
Towards Backward-Compatible Continual Learning of Image Compression

Zhihao Duan1 Ming Lu2 Justin Yang1 Jiangpeng He1† Zhan Ma2 Fengqing Zhu1

1 Purdue University, West Lafayette, Indiana, U.S.A.
2 Nanjing University, Nanjing, Jiangsu, China

{duan90, yang1834, he416, zhu0}@purdue.edu, {minglu, mazhan}@nju.edu.cn

Abstract

This paper explores the possibility of extending the capa-
bility of pre-trained neural image compressors (e.g., adapt-
ing to new data or target bitrates) without breaking back-
ward compatibility, the ability to decode bitstreams encoded
by the original model. We refer to this problem as continual
learning of image compression. Our initial findings show
that baseline solutions, such as end-to-end fine-tuning, do
not preserve the desired backward compatibility. To tackle
this, we propose a knowledge replay training strategy that
effectively addresses this issue. We also design a new model
architecture that enables more effective continual learning
than existing baselines. Experiments are conducted for two
scenarios: data-incremental learning and rate-incremental
learning. The main conclusion of this paper is that neural
image compressors can be fine-tuned to achieve better per-
formance (compared to their pre-trained version) on new
data and rates without compromising backward compati-
bility. Our code is available at this link.

1. Introduction

Recent years have witnessed the rapid development of deep
learning-based image compression. Most existing research
in this field considers the offline learning setting, i.e., once a
neural network model is trained, its parameters are fixed and
kept unchanged when deployed. However, real-world appli-
cations are often complex and dynamic, and an ideal com-
pressor should be capable of being incrementally learned
and adapted to various scenarios. For example, consider
an image storage application with a compressor pre-trained
on natural images for certain predefined target bitrates. As
new image sources (e.g., microscopy, remote sensing, and
human face images) are encountered, one may want to up-
date the compressor to improve its performance on the new
data and to support different target rates. This raises an in-
teresting question: can neural network-based image com-

†Corresponding author & Project lead

Enc. Dec.

New

Dec.

Pre-trained model

Fine-tuning

New

Enc.

New

Dec.

Bits

Backward compatibility

(a) Continual learning of image compression

Original

image

Reconstruction,

before fine-tuning Reconstruction, after fine-tuning

Vanilla fine-tuning With our method

(b) The backward compatibility problem. Once a neural compressor (in
this experiment, [41]) is fine-tuned, it can no longer decode the bitstream
produced by its original version. Our method addresses this issue.

Figure 1. The goal of this work is to fine-tune pre-trained learned
image compressors with new data or new rates while preserving
backward compatibility (Fig. 1a). Baseline methods are backward
incompatible, while ours is effective (Fig. 1b).

pressors be learned continually, and if so, would it bring
performance benefits compared to the pre-trained model?

One might assume that simply fine-tuning a pre-trained
model would be sufficient. Yet, doing so disrupts the
model’s backward compatibility (Fig. 1b), i.e., the ability
to decode bitstreams produced by the original model, due
to a mismatch between the encoder (pre-trained model) and
decoder (fine-tuned model). Maintaining backward com-
patibility is crucial, as failing to do so renders existing bit-
streams in the storage (or sent from other devices) inac-
cessible. It is worth noting that this backward compatibil-
ity problem is different from the well-known problem of
catastrophic forgetting in neural networks [28]. The unique
properties of compression, including the sender-receiver re-
lationship and the existence of entropy coding, set it apart
from other image processing/vision tasks. Therefore, ex-
isting continual learning methods for vision tasks [13, 51]
cannot be applied as is, and new strategies must be devel-
oped for compression to maintain the decoder’s backward

ar
X

iv
:2

40
2.

18
86

2v
1

 [
ee

ss
.I

V
]

 2
9

Fe
b

20
24

https://gitlab.com/viper-purdue/continual-compression

compatibility when adapting to new data and rates.
To achieve backward compatibility, the most straight-

forward way is to modify only the encoding process of
a pre-trained model when adapting to new data or new
rates [7, 19, 56]. This strategy resembles the common prac-
tice in traditional codecs, where there is often a standardized
decoder, but various encoders can be designed to accommo-
date different applications. Despite its simplicity, keeping
the decoder unchanged hinders the model’s ability to adapt
to new data and rates, leading to suboptimal performance.

This work shows that it is possible to continually train
both the encoder and decoder of neural compressors while
maintaining backward compatibility. We begin by noticing
that as long as the entropy model of a compressor is kept
unchanged, it can decode the old bitstreams and obtain the
latent representations. Based on this observation, we pro-
pose a knowledge replay training scheme that can be used
to train the encoder and decoder networks without break-
ing backward compatibility. We also design a model ar-
chitecture where the entropy model consumes only a small
amount of parameters, allowing most model parameters to
be learnable in fine-tuning. We formulate two experimental
scenarios: data-incremental learning and rate-incremental
learning. Experimental results demonstrate that our pro-
posed methods enable neural image compressors to obtain
improved performance on new data and new rates without
breaking backward compatibility.

To summarize, our contributions are as follows:
• We propose a knowledge replay-based training strategy

that can be used to train neural image compressors incre-
mentally without breaking backward compatibility;

• We design a neural network architecture targeting effec-
tive continual learning of image compression;

• We formulate two continual learning scenarios for im-
age compression: data-incremental learning and rate-
incremental learning. Experimental results show that our
method outperforms baseline approaches in both cases.

2. Background and Related Work
2.1. Learned lossy image compression (LIC)

Most learning-based methods for lossy image compression
can be interpreted using the entropy-constrained non-linear
transform coding framework [4]. Let X ∼ pdata denote data
samples with an underlying data distribution. In this frame-
work, a neural network encoder fenc maps X to a latent vari-
able Z ≜ fenc(X), and a neural network decoder fdec maps
Z back to a reconstruction X̂ ≜ fdec(Z). A learned prob-
ability distribution pZ , also known as the entropy model, is
used to model the marginal distribution of Z. The learning
objective is to minimize the rate-distortion (R-D) loss:

min EX∼pdata

[
− log2 pZ(Z) + λ · d(X, X̂)

]
, (1)

where d is a distortion metric (e.g., mean squared error), λ is
the Lagrange multiplier trading off between rate and distor-
tion, and the minimization is over the network parameters of
fenc, fdec, and pZ . This framework has also been extended
to variable-rate compression [12, 14], where the encoder,
decoder, and entropy model are conditioned on λ. During
variable-rate training, the model parameters are optimized
for various λ sampled from a distribution pΛ:

minEX∼pdata,Λ∼pΛ

[
− log2 pZ(Z|Λ) + Λ · d(X, X̂)

]
(2)

where Z ≜ fenc(X; Λ), X̂ ≜ fdec(Z; Λ). (3)

Existing research in LIC can be categorized into several
groups. A major group focuses on designing expressive
architectures for fenc and fdec, such as convolutional and
transformer-based ones [10, 11, 14, 20, 23, 27, 33, 37–39,
43, 52, 54, 59]. Another line of research lies in designing
the entropy model pZ , such as autoregressive [22, 40, 41,
44] and hierarchical models [3, 14, 15, 25]. Other research
includes, e.g., quantization methods [17, 18, 21, 55, 57] and
variable-rate compression methods [6, 9, 12, 31, 48, 53]. To
our knowledge, none of these existing methods are designed
to work with continual learning as in our work.

The most related line of research to this paper is content-
adaptive image compression, where the goal is to adapt a
compressor to new images or new target rates in a per-image
fashion. Solutions to this problem include encoder-side op-
timization and decoder-side adaptation. Encoder-side opti-
mization methods [7, 19, 56] directly optimize the R-D ob-
jective w.r.t. Z during encoding. Decoder-side adaptation
methods [42, 47, 50], on the other hand, include parameter-
efficient neural network modules in the bitstream, which are
executed on the decoder side to improve decoding. Among
them, many methods require computationally expensive, it-
erative optimization during encoding.

The scope of this paper is distinct from content-adaptive
image compression in several ways: (a) our goal is to in-
crementally train the compressor parameters in-place with-
out introducing additional parameters, and (b) as opposed to
per-image optimization during testing, our method employs
a one-time training procedure and induces no additional
computational cost at test time. Our research is comple-
mentary to content-adaptive image compression, and they
can be combined to further improve the performance.

2.2. Knowledge replay in continual learning

Continual learning has been widely studied for image clas-
sification [13] and semantic segmentation [8], which aim
to learn a sequence of new tasks incrementally without
forgetting the previously learned knowledge. Among ex-
isting methods for continual learning, replay-based meth-
ods [34, 36, 45] have emerged as particularly effective,

𝑓enc
(0) 𝑓dec

(0)

Pre-trained model

𝑋test
0

𝑏test
0

𝜆 ∈ [𝜆low
0

, 𝜆high
(0)

]

Fine-tuning

𝑓enc
(1) 𝑓dec

(1)

𝑋train
1

𝜆 ∈ [𝜆low
1

, 𝜆high
(1)

]

(a) Continual learning

Goal 1: Backward compatibility

𝑏test
0

Goal 2: New data & rate performance

𝑓dec
(1)

𝑓enc
(1) 𝑓dec

(1)

𝑋test
1

𝜆 ∈ [𝜆low
1

, 𝜆high
(1)

]

𝑋test
0𝑋test

0

Distortion

Rate

Rate

Distortion

(b) Evaluation

Figure 2. Problem definition. Fig. 2a shows the fine-tuning pro-
cess of a pre-trained model, and Fig. 2b shows the two evaluation
criteria: backward compatibility and new data/rate performance.
Entropy models are kept frozen and omitted in the figures.

which applies an additional memory buffer to store exem-
plar data from learned tasks and then integrate with new task
data to perform knowledge rehearsal during continual learn-
ing. Our proposed knowledge replay method adopts a simi-
lar principle. However, image compression contains unique
challenges distinct from typical computer vision tasks, mak-
ing existing continual learning strategies inapplicable to de-
ploy in image compression. Thus, a tailored knowledge re-
play strategy is required for our problem scenario.

3. Problem Description

In this section, we formulate the problem (Sec. 3.1), discuss
the backward compatibility issue (Sec. 3.2), and motivate
the design of our method (Sec. 3.3).

3.1. Continual learning for compression

Assume that we have a pre-trained variable-rate model with
supported λ ∈ [λ(0)

low, λ
(0)
high]. We use f (0)

enc, f
(0)
dec, p

(0)
Z to de-

note the pre-trained model’s encoder, decoder, and entropy
model, respectively. Also, assume that we have used the
pre-trained model to compress a test set of images X (0)

test and
obtained the corresponding bitstreams b(0)

test, as illustrated in
Fig. 2a (top). This situation well-silumates a typical image
storage application with a learned image compressor.

We now aim at fine-tuning the model with new data X (1)
train

and a new rate range determined by [λ(1)
low, λ

(1)
high]. Note that

the new data and rate range may or may not be the same
as the old ones. Similarly, let f (1)

enc, f
(1)
dec, p

(1)
Z denote the new

model components, as illustrated in Fig. 2a (bottom). We
expect the new model to achieve two goals:
1. Backward compatibility: The new model should be ca-

pable of decoding the bitstreams produced by the old
model (Fig. 2b, top).

2. New-data (or new-rate) performance: The new model
should perform better than the old one on new data and
new rates (Fig. 2b, bottom).

Layers𝑥 Layers

Layers Layers

𝑧1𝑧2

𝑝𝑍1𝑝𝑍2|𝑍1
ො𝑥

𝑓enc

𝑓dec 𝑝𝑍

Figure 3. The Hyperprior model architecture [3], where the layers
are categorized into three groups: fenc, fdec, and pZ .

Number of parameters
Total fenc fdec pZ

M-S Hyp. [41] 17.6M 5.9M 2.5M 8.2M (47%)
GMA [11] 26.6M 5.8M 11.7M 9.0M (34%)
ELIC [23] 33.8M 9.7M 7.3M 16.7M (49%)
STF [59] 99.9M 11.3M 7.1M 81.4M (81%)
TCM [33] 45.2M 3.3M 6.8M 35.2M (78%)
MLIC++ [26] 116.7M 6.3M 12.0M 98.4M (84%)
Our model 35.5M 18.7M 11.9M 4.9M (14%)

Table 1. Many existing methods employ a parameter-expensive
entropy model. We propose an architecture with a lightweight en-
tropy model, which makes continual learning more effective (since
more parameters are learnable in the fine-tuning phase).

3.2. Backward compatibility of entropy decoding

As mentioned in Fig. 1, fine-tuning the model end-to-end
breaks the backward compatibility of the decoder. The pri-
mary reason lies in entropy coding: range-based entropy
coding algorithms [16, 46], which are commonly used in
modern neural compressors, are known to be sensitive to
the probability distribution of the encoded symbols. As the
new entropy model p(1)

Z is different from the old one p(0)
Z , the

new model is not able to perform entropy coding correctly
using the old bitstreams b(0)

test, and thus the correct (quan-
tized) latent variables Z (0)

test cannot be obtained. In fact, re-
cent research [2, 29, 49] has shown that even a small change
(e.g., a floating point round-off error) in the entropy model
can lead to failure in entropy decoding.

3.3. Freezing the entropy model during fine-tuning

To avoid the aforementioned issue, the entropy model pZ
needs to be kept unchanged throughout fine-tuning. Then,
the latent variables Z (0)

test are guaranteed to be recovered loss-
lessly from the old bitstreams, and the problem reduces
to continually learning the decoder fdec without forgetting
the old knowledge (i.e., decoding Z (0)

test). With our pro-
posed training strategy (Sec. 4.1), we show that this can be
achieved for many existing neural compressors.

We also notice that the entropy model pZ is often the
largest component in many existing compressors, most of
which are based on the Hyperprior model [3, 41] (Fig. 3).
We found that their entropy model takes up a significant
portion (e.g., 84% for MLIC++[26]) of the model parame-
ters, as shown in Tab. 1. Consequently, a large proportion of
model parameters need to be fixed during continual learn-

ing, which may impair the new-data (or new-rate) perfor-
mance. Motivated by this, we design a model architecture
(Sec. 4.2) that employs a lightweight entropy model (Tab. 1,
last row), which makes continual learning more effective.

4. Method

As just mentioned, our methods include two independent
components: the knowledge replay-based training strategy
(Sec. 4.1) and a neural network architecture specifically de-
signed for continual learning (Sec. 4.2). We now present
them sequentially in detail.

4.1. Continual learning with knowledge replay

Following the notation introduced in Sec. 3.1, we denote
a pre-trained model as f

(0)
enc , f

(0)
dec , pZ , which are trained on

data X
(0)
train with λ ∈ [λ

(0)
low, λ

(0)
high]. We drop the superscript

for pZ since it is kept frozen throughout fine-tuning. In-
spired by the idea of knowledge rehearsal with exemplars
in class-incremental learning methods [45], we use the old
training data X

(0)
train and the old encoder f

(0)
enc to perform

“knowledge replay” in the fine-tuning process. To this end,
we store f

(0)
enc along with X

(0)
train within a dedicated memory

buffer before the fine-tuning stage. Note that we do not pose
restrictive assumptions on training resources and allow ac-
cess to the entire training set X(0)

train during fine-tuning.
In the fine-tuning process, our knowledge replay-based

training objective contains two terms. The first term, ℓnew,
is the standard R-D loss for the new training data X(1)

train with
the new λ value range [λ

(1)
low, λ

(1)
high]:

ℓnew ≜ E
[
R(1) + Λ(1) ·D(1)

]
, where (4)

R(1) ≜ − log2 pZ(Z
(1)|Λ(1)) (5)

D(1) ≜ d(X
(1)
train, X̂

(1)
train). (6)

In (4), the expectation is w.r.t. X
(1)
train and Λ(1), where Λ(1)

is a random variable with the support being [λ
(1)
low, λ

(1)
high]. Its

probability density, p(1)Λ , controls how λ is sampled during
training. Intuitively, minimizing ℓnew adapts the model pa-
rameters to new data and new rates, but it is not sufficient to
maintain backward compatibility.

The other term in our loss function encourages back-
ward compatibility of the model parameters through knowl-
edge replay of the old data X

(0)
train and the old encoder f (0)

enc .
Specifically, we use f

(0)
enc to encode X

(0)
train, which gives the

corresponding (quantized) latent variables Z(0)
train. Then, the

current decoder f (1)
dec decodes Z

(0)
train, and the reconstruction

X̂
(0)
train is compared with X

(0)
train to compute the knowledge re-

𝑓enc
(0)

𝜆 ∈ [𝜆low
0

, 𝜆high
(0)

]

𝐷(0)

𝑋train
0

𝑓enc
(1)

𝑓dec
(1)

𝑋train
1

𝜆 ∈ [𝜆low
1

, 𝜆high
(1)

]
𝑅(1)

𝐷(1)

𝑋train
1

𝑋train
0

Figure 4. Our knowledge replay-based training strategy contains
two components: a distortion loss that encourages backward com-
patibility (top, dashed lines), and the standard R-D loss for new
data and new rates (bottom, solid lines). The entropy model pZ is
kept frozen and is omitted in the figure.

play loss function, ℓKR, defined as:

ℓKR ≜ E
[
Λ(0) ·D(0)

]
, where (7)

D(0) ≜ d
(
X

(0)
train, f

(1)
dec

(
f (0)

enc (X
(0)
train)

))
. (8)

The expectation is w.r.t. X(0)
train and Λ(0), where Λ(0) ∼ p

(0)
Λ

controls how λ is sampled during knowledge replay. In our
experiments, we choose p

(0)
Λ to be the same as the one used

in pre-training. Note that there is no rate term in ℓKR since
the replayed encoder f

(0)
enc is fixed, and thus the rate term

is constant w.r.t. the model parameters being trained. By
replaying the old data and the old encoder, the decoder net-
work effectively retains backward compatibility, as shown
in our experiments (Sec. 5.3).

Fig. 4 illustrates our knowledge replay strategy for one
training iteration. Our training objective is to minimize a
weighted summation of the two terms, ℓnew and ℓKR, with a
scalar hyperparameter α ∈ [0, 1]:

min (1− α) · ℓnew + α · ℓKR. (9)

The hyperparameter α controls the weight of replayed data
in the training objective and can be tuned to achieve a de-
sired trade-off between backward compatibility and new
data/rate performance (shown in Sec. 5.4). Our knowl-
edge replay strategy is general and can be applied to various
model architectures, enabling backward-compatible contin-
ual learning of those models (shown in Sec. 5.3).

4.2. Model architecture

Since freezing the entropy model is necessary for backward
compatibility, we propose a model architecture that em-
ploys a lightweight entropy model by design so that most
parameters in the model can stay learnable. An overview of
the architecture is shown in Fig. 5. Our model is inspired
by the hierarchical residual coding architecture [14, 18, 58],
but we decouple the entropy model (pZ) and the decoder

(fdec) into two separate branches, resulting in a reduced en-
tropy model size. We now describe each component of the
model in detail.

Encoding: The encoding process involves a bottom-up
pass through the encoder fenc and a top-down pass through
the entropy model pZ . Given an input image x, encod-
ing begins with fenc, a neural network consisting of a se-
quence of downsampling and residual layers that produces
a hierarchy of image features (denoted as hi in the figure).
Specifically, for an input image with 256× 256 pixels, fenc
produces N = 4 features with spatial dimentions 32 × 32,
16 × 16, 8 × 8, and 4 × 4. All layers are convolutional, so
the spatial dimensions scale accordingly for images of dif-
ferent sizes. Then, the entropy model pZ starts with a con-
stant e0 and iteratively updates it using the features hi from
fenc. In each stage, ei−1 is upsampled to the same spatial di-
mension as hi and concatenated with hi. The concatenated
features are then fed into a sequence of layers to produce
zi, the latent variable (which will be entropy coded) for the
i-th stage. zi is then aggregated with the upsampled ei−1

through a linear layer and addition operation, and the result
is denoted as ei and passed to the next stage. Note that in
each stage, the entropy model also estimates the probabil-
ity distribution of zi given z<i (with z<i ≜ {z1, ..., zi−1}),
which is used for entropy coding.

Probabilistic model, quantization, and entropy cod-
ing are performed in the same way as for the discretized
Gaussian model in Hyperprior-based methods [3, 41]. As
a brief recap, the entropy model predicts a mean µi and
a scale σi for each latent variable zi, and the probability
model for zi is a discretized Gaussian distribution:

pi(zi) ≜ pZi|Z<i
(zi | z<i) (10)

=

∫ zi+0.5

zi−0.5

N (t; µi, σ
2
i) dt, (11)

where the dependence on z<i is through µi and σi. Dur-
ing testing, the residual between zi and µi is quantized to
the nearest integer, and during training, quantization is sim-
ulated by additive uniform noise. Each stage i produces
a separate bitstream corresponding to zi (using the asym-
metric numeral systems [16] algorithm), and all stages are
executed sequentially for i = 1, ..., N .

Decoding: Given encoded bitstreams, the decoding pro-
cess mirrors the encoding process in reverse. Firstly, the
entropy model is executed top-down to iteratively predict
pZi|Z<i

, based on which the bitstreams are entropy-decoded
to obtain zi. Then, the decoder fdec is executed top-down to
reconstruct the image. Starting with a constant r0, the de-
coder iteratively updates ri using zi and ei in each stage, as
shown in the right pane of Fig. 5. In each stage and the final
layer, residual layers and upsampling layers are applied to
restore the image to its original resolution.

Down ↓

𝑥 ො𝑥

Encoder 𝑓enc Decoder 𝑓decEntropy model 𝑝𝑍

Layers

Down ↓

Layers

Concat.

Layers

+𝑧𝑖

𝑝𝑍𝑖|𝑍<𝑖

Layers

Up ↑

𝑒𝑖

Up ↑

Layers

Layers

Concat.

𝑟𝑖

𝑟𝑖−1

𝑒𝑖

𝑧𝑖

𝑒𝑖−1

P
ro

j.

R
e
p
e
a
t

fo
r
𝑖
=
1
,2
,…

,𝑁

Layers

Up ↑

ℎ𝑖

𝑒0 𝑟0

Figure 5. Our model adopts the hierarchical residual coding archi-
tecture [14, 18, 58] but decouples the entropy model (pZ) and the
decoder (fdec) into two branches. Up ↑ denotes upsampling, Down
↓ denotes down-sampling, and Proj. denotes a linear projection
layer. Detailed layer configurations are in Appendix, Sec. 7

D
W

 C
o

n
v

Feature

L
a
y
e

rN
o

rm

M
L

P

(𝐻,𝑊, 𝐶)

Feature

𝜆 Embedding

(𝐶,) (𝐶,)

MLP

+× +

Figure 6. Each layer in our model is a ConvNeXt block [35]
conditioned on λ through an affine transformation. In the figure,
(H,W,C) denotes height, width, and channel dimensions.

Rate-conditional network layers: Fig. 6 shows the de-
tails of each layer (i.e., residual block) in our model. Our
model employs the ConvNeXt module [35] as the basic
building blocks. To achieve variable-rate compression, we
adopt the conditional convolution technique [12, 14], which
applies an adaptive affine transformation to the convolu-
tional layer output (after layer normalization) to control the
rate based on the input λ.

Variable-rate training: The (pre-)training objective is
to minimize the standard R-D loss for variable rate com-
pression (Eq. (2)), except that the rate term consists of the
sum of the rates for all latent variables:

minEX,Λ

[
N∑
i=1

− log2 pi(Zi|Λ) + Λ · d(X, X̂)

]
, (12)

where X follows the training data distribution, and Λ fol-
lows pΛ, a continuous probability distribution that con-
trols the sampling strategy of λ during training. After the
pre-training phase, we freeze pZ and apply our knowledge
replay training strategy presented in Sec. 4.1 to achieve
backward-compatible fine-tuning.

5. Experiments
Our experiments compare various fine-tuning strategies as
well as various model architectures for continual learning
of image compression. We begin by describing the setup
(Sec. 5.1) and baseline methods (Sec. 5.2). Then, Sec. 5.3
presents the main experimental results for our proposed
methods. Finally, we provide additional experiments to an-
alyze the effectiveness of knowledge replay (Sec. 5.4) and
our model architecture (Sec. 5.5).

5.1. Experiment setup

We consider two continual learning scenarios in image com-
pression: data-incremental learning and rate-incremental
learning. In the former, pre-trained models are fine-tuned
on a new dataset, and in the latter, models are fine-tuned
with a larger rate range (either going higher or lower). De-
tailed configurations are shown in Tab. 2, and the datasets
and metrics used are listed below.

Datasets: we use the COCO [32] dataset train2017 split
for pre-training all models. The dataset contains 118,287
images with around 640 × 420 pixels. We randomly crop
the images to 256 × 256 patches during training. For data-
incremental learning, we adopt the CelebA-HQ dataset [30]
at 256 × 256 pixels, a commonly-used human face image
dataset for generative image modeling [24]. The dataset
consists of 30,000 images, where 24,000 are for training,
3,000 for validation, and the remaining 3,000 for testing.

Metrics: We use bits per pixel (bpp), peak signal-to-
noise ratio (PSNR, computed for the RGB space), and BD-
Rate [5] to measure compression performance, all of which
are standard metrics for image compression. As described
in Sec. 3, we evaluate each method for two objectives:
• Backward compatibility: We use the fine-tuned model

to decode b
(0)
test , the bitstreams encoded by the pre-trained

model, to obtain reconstructions X̂
(0)
test . The bpp is com-

puted for b
(0)
test (which is a constant independent of fine-

tuning strategies), and the PSNR is computed between the
reconstructions X̂(0)

test and the original images X(0)
test .

• New data & rate performance: We compress the new
data X

(1)
test with the new rates, determined by the λ value

range [λ
(1)
low, λ

(1)
high], to obtain bpp and PSNR metrics.

We report all results in terms of BD-Rate in the main paper
(due to space constraints), and we provide the correspond-
ing PSNR-bpp curves in the Appendix.

5.2. Methods in comparison

In addition to our model, we choose Mean & Scale Hyper-
prior [41] (MSH) and Gaussian Mixture & Attention [11]
(GMA) as two base models for our experiments. These two
are commonly used and representative models for learned
image compression, and we believe the experimental con-
clusions based on them can be generalized to other existing

[λ
(0)
low , λ

(0)
high] X

(0)
train X

(0)
test

Pre-training [32, 1024] COCO Kodak

[λ
(1)
low , λ

(1)
high] X

(1)
train X

(1)
test

Data-incremental [32, 1024] CelebA CelebA
Rate-incremental (low → high) [32, 4096] COCO Kodak
Rate-incremental (high → low) [4, 1024] COCO Kodak

Table 2. Experiment configurations. We start with a pre-trained
model (pre-training) and fine-tune it either with new data (data-
incremental) or new rates (rate-incremental).

BD-Rate (%) w.r.t. VTM 22.0 ↓
Old bitstreams

(Kodak)
New data
(CelebA) Avg.

MSH-VR, pre-trained 26.7 17.1 21.9
MSH-VR w/ FT Enc. 26.7 14.8 20.8
MSH-VR w/ FT Enc. & Dec. 419.1 8.95 214.0
MSH-VR w/ KR (ours) 20.1 9.57 14.8
GMA-VR, pre-trained 4.43 -9.23 -2.40
GMA-VR w/ FT Enc. 4.43 -10.5 -3.04
GMA-VR w/ FT Enc. & Dec. 354.6 -17.3 168.7
GMA-VR w/ KR (ours) 4.33 -14.4 -5.04
Our model, pre-trained 1.87 -13.2 -5.67
Our model w/ FT Enc. 1.87 -14.6 -6.37
Our model w/ FT Enc. & Dec. 262.9 -19.0 122.0
Our model w/ KR 0.87 -16.6 -7.87

Table 3. Data-incremental learning (COCO → CelebA) results.
PSNR-bpp curves are provided in Appendix, Fig. 8.

models. Since variable-rate compression is required to per-
form rate-incremental learning, we construct a variable-rate
version for each of them and train it in the same way as for
our model. The resulting models are referred to as MSH-VR
and GMA-VR, respectively. Sec. 8 in the Appendix provides
pre-training and fine-tuning hyperparameters, and Sec. 9 in
the Appendix provides details on the variable-rate baselines
compared to their fixed-rate models.

We apply the following fine-tuning strategies for each
model and compare their performance:
• Pre-traiend model: Using the pre-trained model without

fine-tuning with new data or rates is the simplest baseline.
• Fine-tuning the encoder only (FT Enc.): We fine-tune

the encoder with new data while keeping other parameters
frozen. Since the entropy model and the decoder are never
changed, backward compatibility is guaranteed.

• Fine-tuning both the encoder and decoder (FT Enc. &
Dec.): We fine-tune all model parameters except for the
entropy model parameters. Since the decoder changes,
backward compatibility may be lost.

• Our approach: knowledge replay (KR). We fine-tune
the model’s encoder and decoder with the proposed
knowledge replay (KR) strategy applied.

5.3. Experimental results

Data-incremental learning. Tab. 3 show the results (pre-
trained on COCO, fine-tuned on CelebA). We begin by

Kodak BD-Rate (%) w.r.t. VTM 22.0 ↓
Old bitstreams:
bpp ≈ (0.1,0.9)

New rate:
bpp ≈ (0.1,1.6) Avg.

MSH-VR, pre-trained 26.7 - -
MSH-VR w/ FT Enc. & Dec. 282.2 23.4 152.80
MSH-VR w/ KR (ours) 19.6 17.3 18.45
GMA-VR, pre-trained 4.43 - -
GMA-VR w/ FT Enc. & Dec. 64.1 4.56 34.33
GMA-VR w/ KR (ours) 3.39 2.34 2.87
Our model, pre-trained 1.87 - -
Our model w/ FT Enc. & Dec. 17.7 1.45 9.58
Our model w/ KR 0.96 0.70 0.83

Table 4. Rate-incremental learning (low → high) results. PSNR-
bpp curves are provided in Appendix, Fig. 9.

Kodak BD-Rate (%) w.r.t. VTM 22.0 ↓
Old bitstreams:
bpp ≈ (0.1,0.9)

New rate:
bpp ≈ (0.03,0.9) Avg.

MSH-VR, pre-trained 26.7 - -
MSH-VR w/ FT Enc. & Dec. 35.1 37.6 36.4
MSH-VR w/ KR (ours) 18.9 29.9 24.4
GMA-VR, pre-trained 4.43 - -
GMA-VR w/ FT Enc. & Dec. 10.0 9.11 9.56
GMA-VR w/ KR (ours) 1.75 6.92 4.34
Our model, pre-trained 1.87 - -
Our model w/ FT Enc. & Dec. 14.33 5.18 9.76
Our model w/ KR 0.86 4.26 2.56

Table 5. Rate-incremental learning (high → low) results. PSNR-
bpp curves are provided in Appendix, Fig. 10.

comparing the fine-tuning strategy for the MSH-VR model.
Firstly, fine-tuning the encoder (FT Enc.) does not provide
a significant improvement for new data BD-Rate (17.1%
→ 14.8%), which is expected since fine-tuning the encoder
only reduces the amortization gap [56] and does not im-
prove the model’s capacity. When fine-tuning both the en-
coder and decoder (FT Enc. & Dec.), the new data BD-Rate
is improved by a much larger margin (17.1% → 8.95%), in-
dicating the importance of updating the decoder. However,
this came at the cost of backward compatibility, as shown
by the significant increase in BD-Rate for old bitstreams
(26.7% → 419.1%). This indicates that, while the decoder
fits the new data well, it becomes incompatible with the old
bitstreams. With our knowledge replay strategy (MSH-VR
w/ KR), we are able to achieve a competitive new data per-
formance (9.57% BD-Rate) without sacrificing backward
compatibility. Notably, fine-tuning with our strategy also
improves the performance on old bitstreams, which is not
the case for the other strategies. On average, the knowledge
replay strategy clearly outperforms the other ones. These
observations are consistent with the results for GMA-VR and
our model, demonstrating the effectiveness of knowledge
replay in data-incremental learning. Also, when comparing
different model architectures, our model achieves the best
performance overall in terms of all metrics.

Rate-incremental learning. Tab. 4 presents the re-

Fine-tuning BD-Rate w.r.t. VTM 22.0
Config. Data KR loss Old bits. New data Avg.

0 - - 1.87 -13.2 -5.67
1 CA 262.9 -19.0 121.9
2 CA + COCO 23 -16.9 3.05
3 CA ✓ 3.67 -16.3 -6.32

4 (ours) CA + COCO ✓ 0.87 -16.6 -7.87

Table 6. Ablative analysis of our knowledge replay-based training
strategy for data-incremental learning (COCO → CelebA). For the
“data” column, CA denotes the CelebA dataset.

sults for rate-incremental learning (from low rates to higher
rates). In rate-incremental experiments, we omit the FT
Enc. baseline, since fine-tuning the encoder alone cannot
effectively extend the rate range of any considered mod-
els (see Appendix, Sec. 10.2 for details). Starting with the
MSH-VR model, we observe that fine-tuning both the en-
coder and decoder (FT Enc. & Dec.) is able to extend the
operational rate range of the model with a similar BD-Rate
w.r.t. VTM for the new rates. However, the performance on
old bitstreams is significantly degraded, similar to the obser-
vation in data-incremental learning experiments. By apply-
ing our knowledge replay strategy (MSH-VR w/ KR), in con-
trast, the model is able to achieve a competitive BD-Rate for
the new rates (17.3%) while maintaining backward compat-
ibility. Again, the results for GMA-VR and our model show
a similar pattern. Overall, our model with KR outperforms
the baselines, validating its effectiveness in rate-incremental
learning. For rate-incremental learning from high rates to
low rates (Tab. 5), the above observations stay the same.

5.4. Experimental analysis: knowledge replay

The effectiveness of the proposed knowledge replay strat-
egy has already been verified in the previous experiments.
We now provide additional experiments to answer the fol-
lowing questions that aim to analyze the individual compo-
nents of our knowledge replay strategy.

What contributes to the backward compatibility? In
data-incremental learning, there are two components in our
knowledge replay strategy that may help backward compat-
ibility: the replayed training data and the knowledge replay
loss. To analyze the contribution of each component, we
freeze the entropy model parameters of our model and fine-
tune it with the two components separately. To analyze the
contribution of each component, we start from “Our model
w/ FT Enc. & Dec.” and apply the two components one
by one. Tab. 6 shows the results. Config. 0 is the pre-
trained model, and Config. 1 is the “FT Enc. & Dec.” base-
line that does not retain backward compatibility. With re-
played data (Config. 2), backward compatibility is largely
improved (262.9% → 23% BD-Rate) but is still worse than
the pre-trained model. When the knowledge replay loss is
applied (Config. 3 and Config. 4), the performance on old
bitstreams becomes comparable to the pre-trained model.

α 0.0 0.25 0.5 0.75 1.0
BD-rate: old bitstreams 262.9 1.40 0.87 0.72 0.63
BD-rate: new data -19.0 -16.8 -16.6 -16.3 -14.4
Avg. BD-rate 122.0 -7.7 -7.9 -7.8 -6.9

Table 7. Data-incremental learning (COCO → CelebA) results for
our model with varying α. The scalar α ∈ [0, 1] controls the ratio
of replayed data in fine-tuning, where α = 0.0 means no replay,
and α = 1.0 means no new data. BD-rate is w.r.t. VTM 22.0.

Latency (in seconds)
Params. Entropy Coding Network (CPU) Network (GPU)

Enc. Dec. Enc. Dec. Enc. Dec.
MSH + VR 19.2M 0.026 0.068 0.318 0.325 0.004 0.010
GMA + VR 33.4M 3.072 6.302 0.941 1.221 0.006 0.022
Ours 35.5M 0.046 0.052 0.474 0.393 0.026 0.011

*Hardware: Intel 10700K CPU (using four threads) and Nvidia Quadro 6000 GPU.
*Latency is the average time to encode/decode a Kodak image (768×512 pixels),
averaged over all 24 images. Time includes entropy coding.

Table 8. Computational complexity of the model architectures
used in our experiments.

We conclude that both the replayed data and the loss func-
tion contribute to backward compatibility, and the knowl-
edge replay loss is more important among the two.

What is the impact of α in the knowledge replay
loss function (Eq. (9))? We train our model for data-
incremental learning with varying α, the scalar that controls
the ratio of replayed data in each training iteration. Results
are shown in Tab. 7. Firstly, it is clear that as α grows from
0 to 1, the performance on old bitstreams monotonically
improves (i.e., the BD-Rate decreases). Recall that when
α = 0, no replay is performed, and the model is trained
with only the new data; when α = 1, the model is trained
with only the replayed data. The results are thus consis-
tent with the intuition that more replay leads to better back-
ward compatibility. When it comes to the new data perfor-
mance, the trend is reversed: as α grows, the performance
on new data monotonically degrades, which again matches
the intuition. On average, the performance is comparable
for α ∈ [0.25, 0.75]. We conclude that our approach is in-
sensitive to the choice of α and can achieve a good trade-
off between backward compatibility and new data perfor-
mance. Our experiments choose α = 0.5 by default, but in
practice, the choice of α can be treated as a hyperparameter
and determined by the application requirements.

5.5. Experimental analysis: model architecture

Computational complexity. Tab. 8 shows the computa-
tional complexity of our model and the two baselines. The
metrics include the number of parameters, entropy coding
latency, and neural network forward pass latency. Except
for a few exceptions (the parameter count of MSH-VR, the
entropy coding latency of GMA-VR, and the GPU encoding
latency of our model), all methods are mostly comparable
in terms of computational complexity. Thus, we conclude
that the performance improvement of our model is not due

BD-Rate (%) w.r.t. VTM 22.0 ↓
Old bitstreams

(Kodak)
New data
(CelebA) Avg.

Sequential pZ and fdec 4.42 -12.8 -4.19
Sequential pZ and fdec w/ KR 3.18 -15.8 -6.31
Parallel pZ and fdec 1.87 -13.2 -5.67
Parallel pZ and fdec w/ KR 0.87 -16.6 -7.87

Table 9. Comparing architecture variants of our model in terms of
data-incremental learning (COCO → CelebA).

to the increase in computational complexity.
Impact of decoupling the entropy model and the de-

coder. Recall that in order to reduce the parameters of
pZ , our architecture decouples pZ and fdec into two par-
allel branches. To analyze the impact of doing so, we con-
struct a variant of our model where pZ and fdec are executed
in sequential (like in Hyperprior-based models; see Fig. 3).
For a fair comparison, the sequential version has the same
number of latent feature channels and the same number of
parameters as the parallel model, and training is performed
in the same way as for all previous experiments. We show
the data-incremental learning results in Tab. 9. We observe
that our model (Parallel pZ and fdec w/ KR) achieves a bet-
ter performance than the sequential version on both old bit-
streams and new data, which verifies our design.

5.6. Discussion

Our experiments show that neural image compressors can
adapt to new data and rates in a backward-compatible man-
ner by using the proposed training strategy. In addition to
continual learning applications, this observation offers in-
sights into related research such as the standardization of
learned image compression. Despite recent attempts toward
this goal [1, 39], it remains an open question about which
part of a selected neural compressor needs to be standard-
ized. Our findings suggest a possible direction: only the
entropy model (instead of the entire model architecture and
parameters) needs to be standardized, and other components
(e.g., the decoder network) could be fine-tuned over time
with backward-compatible training strategies.

6. Conclusion
This paper presents two approaches: a knowledge replay-
based training strategy and a neural network architecture,
for continual learning of image compression. Our knowl-
edge replay strategy enables existing compressors to adapt
to new data and target rates while ensuring that previ-
ously compressed bitstreams remain decodable. Through
extensive experiments, we conclusively answer the ques-
tion raised at the beginning of the paper: neural network-
based image compressors can be learned continually in a
backward-compatible manner, achieving improved perfor-
mance on new data, new rates, and old bitstreams.

Limitations and future work. Our work serves as a
preliminary study on continual learning for image compres-
sion. Despite its effectiveness, our knowledge replay strat-
egy assumes unconstrained training resources, which may
not be true in practice. Also, we focus on the decoder’s
backward compatibility, while the same problem can be
studied for the encoder. For future work, a possible direc-
tion is to extend our two-step method (pre-training and fine-
tuning) to multi-step continual learning scenarios.

References
[1] João Ascenso, Elena Alshina, and Touradj Ebrahimi. The jpeg ai

standard: Providing efficient human and machine visual data con-
sumption. IEEE MultiMedia, 30(1):100–111, 2023. 8

[2] Johannes Ballé, Nick Johnston, and David Minnen. Integer networks
for data compression with latent-variable models. International Con-
ference on Learning Representations, 2018. 3

[3] J. Ballé, D. Minnen, S. Singh, S. Hwang, and N. Johnston. Vari-
ational image compression with a scale hyperprior. International
Conference on Learning Representations, 2018. 2, 3, 5

[4] J. Ballé, P. A. Chou, D. Minnen, S. Singh, N. Johnston, E. Agustsson,
S. Hwang, and Toderici G. Nonlinear transform coding. IEEE Jour-
nal of Selected Topics in Signal Processing, 15(2):339–353, 2021.
2

[5] Gisle Bjontegaard. Calculation of average psnr differences between
rd-curves. Video Coding Experts Group - M33, 2001. 6

[6] Shilv Cai, Zhijun Zhang, Liqun Chen, Luxin Yan, Sheng Zhong, and
Xu Zou. High-fidelity variable-rate image compression via invert-
ible activation transformation. Proceedings of the ACM International
Conference on Multimedia, pages 2021–2031, 2022. 2

[7] Joaquim Campos, Simon Meierhans, Abdelaziz Djelouah, and
Christopher Schroers. Content adaptive optimization for neural im-
age compression. Proceedings of the IEEE/CVF Conference on Com-
puter Vision and Pattern Recognition Workshops, 2019. 2

[8] Fabio Cermelli, Massimiliano Mancini, Samuel Rota Bulo, Elisa
Ricci, and Barbara Caputo. Modeling the background for incremen-
tal learning in semantic segmentation. Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, pages
9233–9242, 2020. 2

[9] Tong Chen and Zhan Ma. Variable bitrate image compression with
quality scaling factors. IEEE International Conference on Acoustics,
Speech and Signal Processing, pages 2163–2167, 2020. 2

[10] T. Chen, H. Liu, Z. Ma, Q. Shen, X. Cao, and Y. Wang. End-to-end
learnt image compression via non-local attention optimization and
improved context modeling. IEEE Transactions on Image Process-
ing, 30:3179–3191, 2021. 2

[11] Z. Cheng, H. Sun, M. Takeuchi, and J. Katto. Learned image com-
pression with discretized gaussian mixture likelihoods and attention
modules. Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pages 7936–7945, 2020. 2, 3, 6, 4

[12] Yoojin Choi, Mostafa El-Khamy, and Jungwon Lee. Variable rate
deep image compression with a conditional autoencoder. Proceed-
ings of the IEEE/CVF International Conference on Computer Vision,
pages 3146–3154, 2019. 2, 5

[13] Matthias De Lange, Rahaf Aljundi, Marc Masana, Sarah Parisot, Xu
Jia, Aleš Leonardis, Gregory Slabaugh, and Tinne Tuytelaars. A
continual learning survey: Defying forgetting in classification tasks.
IEEE Transactions on Pattern Analysis and Machine Intelligence, 44
(7):3366–3385, 2022. 1, 2

[14] Zhihao Duan, Ming Lu, Jack Ma, Yuning Huang, Zhan Ma, and
Fengqing Zhu. Qarv: Quantization-aware resnet vae for lossy image
compression. IEEE Transactions on Pattern Analysis and Machine
Intelligence, pages 1–15, 2023. 2, 4, 5

[15] Zhihao Duan, Ming Lu, Zhan Ma, and Fengqing Zhu. Lossy image
compression with quantized hierarchical vaes. Proceedings of the
IEEE/CVF Winter Conference on Applications of Computer Vision,
pages 198–207, 2023. 2

[16] Jarek Duda, Khalid Tahboub, Neeraj J. Gadgil, and Edward J. Delp.
The use of asymmetric numeral systems as an accurate replacement
for huffman coding. Picture Coding Symposium, pages 65–69, 2015.
3, 5

[17] Alaaeldin El-Nouby, Matthew J. Muckley, Karen Ullrich, Ivan
Laptev, Jakob Verbeek, and Herve Jegou. Image compression with
product quantized masked image modeling. Transactions on Ma-
chine Learning Research, 2023. 2

[18] Runsen Feng, Zongyu Guo, Weiping Li, and Zhibo Chen. Nvtc:
Nonlinear vector transform coding. Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, pages
6101–6110, 2023. 2, 4, 5

[19] Chenjian Gao, Tongda Xu, Dailan He, Yan Wang, and Hongwei Qin.
Flexible neural image compression via code editing. Advances in
Neural Information Processing Systems, 35:12184–12196, 2022. 2

[20] G. Gao, P. You, R. Pan, S. Han, Y. Zhang, Y. Dai, and H. Lee. Neural
image compression via attentional multi-scale back projection and
frequency decomposition. Proceedings of the IEEE/CVF Interna-
tional Conference on Computer Vision, pages 14677–14686, 2021.
2

[21] Zongyu Guo, Zhizheng Zhang, Runsen Feng, and Zhibo Chen. Soft
then hard: Rethinking the quantization in neural image compression.
Proceedings of the International Conference on Machine Learning,
139:3920–3929, 2021. 2

[22] Dailan He, Yaoyan Zheng, Baocheng Sun, Yan Wang, and Hongwei
Qin. Checkerboard context model for efficient learned image com-
pression. Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pages 14766–14775, 2021. 2

[23] Dailan He, Ziming Yang, Weikun Peng, Rui Ma, Hongwei Qin, and
Yan Wang. Elic: Efficient learned image compression with unevenly
grouped space-channel contextual adaptive coding. Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern Recog-
nition, pages 5708–5717, 2022. 2, 3

[24] Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion
probabilistic models. Advances in Neural Information Processing
Systems, 33:6840–6851, 2020. 6

[25] Yueyu Hu, Wenhan Yang, Zhan Ma, and Jiaying Liu. Learning
end-to-end lossy image compression: A benchmark. IEEE Trans-
actions on Pattern Analysis and Machine Intelligence, 44(8):4194–
4211, 2022. 2

[26] Wei Jiang and Ronggang Wang. MLIC$ˆ{++}$: Linear complex-
ity multi-reference entropy modeling for learned image compression.
ICML Workshop Neural Compression: From Information Theory to
Applications, 2023. 3

[27] Wei Jiang, Jiayu Yang, Yongqi Zhai, Peirong Ning, Feng Gao, and
Ronggang Wang. Mlic: Multi-reference entropy model for learned
image compression. Proceedings of the ACM International Confer-
ence on Multimedia, pages 7618–7627, 2023. 2

[28] James Kirkpatrick, Razvan Pascanu, Neil Rabinowitz, Joel Veness,
Guillaume Desjardins, Andrei A. Rusu, Kieran Milan, John Quan,
Tiago Ramalho, Agnieszka Grabska-Barwinska, Demis Hassabis,
Claudia Clopath, Dharshan Kumaran, and Raia Hadsell. Overcom-
ing catastrophic forgetting in neural networks. Proceedings of the
National Academy of Sciences, 114(13):3521–3526, 2017. 1

[29] Esin Koyuncu, Timofey Solovyev, Elena Alshina, and André Kaup.
Device interoperability for learned image compression with weights
and activations quantization. Picture Coding Symposium, pages 151–
155, 2022. 3

[30] Cheng-Han Lee, Ziwei Liu, Lingyun Wu, and Ping Luo. Maskgan:
Towards diverse and interactive facial image manipulation. Proceed-
ings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 5548–5557, 2020. 6, 1

[31] Jooyoung Lee, Seyoon Jeong, and Munchurl Kim. Selective com-
pression learning of latent representations for variable-rate image
compression. Advances in Neural Information Processing Systems,
35:13146–13157, 2022. 2

[32] T. Lin, M. Maire, S. Belongie, J. Hays, P. Perona, D. Ramanan, P.
Dollár, and C. L. Zitnick. Microsoft coco: Common objects in con-
text. Proceedings of the European Conference on Computer Vision,
pages 740–755, 2014. 6, 1

[33] Jinming Liu, Heming Sun, and Jiro Katto. Learned image compres-
sion with mixed transformer-cnn architectures. Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition,
pages 14388–14397, 2023. 2, 3

[34] Yaoyao Liu, Yuting Su, An-An Liu, Bernt Schiele, and Qianru Sun.
Mnemonics training: Multi-class incremental learning without for-
getting. Proceedings of the IEEE/CVF conference on Computer Vi-
sion and Pattern Recognition, pages 12245–12254, 2020. 2

[35] Zhuang Liu, Hanzi Mao, Chao-Yuan Wu, Christoph Feichtenhofer,
Trevor Darrell, and Saining Xie. A convnet for the 2020s. Proceed-
ings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 11966–11976, 2022. 5, 2

[36] David Lopez-Paz and Marc’Aurelio Ranzato. Gradient episodic
memory for continual learning. Advances in neural information pro-
cessing systems, 30, 2017. 2

[37] Ming Lu and Zhan Ma. High-efficiency lossy image coding through
adaptive neighborhood information aggregation. arXiv preprint
arXiv:2204.11448, 2022. 2

[38] Ming Lu, Peiyao Guo, Huiqing Shi, Chuntong Cao, and Zhan Ma.
Transformer-based image compression. Data Compression Confer-
ence, pages 469–469, 2022.

[39] Haichuan Ma, Dong Liu, Ning Yan, Houqiang Li, and Feng Wu.
End-to-end optimized versatile image compression with wavelet-like
transform. IEEE Transactions on Pattern Analysis and Machine In-
telligence, 44(3):1247–1263, 2022. 2, 8

[40] D. Minnen and S. Singh. Channel-wise autoregressive entropy mod-
els for learned image compression. Proceedings of the IEEE Inter-
national Conference on Image Processing, pages 3339–3343, 2020.
2

[41] D. Minnen, J. Ballé, and G. Toderici. Joint autoregressive and hier-
archical priors for learned image compression. Advances in Neural
Information Processing Systems, 31:10794–10803, 2018. 1, 2, 3, 5,
6, 4

[42] Guanbo Pan, Guo Lu, Zhihao Hu, and Dong Xu. Content adaptive
latents and decoder for neural image compression. Proceedings of the
European Conference on Computer Vision, pages 556–573, 2022. 2

[43] Yichen Qian, Zhiyu Tan, Xiuyu Sun, Ming Lin, Dongyang Li, Zhen-
hong Sun, Li Hao, and Rong Jin. Learning accurate entropy model
with global reference for image compression. International Confer-
ence on Learning Representations, 2021. 2

[44] Yichen Qian, Xiuyu Sun, Ming Lin, Zhiyu Tan, and Rong Jin. Entro-
former: A transformer-based entropy model for learned image com-
pression. International Conference on Learning Representations,
2022. 2

[45] Sylvestre-Alvise Rebuffi, Alexander Kolesnikov, Georg Sperl, and
Christoph H. Lampert. icarl: Incremental classifier and represen-
tation learning. Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, pages 5533–5542, 2017. 2, 4

[46] J. Rissanen and G. G. Langdon. Arithmetic coding. IBM Journal of
Research and Development, 23(2):149–162, 1979. 3

[47] Sheng Shen, Huanjing Yue, and Jingyu Yang. Dec-adapter: Explor-
ing efficient decoder-side adapter for bridging screen content and nat-
ural image compression. Proceedings of the IEEE/CVF International
Conference on Computer Vision, pages 12887–12896, 2023. 2

[48] Myungseo Song, Jinyoung Choi, and Bohyung Han. Variable-rate
deep image compression through spatially-adaptive feature trans-
form. Proceedings of the IEEE/CVF International Conference on
Computer Vision, pages 2360–2369, 2021. 2

[49] Kuan Tian, Yonghang Guan, Jinxi Xiang, Jun Zhang, Xiao Han, and
Wei Yang. Effortless cross-platform video codec: A codebook-based
method. arXiv preprint arXiv:2310.10292, 2023. 3

[50] Koki Tsubota, Hiroaki Akutsu, and Kiyoharu Aizawa. Univer-
sal deep image compression via content-adaptive optimization with
adapters. IEEE/CVF Winter Conference on Applications of Com-
puter Vision, pages 2528–2537, 2023. 2

[51] Liyuan Wang, Xingxing Zhang, Hang Su, and Jun Zhu. A compre-
hensive survey of continual learning: Theory, method and applica-
tion. arXiv preprint arXiv:2302.00487, 2023. 1

[52] Yueqi Xie, Ka Leong Cheng, and Qifeng Chen. Enhanced invertible
encoding for learned image compression. Proceedings of the ACM
International Conference on Multimedia, pages 162–170, 2021. 2

[53] Fei Yang, Luis Herranz, Yongmei Cheng, and Mikhail G. Moze-
rov. Slimmable compressive autoencoders for practical neural image
compression. Proceedings of the IEEE/CVF Conference on Com-
puter Vision and Pattern Recognition, pages 4996–5005, 2021. 2

[54] Yibo Yang and Stephan Mandt. Computationally-efficient neu-
ral image compression with shallow decoders. Proceedings of the
IEEE/CVF International Conference on Computer Vision, pages
530–540, 2023. 2

[55] Yibo Yang, Robert Bamler, and Stephan Mandt. Variational Bayesian
quantization. Proceedings of the International Conference on Ma-
chine Learning, 119:10670–10680, 2020. 2

[56] Yibo Yang, Robert Bamler, and Stephan Mandt. Improving infer-
ence for neural image compression. Advances in Neural Information
Processing Systems, 33:573–584, 2020. 2, 7

[57] Xi Zhang and Xiaolin Wu. Lvqac: Lattice vector quantization cou-
pled with spatially adaptive companding for efficient learned image
compression. Proceedings of the IEEE/CVF Conference on Com-
puter Vision and Pattern Recognition, pages 10239–10248, 2023. 2

[58] Xiaosu Zhu, Jingkuan Song, Lianli Gao, Feng Zheng, and Heng Tao
Shen. Unified multivariate gaussian mixture for efficient neural im-
age compression. Proceedings of the IEEE/CVF Conference on Com-
puter Vision and Pattern Recognition, pages 17591–17600, 2022. 4,
5

[59] Renjie Zou, Chunfeng Song, and Zhaoxiang Zhang. The devil is in
the details: Window-based attention for image compression. Pro-
ceedings of the IEEE/CVF Conference on Computer Vision and Pat-
tern Recognition, pages 17471–17480, 2022. 2, 3

Towards Backward-Compatible Continual Learning of Image Compression

Supplementary Material

7. Appendix: Model Architecture Details
In the main paper, Sec. 4.2 provides a high-level overview
of the proposed model architecture. This section provides
more details about the model architecture, such as the num-
ber of channels and stride sizes for each layer.

The detailed model architecture is shown in Fig. 7, where
the model components are marked in the same way as in
Sec. 4.2. Our model contains four phases, all of which have
the same structure, while only different in (1) the number of
feature channels, (2) the number of ConvNeXt blocks, and
(3) the first phase starts from bias e0 and r0 instead of the
feature maps from the previous phase.

The spatial dimensions (height and width) in the figure
are for an input image with 256 × 256 pixels. Since the
model is fully convolutional, the spatial dimensions of in-
termediate layer outputs scales accordingly with the input
image size. Both initial bias features e0 and r0 have a shape
of 1× 1× 128, and they are repeated spatially to match the
spatial dimensions of z1.

8. Appendix: Training and Fine-tuning Details
Tab. 10 lists the pre-training and fine-tuning hyperparame-
ters used in our experiments. For a fair comparison, we use
the same hyperparameters for training all models, including
our proposed model and the baseline models (i.e., MSH-
VR and GMA-VR). Note that the fine-tuning dataset varies
for different sets of experiments. For data-incremental
learning, we use CelebA-HQ [30], and for rate-incremental
learning, we use COCO [32], which is the same as the pre-
training dataset.

Pre-training Fine-tuning
Data augmentation Crop, h-flip Crop, h-flip
Input size 256x256 256x256
Optimizer Adam Adam
Learning rate 2× 10−4 1× 10−4

LR schedule Constant + cosine Cosine
Weight decay 0.0 0.0
Batch size 32 32
iterations 500K 100K
images seen 16M 3.2M
Gradient clip 2.0 2.0
EMA 0.9999 -
GPU 1 × RTX 3090 1 × A40
Time ≈ 51 hours ≈ 11 hours

Table 10. Training Hyperparameters. The GPU time is for training
our proposed model, and all other hyperparameters are the same
for all models.

9. Appendix: Variable-Rate Baseline Models
In the main paper (Sec. 5.2), we mentioned that we con-
struct variable-rate versions of the two baseline models (i.e.,
MSH-VR and GMA-VR) in order to use them in the rate-
incremental learning experiment. Fig. 11 shows the rate-
distortion performance of the variable-rate versions com-
pared to the original ones. As shown in the figure, the
variable-rate versions achieve similar performance as the
original ones, which validates the our experimental setting.

10. Appendix: Experimental Results
10.1. PSNR-Bpp curves for the main experiments

Due to the space constraint, we show only BD-rate results
without PSNR-bpp curves in the main paper. This section
provides the PSNR-bpp curves for the main experiments
(Sec. 5.3).

Fig. 8 shows the PSNR-bpp curves for data-incremental
learning experiments, which includes the backward compat-
ibility experiment (Fig. 8a) and the new-data performance
experiment (Fig. 8b). For backward compatibility, it is clear
that models with fine-tuned encoder and decoder suffer a
significant performance drop on the old bitstreams, while
other fine-tuned models obtain comparable performance as
the pre-trained models. Among them, our proposed knowl-
edge replay strategy achieves even better performance than
using the pre-trained model directly. For new-data perfor-
mance, our method achieves comparable performance as
the models with fine-tuned encoder and decoder (which are
not backward compatible), and outperforms the pre-trained
models by a clear margin. These observations are consis-
tent with what we have observed in the BD-rate results in
the main paper.

We show the PSNR-bpp curves for rate-incremental
learning experiments, including the low-to-high experiment
(Fig. 9) and the high-to-low experiment (Fig. 10). The re-
sults are consistent with previous observations: (1) Fine-
tuning the encoder and decoder does not preserve back-
ward compatibility, while our approach does; and (2) Our
approach even outperforms all other methods in terms of
new-rate performance.

10.2. Fine-tuning the encoder does not generalize
the model to new rates

We mentioned in Sec. 5.3 that fine-tuning the encoder alone
cannot effectively extend the rate range of the pre-trained
models. We provide an example for showing this in Fig. 12,
where we show the rate-incremental learning (low → high)

D
o
w

n
 4

x
 ↓

256 × 256
3

C
N

X

D
o
w

n
 2

x
 ↓

C
N

X

C
o
n
c
a
t.

C
N

X

+ C
N

X

C
N

X𝑒4

U
p
 4

x
 ↑

C
N

X

Linear

×6

64 × 64
128

32 × 32
256

×6

C
N

X
C

N
X

32 × 32
32

D
o
w

n
 2

x
 ↓

C
N

X

C
o
n
c
a
t.

C
N

X

+

𝑒3

Linear

𝑧3

16 × 16
384

×6

C
N

X
C

N
X

16 × 16
256

D
o
w

n
 2

x
 ↓

C
N

X

C
o
n
c
a
t.

C
N

X

+

𝑒2

Linear

𝑧2

8 × 8
256

×4

C
N

X
C

N
X

8 × 8
128

𝑒1

D
o
w

n
 2

x
 ↓

C
N

X

C
o
n
c
a
t.

C
N

X

+

Linear

𝑧1

4 × 4
128

×4

C
N

X
C

N
X

4 × 4
128

4 × 4
128

𝑝𝑍4|𝑍<4

𝑧4

𝑝𝑍3|𝑍<3
𝑝𝑍2|𝑍1 𝑝𝑍1U

p
 2

x
 ↑

C
N

X

C
N

X

U
p
 2

x
 ↑

C
N

X

C
N

X

U
p
 2

x
 ↑ 4 × 4

128
8 × 8
256

16 × 16
384

32 × 32
256

C
N

X

C
o
n
c
a
t.𝑟2

C
N

X

U
p
 2

x
 ↑

L
in

e
a
r

×2

𝑒2 𝑧2

×2

C
N

X

C
o
n
c
a
t.𝑟1

L
in

e
a

r

×2

𝑒1 𝑧1

4 × 4
128

𝑒0

𝑟0

4 × 4
128

8 × 8
256

8 × 8
256

C
N

X

C
o
n
c
a
t.𝑟3

C
N

X

U
p
 2

x
 ↑

L
in

e
a
r

×3

𝑒3 𝑧3

×3

16 × 16
384

16 × 16
384C

N
X

C
o
n
c
a
t.𝑟4

C
N

X

U
p

 2
x
 ↑

L
in

e
a
r

×3

𝑒4 𝑧4

×3

32 × 32
256

32 × 32
256

U
p
 2

x
 ↑

×6

64 × 64
128

256 × 256
3

Phase 4 Phase 3 Phase 2 Phase 1

Encoder

𝑓enc

Decoder

𝑓dec

Entropy model

𝑝𝑍

Figure 7. Detailed architecture of the proposed model. In the figure, CNX denotes a ConvNeXt block [35] conditioned on lagrange
multiplier λ, as described in Fig. 6. Dimensionality of the layer outputs are shown in the format of height × width and channels, where the
spatial dimensions (height and width) are for a 256× 256 input image, and they scales linearly with the input image size.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Bits per pixel (bpp)

24

26

28

30

32

34

36

38

RG
B

PS
NR

Kodak

MSH-VR, pre-trained
MSH-VR w/ FT Enc.
MSH-VR w/ FT Enc. & Dec.
MSH-VR w/ KR (ours)

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Bits per pixel (bpp)

24

26

28

30

32

34

36

38

RG
B

PS
NR

Kodak

GMA-VR, pre-trained
GMA-VR w/ FT Enc.
GMA-VR w/ FT Enc. & Dec.
GMA-VR w/ KR (ours)

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Bits per pixel (bpp)

24

26

28

30

32

34

36

38

RG
B

PS
NR

Kodak

Our model, pre-trained
Our model w/ FT Enc.
Our model w/ FT Enc. & Dec.
Our model w/ KR

(a) Performance on the old bitsreams of Kodak (backward compatibility). Each subfigure shows the performance of a different model.

0.1 0.2 0.3 0.4 0.5 0.6
Bits per pixel (bpp)

30

32

34

36

38

RG
B

PS
NR

CelebA-HQ, 256x256

MSH-VR, pre-trained
MSH-VR w/ FT Enc.
MSH-VR w/ FT Enc. & Dec.
MSH-VR w/ KR (ours)

0.1 0.2 0.3 0.4 0.5 0.6
Bits per pixel (bpp)

30

32

34

36

38

RG
B

PS
NR

CelebA-HQ, 256x256

GMA-VR, pre-trained
GMA-VR w/ FT Enc.
GMA-VR w/ FT Enc. & Dec.
GMA-VR w/ KR (ours)

0.1 0.2 0.3 0.4 0.5 0.6
Bits per pixel (bpp)

30

32

34

36

38

RG
B

PS
NR

CelebA-HQ, 256x256

Our model, pre-trained
Our model w/ FT Enc.
Our model w/ FT Enc. & Dec.
Our model w/ KR

(b) Performance on CelebA-HQ (new-data performance). Each subfigure shows the performance of a different model.

Figure 8. PSNR-Bpp curves for data-incremental learning experiments. In figure (a), the “models, pre-trained” curves overlap with the
“models w/ FT Enc.” curves because their decoder are the same.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Bits per pixel (bpp)

26

28

30

32

34

36

38

RG
B

PS
NR

Kodak

MSH-VR, pre-trained
MSH-VR w/ FT Enc. & Dec.
MSH-VR w/ KR (ours)

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Bits per pixel (bpp)

28

30

32

34

36

38

RG
B

PS
NR

Kodak

GMA-VR, pre-trained
GMA-VR w/ FT Enc. & Dec.
GMA-VR w/ KR (ours)

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Bits per pixel (bpp)

28

30

32

34

36

38

RG
B

PS
NR

Kodak

Our model, pre-trained
Our model w/ FT Enc. & Dec.
Our model w/ KR (ours)

(a) Backward compatibility (bpp range is around [0.1, 0.9]). Each subfigure shows the performance of a different model.

0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8
Bits per pixel (bpp)

28

30

32

34

36

38

40

42

RG
B

PS
NR

Kodak

MSH-VR, pre-trained
MSH-VR w/ FT Enc. & Dec.
MSH-VR w/ KR (ours)

0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6
Bits per pixel (bpp)

28

30

32

34

36

38

40

42

RG
B

PS
NR

Kodak

GMA-VR, pre-trained
GMA-VR w/ FT Enc. & Dec.
GMA-VR w/ KR (ours)

0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6
Bits per pixel (bpp)

28

30

32

34

36

38

40

42

RG
B

PS
NR

Kodak

Our model, pre-trained
Our model w/ FT Enc. & Dec.
Our model w/ KR (ours)

(b) New-rate performance (bpp range is around [0.1, 1.6]). Each subfigure shows the performance of a different model.
Figure 9. PSNR-Bpp curves for rate-incremental learning (low → high) experiments.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Bits per pixel (bpp)

28

30

32

34

36

38

RG
B

PS
NR

Kodak

MSH-VR, pre-trained
MSH-VR w/ FT Enc. & Dec.
MSH-VR w/ KR (ours)

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Bits per pixel (bpp)

28

30

32

34

36

38

RG
B

PS
NR

Kodak

GMA-VR, pre-trained
GMA-VR w/ FT Enc. & Dec.
GMA-VR w/ KR (ours)

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Bits per pixel (bpp)

28

30

32

34

36

38

RG
B

PS
NR

Kodak

Our model, pre-trained
Our model w/ FT Enc. & Dec.
Our model w/ KR

(a) Backward compatibility (bpp range is around [0.1, 0.9]). Each subfigure shows the performance of a different model.

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Bits per pixel (bpp)

24

26

28

30

32

34

36

38

RG
B

PS
NR

Kodak

MSH-VR, pre-trained
MSH-VR w/ FT Enc. & Dec.
MSH-VR w/ KR (ours)

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Bits per pixel (bpp)

24

26

28

30

32

34

36

38

RG
B

PS
NR

Kodak

GMA-VR, pre-trained
GMA-VR w/ FT Enc. & Dec.
GMA-VR w/ KR (ours)

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Bits per pixel (bpp)

24

26

28

30

32

34

36

38

RG
B

PS
NR

Kodak

Our model, pre-trained
Our model w/ FT Enc. & Dec.
Our model w/ KR

(b) New-rate performance (bpp range is around [0.03, 0.9]). Each subfigure shows the performance of a different model.
Figure 10. PSNR-Bpp curves for rate-incremental learning (high → low) experiments.

0.2 0.4 0.6 0.8 1.0 1.2
Bits per pixel (bpp)

28

30

32

34

36

38

RG
B

PS
NR

Kodak

GMA-VR
GMA (Cheng et al., 2020)
MSH-VR
MSH (Ballé et al., 2018)

Figure 11. The variable-rate version of the baseline models that
we constructed (MSH-VR and GMA-VR) are comparable to the
original ones (MSH [41] and GMA [11]) in terms of PNSR-bpp
performance on Kodak.

0.10.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.81.9
Bits per pixel (bpp)

28

30

32

34

36

38

40

42

RG
B

PS
NR

Kodak

MSH-VR, pre-trained
MSH-VR w/ FT Enc.
MSH-VR w/ FT Enc. & Dec.

Figure 12. Fine-tuning the encoder does not effectively generalize
the pre-train model (MSG-VR, for example) to new rates.

performance of the pre-trained MSH-VR, the one with fine-
tuned encoder (MSH-VR w/ FT Enc.), and the one with fine-
tuned encoder and decoder (MSH-VR w/ FT Enc. & Dec.).
As shown in the figure, fine-tuning the encoder marginally
extends the rate range of the pre-trained model, and the
PSNR drops visibly when the rate is higher than maximum
rate of the pre-trained model. Thus, we do not use this strat-
egy in our rate-incremental learning experiments.

	. Introduction
	. Background and Related Work
	. Learned lossy image compression (LIC)
	. Knowledge replay in continual learning

	. Problem Description
	. Continual learning for compression
	. Backward compatibility of entropy decoding
	. Freezing the entropy model during fine-tuning

	. Method
	. Continual learning with knowledge replay
	. Model architecture

	. Experiments
	. Experiment setup
	. Methods in comparison
	. Experimental results
	. Experimental analysis: knowledge replay
	. Experimental analysis: model architecture
	. Discussion

	. Conclusion
	. Appendix: Model Architecture Details
	. Appendix: Training and Fine-tuning Details
	. Appendix: Variable-Rate Baseline Models
	. Appendix: Experimental Results
	. PSNR-Bpp curves for the main experiments
	. Fine-tuning the encoder does not generalize the model to new rates

