64.04 65.53
DINO 34.13 34.44 41.12 45.01 53.63

Average 60.70 60.72 60.99 61.47 61.97
Maximum 61.64 62.45 62.95 63.60 64.97

pCLIP Base. 62.36 63.22 64.11 65.50 67.40
pDINO Base. 62.61 63.39 64.31 65.83 67.73
pZS Base. 63.80 64.34 65.64 66.86 68.79

Table 5. Ablation Study (%) of Adaptive Inference. We conduct
different ensemble methods of cache model on ImageNet.

egory of different shots on ImageNet. We observe that the larger
K′ does not lead to better few-shot performance. As we adopt
pre-trained CLIP to select the top-K′ generated images, which are
scored by the similarities between CLIP-encoded images and cat-
egory texts, the larger K′ would contain more low-quality images
and adversely affect the cache model. Furthermore, the amount
of expanded data is comparable to the original K shots and thus
preserves the characteristic of few-shot learning.

Adaptive Inference. In Table 5, we ablate different ensemble
methods of CLIP and DINO’s predictions during inference on Im-
ageNet. The first two rows represent the cache model with one
type of keys respectively for two pre-trained models without en-
semble. Then, we adopt average and maximum pooling between
the two predictions and ensemble the result with pZS. However,
such naive integration without adaptive weights causes accuracy
degradation. In the last three rows, we calculate the distribution
similarities for adaptive ensemble and respectively select the three
logits as the baseline. As shown, using pZS as the distribution base-
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Figure 7. Visualizations of DALL-E’s Generated Images. Ex-
amples are from ImageNet, OxfordPets and Caltech101 datasets.

DALL-E 1 2 4 8 16

1 63.29 64.06 65.11 66.48 68.64
2 63.66 64.34 65.37 66.86 68.79
4 63.71 64.33 65.35 66.75 68.61
8 63.80 64.26 65.64 66.68 68.76
16 63.68 64.16 65.40 66.57 68.41

Table 6. Ablation Study (%) of Generated Number via DALL-
E. We compare different shot numbers on ImageNet.

line performs the best, since pZS itself shows strong transfer ability
and can effectively suppress the wrong predictions of other logits.

CLIP’s Visual Encoders. We conduct CaFo with different
CLIP’s visual encoders for comparison with other methods. As
shown in Table 7, CaFo consistently achieves leading performance
with different visual backbones, indicating our generalizability to
network architectures.

4.4. Visualization
DALL-E’s Generated Images. In Figure 7, we visualize the
synthetic images generated by DALL-E on ImageNet [15], Ox-
fordPets [53] and Caltech101 [19]. As shown, benefited from the
vision-generative knowledge, the generated images can well high-
light the downstream semantics of target category and effectively
expand the few-shot training set in low-data regimes.

Our top prediction: goldfish
Overall score:25.34

Our  top prediction: goldfish

...has a shiny, orange-gold body 
with dark spotss... 
...usually orange, red, or yellow, 
and by its shape, which is 
typically oval or round...
...

-With GPT-3 prompts:

a photo of the small [goldfish].
art of the [goldfish].
a origami [goldfish].
a [goldfish] in a video game.
a bad photo of the [goldfish].
...

-With CLIP templates:

CLIP’s top prediction: coral reef

-Score: 24.53

...are composed of calcium 
carbonate skeletons...  
...a large underwater structure 
made up of many small stony 
coral polyps...
...

-With GPT-3 prompts:

a photo of the small [coral reef].
art of the [coral reef].
a origami [coral reef].
a [coral reef] in a video game.
a bad photo of the [coral reef].
...

-With CLIP templates:

Goldfish
vs
Coral Reef

-Score: 24.55

-Score: 25.34 -Score: 24.23

Figure 8. Visualization of GPT-3’s Prompts for CLIP. The ex-
ample shown is from the ImageNet dataset.

Models RN50 RN101 ViT-B/32 ViT-B/16

Zero-shot CLIP 60.33 62.53 63.80 68.73
CoOp 62.95 66.60 66.85 71.92
CLIP-Adapter 63.59 65.39 66.19 71.13
Tip-Adapter-F 65.51 68.56 68.65 73.69
CaFo 68.79 70.86 70.82 74.48

Table 7. Ablation Study (%) of CLIP’s Visual Encoders. We
experiment different visual backbones on the 16-shot ImageNet.

GPT-3’s Prompts for CLIP. In Figure 8, We present a recti-
fied example in ImageNet [15] aided by GPT-3’s prompts in CaFo.
As shown, prompting by GPT-3 (Left) produces more semantic
texts compared to CLIP’s handcrafted templates(Right), and bet-
ter depicts the visual appearances in the image, which predicts the
correct category of goldfish.

5. Conclusion
We propose CaFo, a cascade of foundation models that com-

prehends diverse knowledge from different pre-training and fol-
lows the ‘Prompt, Generate, then Cache’ pipeline. We first in-
corporate the generative language model, GPT-3, for prompting
CLIP with more semantic texts, and adopt DALL-E to expand
the few-shot training data. Then, we adaptively fuse the vision-
contrastive DINO with CLIP via a unified cache model. By collab-
oration, CaFo achieves state-of-the-art performance for few-shot
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learning on 11 datasets. Although CaFo has unified four types of
pre-training, our future direction will focus on integrating more
existing pre-trained knowledge, such as the masked-generative
MAE [30], the 3D-contrastive CrossPoint [1], and 3D-generative
I2P-MAE [79].
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A. Additional Performance Comparison
In Figure 9, we compare the performance of CaFo without

DALL-E [57]’s generated images or GPT-3 [4]’s created prompts
on 10 datasets, which still consistently outperform the second-best
Tip-Adapter-F.

B. Additional Ablation Study
Other Foundation Models. For the cache model, we inves-
tigate other pre-trained foundation models besides CLIP [56] and
DINO [7], including SimCLR [11], MAE [29], and SLIP [50]. We
preserve the prompting and generation by GPT-3 [4] and DALL-
E [57], along with We the pZS as the ensemble baseline during
adaptive inference. As shown in Table 8, ‘CLIP+DINO’, as our
final solution, performs the best. Also, as an enhanced version of
CLIP, SLIP can achieve higher accuracy in CaFo.

Setting ImageNet OxfordPets EuroSAT

CLIP+SimCLR 62.3 65.7 87.1 89.4 55.7 75.9
CLIP+MAE 62.2 65.5 87.1 89.1 63.7 72.7
DINO+MAE 63.0 68.4 88.8 91.9 60.0 88.0

DINO+SimCLR 63.1 68.5 88.8 91.3 70.7 87.7
CLIP+DINO 63.8 68.8 89.2 91.6 69.0 88.7
SLIP+DINO 71.0 75.6 92.2 94.0 71.3 88.6

Table 8. Ablation Study (%) of Other Foundation Models in
the Cache Model. We report the accuracy of 1 and 16 shots on
ImageNet [15], OxfordPets [53], and EuroSAT [34].

Zero-shot CaFo. As we leverage the pre-trained DALL-E to
generate the supplementary few-shot training set in a zero-shot
manner, our CaFo can be evaluated under zero-shot settings the
same as CLIP, for which none of the human-annotated training
images is given. In Table 10, we report the best generated im-
age number K′ of DALL-E for zero-shot CaFo. The number “0”
denotes Zero-shot CLIP. For different datasets, the best number
varies ranging from 1∼16, and the larger number normally can-
not get the better result, probably due to the low-quality synthetic
images. On Caltech101 [19] and EuroSAT [34], zero-shot CaFo
largely surpasses CLIP by +4.62% and +7.54%, indicating our su-
periority under zero-shot settings.

Hyperparameter β. In Formula 5 and 6, we utilize a non-
linear modulator ϕ(x) = exp(−β · (1−x)) for the affinity matrix
of CLIP and DINO in the cache model, where β controls the ma-
trix sharpness. In Table 9, we experiment CaFo with different β
on 16-shot ImageNet and observe 0.6 performs the best.

Sharpness β 0.4 0.5 0.6 0.7 0.8 1.0

CaFo 68.66 68.75 68.79 68.73 68.69 68.66

Table 9. Ablation Study (%) of Hyperparameter β. We report
the 16-shot accuracy on ImageNet [15].

C. Additional Visualization
GPT-3’s Prompts for CLIP. In Figure 12 and 13, we show
more visualization of the prompts produced by GPT-3 and how
they assist our CaFo to rectify false predictions of the original
CLIP’s templates.

DALL-E’s Generated Images. In Figure 14, we visualize
more synthetic images generated by DALL-E on different datasets.
Benefited from the pre-trained DALL-E, the generated images can
well highlight the semantics of target category and effectively ex-
pand the few-shot training set in low-data regimes.

t-SNE. We present the t-SNE visualization of our CaFo and the
second-best Tip-Adapter-F in Figure 10. CaFo shows more con-
trastive distribution of category clusters and well mitigates some
aliasing between similar classes.

Learning Curves. In Figure 11, we visualize the 20-epoch
learning curves of test accuracy on 16-shot ImageNet. Compared
to the single CLIP, collaborating with DALL-E, DINO and GPT-
3 significantly improves the convergence speed and classification
accuracy on test set.
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Figure 9. Performance (%) Comparison on 10 Datasets. Our method shows state-of-the-art performance for all few-shot settings on
different datasets. ‘CaFo w/o D.&G.’ denotes CaFo without DALL-E’s generated images and GPT3’s created prompts.
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Figure 12. Additional Visualization of GPT-3’s Prompts for CLIP. Above examples are from the ImageNet dataset.
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...are small, domesticated birds 
that are typically considered 
female.
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Figure 13. Additional Visualization of GPT-3’s Prompts for CLIP. Above examples are from the ImageNet dataset.
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Figure 14. Additional Visualization of DALL-E’s Generated Images. Examples are from ImageNet, OxfordPets and Caltech101
datasets.
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