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Figure 1. We introduce NViST, a transformer-based architecture that enables synthesis from novel viewpoints given a single in the wild
input image. We test our model not only on held-out scenes of MVImgNet, a large-scale dataset of casually captured videos of hundreds
of object categories (Right) but also on out-of-distribution challenging phone-captured scenes (Left).

Abstract

We propose NViST, a transformer-based model for effi-
cient and generalizable novel-view synthesis from a single
image for real-world scenes. In contrast to many meth-
ods that are trained on synthetic data, object-centred sce-
narios, or in a category-specific manner, NViST is trained
on MVImgNet, a large-scale dataset of casually-captured
real-world videos of hundreds of object categories with di-
verse backgrounds. NViST transforms image inputs directly
into a radiance field, conditioned on camera parameters via
adaptive layer normalisation. In practice, NViST exploits
fine-tuned masked autoencoder (MAE) features and trans-
lates them to 3D output tokens via cross-attention, while
addressing occlusions with self-attention. To move away
from object-centred datasets and enable full scene synthe-
sis, NViST adopts a 6-DOF camera pose model and only re-
quires relative pose, dropping the need for canonicalization

of the training data, which removes a substantial barrier
to it being used on casually captured datasets. We show
results on unseen objects and categories from MVImgNet
and even generalization to casual phone captures. We con-
duct qualitative and quantitative evaluations on MVImgNet
and ShapeNet to show that our model represents a step
forward towards enabling true in-the-wild generalizable
novel-view synthesis from a single image. Project webpage:
https://wbjang.github.io/nvist_webpage.

1. Introduction

Learning 3D scene representations from RGB images for
novel view synthesis or 3D modelling remains a pivotal
challenge for the computer vision and graphics communi-
ties. Traditional approaches, such as structure from mo-
tion (SfM) and multiview stereo pipelines, endeavor to op-
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timize the 3D scene from RGB images directly by lever-
aging geometric and photometric consistency. The advent
of Neural Radiance Fields (NeRF) [52] and its subsequent
developments has marked a significant step forward by en-
coding the entire 3D scene within the weights of a neu-
ral network (or feature grid), from RGB images only. Al-
though NeRF requires more than dozens of images for
training, efforts have been undertaken to generalize NeRF
across multiple scenes by taking a single image as an in-
put [15, 31, 36, 46, 54, 63, 91, 99]. Nonetheless, gener-
alizing NeRF-based models to multiple real-world scenes
remains a challenge due to scale ambiguities, scene mis-
alignments and diverse backgrounds. The huge success of
2D latent diffusion models [66] has sparked interest in 3D
diffusion models. One trend is to make diffusion models
3D-aware by fine-tuning a pre-trained 2D diffusion model.
However, so far these approaches are trained on centered
objects, masked inputs, do not deal with backgrounds, and
assume a simplified camera model (3-DOF) [48, 49, 61, 76].
Other approaches [13, 17, 28, 84] build the diffusion model
on top of volume rendering in 3D space, but they are com-
putationally expensive and slow to sample from.

Many recent breakthroughs in computer vision can be at-
tributed to the emergence of very large datasets paired with
the transformer architecture. For instance, MiDAS [62] ex-
ploits multiple diverse datasets, leading to robust perfor-
mance in zero-shot depth estimation from a single RGB im-
age while SAM [42] demonstrates that an extensive dataset
coupled with a pretrained MAE and prompt engineering can
significantly improve performance in segmentation. How-
ever, in 3D computer vision, scaling up real-world datasets
has not been as straightforward. Synthetic datasets like
ShapeNet [14] or Objaverse [21] have helped to promote
progress, but there is a large domain gap.

The recent release of real-world large-scale multiview
datasets such as Co3D [65] or MVImgNet [100], cou-
pled with the availability of robust SfM tools such as
COLMAP [71, 72] or ORB-SLAM [56] to enable camera
pose estimation, has opened the door to large-scale training
for new view synthesis. However, significant challenges re-
main to train a scene-level new view synthesis model on
such real-world, large scale datasets due to the huge di-
versity of objects, categories, scene scales, backgrounds,
and scene alignment issues. Motivated by this we pro-
pose NViST, a transformer-based architecture trained on
a large-scale dataset to enable in-the-wild new view syn-
thesis (NVS) from a single image. We exploit a subset of
MVImgNet [100] which has one order of magnitude more
categories and ×2 more objects than Co3D [65]. Our con-
tributions can be summed up as follows:

• NViST can model general real-world scenes, including
backgrounds, only requiring relative pose during training.

• Our novel decoder maps MAE features to 3D output to-

kens via cross-attention, conditions on camera parameters
via adaptive layer normalisation and addresses occlusions
with self-attention.

• Our qualitative and quantitative evaluations on
MVImgNet test sequences show good performance
on challenging real-world scenes.

• We demonstrate good generalization results on a zero-
shot new-view synthesis task, on phone-captured scenes.

2. Related Work
Transformer, ViT and MAE: The transformer [86], a feed-
forward, scalable, attention-based architecture, has brought
a revolution to the field of natural language understanding.
Inspired by it, the vision transformer (ViT) [24] uses image
patches as tokens to achieve performance levels comparable
to those of CNNs [29, 78] in many computer vision tasks.
While the ViT is trained in a supervised way, masked au-
toencoders (MAE) [30] can be trained in a self-supervised
way by randomly masking and in-painting patches, and be
further fine-tuned on specific tasks.
Neural Implicit Representations: Neural implicit rep-
resentations aim to learn a 3D representation without di-
rect 3D supervision using neural networks. They have
been employed for various tasks, including depth predic-
tion [57] and scene representation through ray marching
and coordinate-based MLPs [79]. Mildenhall et al. [52]
proposed Neural Radiance Fields (NeRF), which integrates
coordinate-based MLPs, positional encoding, and volume
rendering to encode a scene in the weights of neural net-
work. Upon optimisation, novel views can be rendered
with impressively high quality. Beyond novel view syn-
thesis, NeRF has found utility in a diverse range of com-
puter vision tasks such as segmentation [10, 26, 87, 102],
surface reconstruction [7, 53, 58, 89, 90], and camera regis-
tration [18, 20, 37, 45, 47, 50, 92, 96].
Grid-based representations: A limitation of the original
NeRF method is its lengthy training time. As an alterna-
tive to coordinate-based MLPs, grid-based approaches [16,
25, 55, 81, 97, 98] have been proposed to expedite training.
TensoRF [16] proposed the vector-matrix (VM) represen-
tation as an efficient and compact way to represent the 3D
grid. In the context of 3D-aware Generative Adversarial
Networks (GANs), EG3D [12] introduced triplanes by pro-
jecting 3D features into three different planes. Several ap-
proaches use the triplane representation to learn to generate
3d implicit representations from ImageNet [64, 70, 74, 80].
Learning multiple scenes using NeRF: Generalising
NeRFs to multiple scenes remains a challenging prob-
lem. Several methods associate 2D features with the target
views [15, 19, 31, 35, 65, 85, 91, 99], while others condi-
tion the network on latent vectors with a shared MLP across
the dataset [3, 27, 32, 36, 54, 63]. Adding an adversarial
loss to NeRF leads to 3D-aware GANs, which allow consis-
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Figure 2. Architecture. NViST is a feed-forward transformer-based model that takes a single in-the-wild image as input, and renders a
novel view. The encoder, a finetuned Masked Autoencoder (MAE), generates feature tokens, which are translated to output tokens via
cross-attention by our novel decoder, conditioned on normalised focal length and camera distance via adaptive layer normalisation. Self-
attention blocks allow reasoning about occlusions. Output tokens are reshaped into a vector-matrix representation that is used for volume
rendering. NViST is trained end-to-end via a balance of losses: photometric L2, perceptual LLPIPS, and a distortion-based regulariser Lreg.

tent rendering from different viewpoints [8, 11, 12, 44, 73].
Most approaches that use a single input image require
aligned datasets like ShapeNet [14, 79] or FFHQ [40], and
fail to deal with scale ambiguities or diverse backgrounds.
Diffusion for NVS: Latent diffusion [66] and its open-
source release Stable Diffusion have transformed the field
of image generation. However, applying diffusion models
to learn 3D implicit representations is not straightforward as
there is no access to 3D ground-truth. 3DiM [94] proposes
a pose-conditioned image-to-image approach. Dreamfu-
sion [60] introduced score distillation sampling (SDS) to
train NeRF with a 2D diffusion model. SDS has been used
in many follow-up works [51, 77, 83, 88, 93]. Fine-tuning
Stable Diffusion on a large-scale synthetic dataset [21] al-
lows diffusion models to be 3D-aware such as Zero-1-to-3
and its follow-ups [48, 49, 61, 76]. Other approaches de-
noise directly in 3D and supervise the model in 2D space
after rendering, [1, 2, 13, 28, 39, 82, 84], use the 2D dif-
fusion model as a prior [22], or optimise NeRF jointly and
regard it as the ground truth [17]. Similar to latent diffu-
sion [5, 41, 74] adopt 2-stage training.
3D Representation with Transformers: Geometry-free
methods employing transformer architectures have been ex-
plored as seen in [43, 67–69]. Others build NeRF rep-
resentations using transformers [38, 46, 70, 75, 95]. The
concurrent work LRM [33] extracts image features through
DINO [9], and refines learnable positional embeddings via
attention mechanisms. Unlike NViST, LRM focuses on
object-centric scenes without background and employs tri-
planes instead of vector-matrix representation.

3. Methodology

NViST is a feed-forward conditional encoder-decoder
model built upon transformers to predict a radiance field
from a single image to enable synthesis from novel view-

points. As Figure 2 shows, our architecture is structured
into three key components: two transformer-based modules
(encoder and decoder) and a NeRF renderer, which is com-
posed of a shallow multi-layer perceptron (MLP) and a dif-
ferentiable volume rendering module.

3.1. Encoder

Input images are first split into a set of fixed size non-
overlapping patches before being fed to the encoder, which
predicts feature tokens using a ViT-B transformer architec-
ture. We formulate the encoder E as F,C = E(I) where I
are input images and F and C are the feature and class to-
kens respectively. In practice, we use the encoder of a pre-
trained MAE [30], a self-supervised vision learner trained
to predict masked image patches, which we further finetune
on the training dataset to adapt to the different image reso-
lution from ImageNet, on which MAE [30] is trained. As
illustrated in Figure 3, we find that the self-supervised fea-
tures learnt by the MAE [30] encapsulate a powerful inter-
mediate representation of the scene’s geometric and appear-
ance properties that can be leveraged by the decoder to pre-
dict the radiance field. Note that the weights of the encoder
are continuously updated during end-to-end training, since
we found that this enhances the encoder’s ability to gener-
ate smoother and more segment-focused features, as shown
in Figure 3, and better performance as shown in Table 2.

3.2. Decoder

The goal of the decoder D is to take the class and feature
tokens, C and F , predicted by the encoder along with the
camera parameters used as conditioning (normalized focal
length f and camera distance z) and predict the radiance
field, which we encode using a vector-matrix (VM) repre-
sentation, parameterized with three matrices M and three
vectors V . A key feature of our decoder is the use of cross-
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Figure 3. Encoder Output Visualisation: (Top) Input images.
(Middle) Features from a fine-tuned MAE, which serve as initial-
isation to our encoder. (Bottom) Features after end-to-end train-
ing. Features shown after reducing to 3 dimensions with PCA.
Optimised features appear smoother and more segment-focused,
supporting the fact that updating encoder weights significantly im-
proves the performance (see also ablation in Table 2).

attention and self-attention mechanisms. Unlike previous
models [99] which project spatially aligned ResNet [29]
features onto target rays, our decoder learns this 2D to 3D
correspondence by learning to associate feature tokens with
the relevant output tokens through cross-attention.

The decoder D has output tokens O, which are learnable
parameters, initialised following a random normal distribu-
tion. For simplicity, from here on we will use the term out-
put tokens O to refer to the concatenation of output tokens
and class token C, to which we further add positional em-
beddings [86].

M,V = D(F,C,O, f, z). (1)

The decoder applies cross-attention between feature tokens
F and output tokens O, and self-attention amongst output
tokens O. The attention mechanism allows the network to
reason about occlusions, where the class token C acts as
a global latent vector. For each attention block, we apply
adaptive layer normalisation [34, 59], instead of standard
layer normalisation, to condition on camera parameters.

3.2.1 Relative Camera Pose

A key strength of our approach is that it does not require all
objects/scenes in the dataset to be brought into alignment by
expressing their pose with respect to a canonical reference
frame. Instead, we assume the rotation of the camera asso-
ciated with the input image Ii to be the identity and we ex-
press the rotation of any other image Ij as a relative rotation
Ri→j . We assume that the camera location of the input im-
age is Ti→i = (0, 0, z), where z is the normalized distance
of the input camera from the origin of the world coordinate
frame, located at the centroid of the 3D bounding box con-
taining the point cloud, and Ti→j = Ri

T (Tj −Ti). Zero-1-
to-3 [49] also adopts a relative-pose based approach, how-
ever it assumes objects are located in the centre and uses a
3-DoF camera pose model (radius, elevation and azimuth),
while NViST uses a full 6-DoF model for the camera pose.

3.2.2 Conditioning on Camera Parameters

There are several ways to apply conditioning such as con-
catenating camera parameters to output tokens O or feature
tokens F . However, in NViST we apply adaptive layer nor-
malization, as the camera parameters influence the overall
scale of the scene. Conditioning camera parameters im-
proves the model performance as seen in Table 2.
Positional encoding: We apply the positional encoding
from NeRF [52] for f and z, concatenating up to 4-th sine
and cosine embeddings with the original values z and f as
M = ⊕4

k=1(sin 2
k(f), cos 2k(f), sin 2k(z), cos 2k(z)).

Adaptive Layer Normalisation: We employ an additional
MLP A to regress the shift δ, scale α and gate scale γ from
the conditioning inputs (z, f,M) for each attention block.

α, δ, γ = A(z, f,M) (2)

An alternative to adaptive layer normalisation would be
to concatenate M to output tokens O, but as seen in our ab-
lation (Table 2) this strategy does not lead to better results.

3.2.3 Attention Blocks

NViST uses self-attention blocks between output tokens O
and cross-attention blocks between output tokens O and
feature tokens F . The embedding dimension for both O
and F is e. While standard layer normalization is applied
to feature tokens F , we apply adaptive layer normalization
to output tokens O using the shift δ and scale α values re-
gressed by A, the MLP described in Equation 2.

On = δ + α× Norm(O)

Fn = Layer Norm(F ).
(3)
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Figure 4. Qualitative Results on Test (Unseen) Scenes: We show the capabilities of NViST to synthesize novel views of unknown scenes.
The model correctly synthesizes images from different viewpoints of various categories with diverse backgrounds and scales.

Cross-attention can then be expressed as

Attn = Softmax(
OnF

T
n√
e

). (4)

Finally, output tokens are updated via residual connection
O ← O + γ × Attn · Fn, where γ is the gate scale also
regressed by A. Note that self-attention is obtained in an
equivalent way, just between output tokens.
Reshaping: We use MLPs to reshape the output tokens into
the vector-matrix representation that encodes the radiance
field, adapting their respective dimensionalities. This is fol-
lowed by unpatchifying into the 3 matrices and 3 vectors
that form the VM representation. Please refer to the supple-
mentary material for more details.

3.3. Rendering

The VM representation of the radiance field predicted by
the decoder is used to query 3D point features which are
then decoded by a multi-layer perception into color c and
density σ and finally rendered via volumetric rendering.
Vector-Matrix Representation: For a compact yet ex-
pressive representation of the radiance field, we adopt the
vector-matrix decomposition proposed by TensoRF [16]
which expresses each voxel as the sum of three vectors and
matrices, one pair per axis. Specifically, a 3D feature grid

(T ), is decomposed into three vectors (V X
r1 , V

Y
r2 , V

Z
r3 ) and

three matrices (MY,Z
r1 ,MZ,X

r2 ,MX,Y
r3 ), each pair sharing the

same channel dimensions (k) such that

T =

k∑
r1=1

V X
r1 ◦M

Y,Z
r1 +

k∑
r2=1

V Y
r2 ◦M

Z,X
r2 +

k∑
r3=1

V Z
r3 ◦M

X,Y
r3 .

(5)
While the value of density σ is obtained by applying ReLU
activation directly to the feature value Tx at point x, the
colour c is predicted with a shallow MLP, conditioned on
the viewing direction. The VM representation outperforms
using a triplane as shown in our ablation study (Table 2).

Volume Rendering: For each sampled ray r, we obtain
its final color Ĉ(r) ∈ R3 using volumetric rendering,
following the methodology of NeRF [52]. The transmit-
tance Ti is first computed at each point x along the ray as
Ti = exp(−

∑i−1
j=1 σjδj), where δi is the distance between

adjacent points δi = ti+1 − ti. The pixel color is calcu-
lated by integrating the predicted color at each i-th point ci,
weighted by light absorbance Ti - Ti+1.

Ĉ(r) =

N∑
i=1

Ti(1− exp(−σiδi))ci (6)
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3.4. Training Losses

We employ a combination of losses to train our architec-
ture in an end-to-end manner including the L2 photometric
rendering loss, a Learned Perceptual Image Patch Similar-
ity (LPIPS) loss [101], and the distortion-based regulariser
proposed by [4]. Given ground-truth pixel colors v, esti-
mates v̂ and accumulated transmittance values w along the
points x on the ray, our overall loss function is defined as

L = L2(v̂,v) + λLLPIPS(v̂,v) + βLdist(w,x). (7)

For MVImgNet λ = 0.1 and β = 0.01. We found LPIPS to
be extremely effective on real world datasets (see Table 2).

4. Experimental Evaluation
4.1. MVImgNet

Train/Test Split: MVImgNet contains videos of over 6.5
million real-world scenes across 238 categories. Our train-
ing set, contains a subset of 1.14M frames across 38K
scenes of 177 categories. For the test set, we hold out every
100th scene from each category to a total of 13, 228 frames,
from 447 scenes and 177 categories.
Pre-processing: MVImgNet uses COLMAP to estimate
camera matrices and generate 3D point clouds. Since each
scene has its own scale from SfM, we rescale point clouds
to a unit cube, such that the maximum distance along one
axis equals 1. Then, we center the point clouds in the world
coordinate system. We downsample the original images by
×12 while preserving their aspect ratio. Camera intrinsics
are recalibrated accordingly.
Implementation Details: NViST has approximately 216M
parameters: 85M for the encoder, 131M for the decoder,
and 7K for the renderer. The encoder takes images of size
160×90, using a patch size of 5, so the total number of fea-
ture tokens is 576. The resolution of the VM representation
is 48. The patch size for the decoder is 3, the total number
of output tokens 816, and 16 heads. The embedding dimen-
sion is 768 for both encoder and decoder, and we sample 48
points along the ray. We train NViST with 2× A100-40GB
GPUs for approximately one week, using a batch size of 22
images and rendering 330K pixels, up to one million iter-
ations. The initial learning rates are 6e-5 for encoder, and
4e-4 for decoder and renderer and we decay them following
the half-cycle cosine schedule.

4.1.1 Qualitative Results

Results on Test (Unseen) Scenes: As depicted in Figure
4, our model demonstrates its capability to synthesise new
views of unknown scenes. Figure 4 highlights the model’s
ability to handle objects from diverse categories, such as
flowers, bags, helmets and others. We show that NViST can

Figure 5. Results on Unseen Category: This figure shows how
the model generalises to a novel category unseen at training. We
validate our model with a held-out category (toy-cars).

Figure 6. Casual Phone Captures: We demonstrate NViST in
OOD scenarios. First row: the model can capture different cate-
gories. Second row: outdoor setting. Third row: many objects.

deal with a variety of backgrounds, such as tables, wooden
floors, textureless walls or more cluttered environments.
Results on Unseen Category: We take a held-out category
(toy-cars), and test the ability of our model to generalize to
categories unseen at training. Figure 5 shows that NViST
can synthesize new views of objects from a category not
seen at training time given a single input image.
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PSNR↑ SSIM↑ LPIPS↓
PixelNeRF [99] 17.02 0.41 0.54
VisionNeRF [46] 19.82 0.51 0.47
Ours 20.83 0.57 0.29

Table 1. Quantitative Tests on MVImgNet: We compare NViST
with PixelNeRF and VisionNeRF on new view synthesis from sin-
gle in-the-wild images. NViST outperforms both on all metrics.

Casual Phone Captures: Our motivation for this paper was
to train a feed-forward model that we could easily use on ca-
sually captured images, for instance acquired with our own
mobile devices. We test the ability of NViST to deal with
out-of-distribution scenes/images by performing zero-shot
new-view synthesis on scenes captured by us on a mobile-
phone device. We pre-process the images in the same man-
ner as MVImgNet, using COLMAP to estimate the focal
length and camera distance parameters to be used as con-
ditioning. Figure 6 shows results on out-of-distribution
scenes. The top row highlights the model’s ability to pro-
cess a scene with multiple objects from diverse categories.
The second row reveals its competence on outdoor scenes,
despite their limited presence in the training set. The third
row illustrates NViST’s ability to learn scenes with a large
number of objects. Figure 1 shows two further examples of
results on phone captures.
Depth Estimation: Figure 7 shows qualitative results of
the depth predicted by NViST. Since there is no ground-
truth depth for these images, we qualitatively compare
NViST with the recent MiDASv3.1 with Swin2-L384 [6].
As MiDAS predicts depth from RGB images, we provide
the GT novel view image as input. This shows that depth
estimation with NViST performs well even though it is not
trained with depth supervision, while MiDAS uses direct
depth supervision from multiple datasets.

4.1.2 Comparisons with baseline models

We compare NViST with PixelNeRF [99] and Vision-
NeRF [46], all trained on MVImgNet using their offi-
cial code releases and applying the same pre-processing
as NViST. Figure 8 and Table 1 show that NViST outper-
forms both models by a large margin. Both models rely on
aligned features, but have limitations dealing with occlu-
sion. We qualitatively compare with the pre-trained Zero-1-
to-3 [49] on a phone capture in Figure 9, using the approx-
imate camera pose as it assumes a centered object. Since
Zero-1-to-3 and its follow-up works assume a 3DoF cam-
era and do not model the background, we could not conduct
quantitative comparisons.

We could not conduct quantitative comparisons with
generative models such as GenVS [13] or with the large-
scale model LRM [33] as their models are not publicly

Figure 7. Depth Estimation: Examples of the depth estimates
on test images. Although NViST focuses on novel view synthesis
and is trained with RGB losses only, depth estimation is consistent
and finds good object boundaries. We show a comparison with
the state-of-the-art disparity estimator MiDAS v3.1 with Swin2-
L384 [6]. We provide MiDAS the GT new view images as input,
as it cannot do novel view synthesis. NViST performs well even
though it is not trained with depth supervision, unlike MiDAS.

Figure 8. Qualitative Comparison with PixelNeRF and Vision-
NeRF: NViST displays better performance than PixelNeRF [99]
and VisionNeRF [46], especially when the target view is far away
from the input view.

available. Moreover, GenVS is category-specific and LRM
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Figure 9. Qualitative comparison with Zero-1-to-3 [49] on
a phone captured input image: Zero-1-to-3 shows result
w/masked input, Zero1to3∗ shows result w/full image input. None
result in good novel-view synthesis, except NViST.

PSNR↑ SSIM↑ LPIPS↓
Ours 20.83 0.57 0.29
w/o LPIPS 20.72 0.54 0.46
w/o Camera Conditioning 20.24 0.49 0.36
Concat Camera Parameters(1) 20.81 0.57 0.30
w/ Self-Attention Decoder(2) 20.74 0.57 0.31
w/o VM Representation(3) 19.60 0.49 0.44
w/o Updating Encoder 18.54 0.47 0.49

Table 2. Ablation: For (1) we concatenate high dimensional cam-
era feature tokens to output tokens instead of adaptive layer nor-
malisation. For (2) we update all tokens via self-attn (no cross-
attn). For (3), we use triplane instead of VM as the representation.

does not model backgrounds.

4.1.3 Ablation Study

We conducted an ablation study to analyse the effect of de-
sign choices on the performance of NViST as summarised
in Table 2. While the perceptual LPIPS loss [101] is not
commonly employed in NeRF-based methods, it appears
to play a crucial role in improving quality. Conditioning
on normalized focal length and camera distance helps the
model deal with scale ambiguities, and adaptive layer nor-
malisation performs better than concatenating camera pa-
rameters to output tokens. Instead of employing cross-
attention in Figure 2, we can concatenate feature tokens
and output tokens and update both of them using self-
attention. However, it increases memory consumption and
does not lead to a better result in Table 2. While project-
ing features onto triplanes has been extensively used be-
fore [12, 33, 44, 70], our experiments show that the use of
a vector-matrix (VM) representation [16] improves perfor-
mance. Note that for the triplane representation, we use a
1-layer MLP to regress occupancy, while occupancy is di-
rectly calculated using Equation 5 in our VM representa-

Cars Chairs

PSNR↑ LPIPS↓ PSNR↑ LPIPS↓
PixelNeRF [99] 23.17 0.146 23.72 0.128
VisionNeRF [46] 22.88 0.084 24.48 0.077
VD [82] 23.29 0.094 - -
SSDNeRF [17] 23.52 0.078 24.35 0.067

Ours 23.91 0.122 24.50 0.090

Table 3. Quantitative Evaluation on ShapeNet-SRN: NViST
performs similarly to other baselines on ShapeNet Cars/Chairs,
although our method only requires relative pose. For qualitative
comparisons, see supplementary materials.

tion. Updating encoder weights also improves the perfor-
mance as the encoder output is used for cross-attention.

4.2. ShapeNet-SRN

ShapeNet-SRN [79] has two categories (cars and chairs)
and is a widely used benchmark to compare models that
perform novel view synthesis from a single input image.
Since all objects are aligned and there is no scale ambi-
guity, pre-processing is not needed and we do not use the
LPIPS loss as it is a synthetic dataset. Table 3 shows that
NViST performs similarly to baseline models on ShapeNet-
SRN dataset. Although other models apply absolute pose,
we only employ relative pose, which means we do not fully
exploit the alignment of objects in ShapeNet-SRN.

5. Conclusion

We have introduced NViST, a transformer-based scalable
model for new view synthesis from a single in-the-wild im-
age. Our evaluations demonstrate robust performance on
the MVImgNet test set, novel category synthesis and phone
captures of out-of-distribution scenes. Our design choices
were validated via ablations and a quantitative comparison
was conducted on MVImgNet and ShapeNet-SRN. Inter-
esting future directions include extending NViST to adopt a
probabilistic approach and to multiview inputs.
Limitations: Some loss of sharpness could be due to our
computational constraints, which led us to downsample im-
ages by ×12 and train on a fraction of the original dataset.
We pushed for a transformer-based architecture, without
GAN losses or SDS [60], which eased and sped up train-
ing, but may have also contributed to some loss of detail.
Acknowledgements: Our research has been partly sup-
ported by a sponsored research award from Cisco Re-
search and has made use of time on HPC Tier 2 facilities
Baskerville (funded by EPSRC EP/T022221/1 and oper-
ated by ARC at the University of Birmingham) and JADE2
(funded by EPSRC EP/T022205/1). We are grateful to
N. Mitra and D. Stoyanov for fruitful discussions.
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NViST: In the Wild New View Synthesis from a Single Image with Transformers

Supplementary Material

A. Implementation Details
Finetuning MAE Encoder: We use the pre-trained
MAE [30] with ViT-B [24] from the original MAE imple-
mentation. Those weights are trained for ImageNet [23]
which has a resolution of 224×224 pixels with a patch size
16. This means that the model divides the image into 196
feature tokens. Our image resolution for MVImgNet [100]
is 160×90, and we use an encoder patch size of 5, resulting
in 576 patches in the encoder. During fine-tuning, we ini-
tialise the weights of attention blocks with the pre-trained
MAE, as the Transformer architecture allows for arbitrary
attention matrix shapes as long as the embedding dimension
remains the same. We fine-tune by randomly masking out
and inpainting patches with L2 reconstruction loss,similar
to the approach used in MAE [30]. The process converges
within a single epoch.
Initialisation of Decoder: We initialise the decoder of
NViST with the fine-tuned MAE weights. With the ex-
ception of the learnable parameters of positional embed-
ding of output tokens and the last MLP layers, we initialise
the weights of attention blocks with the fine-tuned MAE
weights.
Number of output tokens: For MVImgNet [100], the res-
olution of vector-matrix(VM) representation is 48, and the
channel dimension of each matrix and vector is 32. The
patch size of the decoder is 3. Each 48 × 48 matrix M
consists of non-overlapping 16× 16 patches, and the 48 di-
mensional vector V is divided into 16 patches. Therefore,
the total number of output tokens for VM representation is
818.
Decoder MLPs and Reshaping: The embedding dimen-
sion of the decoder is 768. We have 818 output tokens, and
the channel dimension of VM representation [16] is 32, with
a patch size of 3 for the decoder. For the output tokens cor-
responding to the matrices M in the VM representation, we
deploy MLP to reduce the embedding dimension to 288.
For those corresponding to vectors V, we reduce it to 96.
Subsequently, we reshape them into VM representation.

B. Qualitative Results on ShapeNet-SRN
We perform a qualitative comparison with VisionNeRF [46]
on ShapeNet-SRN [79] dataset as depicted in Figure 12.
VisionNeRF, recognised as one of top-performing mod-
els on ShapeNet-SRN, employs ViT [24] as its encoder.
Notably, VisionNeRF does not utilise any generative ap-
proaches, and was trained using 8 A100 GPUs. Similarly
for MVImgNet, we fine-tune a MAE for the ShapeNet-SRN
dataset and initialise the parameters of both encoder and de-

Figure 10. Failure Cases This figure illustrates when the model
fails to do new view synthesis properly. The toilet scene shows that
the model learns geometry in a distorted way. In the motorcycle
scene, the model fails to estimate the occluded area and the proper
scale.

coder of NViST with this fine-tuned MAE for ShapeNet-
SRN. The ShapeNet-SRN images are of resolution 128 ×
128, and we use an encoding patch size of 8, resulting in
256 feature tokens. The resolution of VM representation is
64, and the decoder patch size is 4, so we use 818 output
tokens, each with an embedding dimension of the Trans-
former as 768. We still maintain the relative pose but do not
condition on camera parameters as the dataset is aligned and
does not have scale ambiguities. We train the model with a
single 3090 GPU with 500, 000 and 700, 000 iterations, re-
spectively for car and chair.
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Figure 11. Qualitative Results on Test (Unseen) Scenes of MVImgNet [100]: NViST can synthesize high-quality novel view on
challenging scenes from single in-the-wild input images.
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Figure 12. Qualitative Comparison on ShapeNet-SRN [79]: NViST performs similar to VisionNeRF which is one of the top-performing
models on ShapeNet-SRN dataset. Note that we do not employ LPIPS and do not condition on camera parameters for ShapeNet-SRN as it
is a synthetic dataset, but we still use the relative pose even though objects are aligned in 3D.
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