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Figure 1. Our results on NTIRE 2023 dehazing challenge, achieving the best performance in terms of PNSR, SSIM and LPIPS.

Abstract

Recent years have witnessed an increased interest in
image dehazing. Many deep learning methods have been
proposed to tackle this challenge, and have made signif-
icant accomplishments dealing with homogeneous haze.
However, these solutions cannot maintain comparable per-
formance when they are applied to images with non-
homogeneous haze, e.g., NH-HAZE23 dataset introduced
by NTIRE challenge. One of the reasons for such fail-
ures is that non-homogeneous haze does not obey one of
the assumptions that is required for modeling homoge-
neous haze. In addition, a large number of pairs of non-
homogeneous hazy image and the clean counterpart is re-
quired using traditional end-to-end training approaches,
while NH-HAZE23 dataset is of limited quantities. Al-
though it is possible to augment the NH-HAZE23 dataset
by leveraging other non-homogeneous dehazing datasets,
we observe that it is necessary to design a proper data-
preprocessing technique that reduces the distribution gaps
between the target dataset and the augmented one. This
finding indeed aligns with the essence of data-centric AI.
With a novel network architecture and a principled data-
preprocessing approach that systematically enhances data

quality, we present an innovative dehazing method. Specifi-
cally, we apply RGB-channel-wise transformations on the
augmented datasets, and incorporate the state-of-the-art
transformers as the backbone in the two-branch framework.
We conduct extensive experiments and ablation studies to
demonstrate the effectiveness of our proposed method. The
source code is available at https://github.com/
yangyiliu21/ntire2023_ITBdehaze.

1. Introduction

Recent years have witnessed an increased interest in
image dehazing, which is categorized as one of the sub-
tasks in image restoration. Haze naturally exists all over
the world, and has become more frequent due to the cli-
mate change. This common atmospheric phenomenon has
drawn significant attention because of its potential risks
to traffic safety, as both the human observation and com-
puter vision models are prone to fail in hazy scenes. These
make image dehazing an important low-level vision task,
and many methods have been proposed to tackle this chal-
lenge [10, 15, 18, 21–23, 29, 30, 35–37, 39, 42].

Among them, many neural network based approaches
[10, 11, 21, 29, 39, 42] show remarkable performance in
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handling image dehazing problem. Specifically, benefiting
from powerful network modules and vast training data, the
end-to-end approaches deliver promising results. However,
as the distribution of haze becomes more complicated and
non-homogeneous, many of them fail to achieve satisfying
results. The reason for such failures is because the thickness
of the non-homogeneous haze is not determined entirely by
the depth of the background scene.

Although researchers have made tremendous efforts col-
lecting data with non-homogeneous haze, e.g., the NH-
HAZE datasets [6–8], the quantity is still limited. A com-
mon belief is that models are prone to encounter the overfit-
ting problems when training a deep neural network from
scratch with such small datasets. A naive solution is to
combine all the available non-homogeneous haze datasets
together to form a relatively larger dataset. However, due to
the differences between datasets caused by a variety of fac-
tors, such as color distortion, objects complexity and cam-
era capability, it has been shown that a direct combination
actually compromises the dehazing performance on individ-
ual datasets [22]. It remains a serious challenge to find a ro-
bust solution to cope with the practical situation where both
the quality and quantity of the available data limited.

To address the above-mentioned problems, we adopt the
two-branch framework consisting of state-of-the-art back-
bone networks, with a novel data-preprocessing transfor-
mation applied on the NH-HAZE datasets from previous
years. Motivated by the idea of data-centric AI that ma-
chine learning has matured to a point that high-performance
model architectures are widely available, while approaches
to engineering datasets have lagged [1, 27], we put much
effort in engineering the data. Inspired by the promising
performance of gamma correction [15, 37], we propose a
simple yet effective RGB-channel-wise data-preprocessing
approach. We demonstrate its suitability for this competi-
tion setting, and argue that it is prospective to be the prin-
ciple for augmenting similar dataset. Details of this data-
centric AI inspired preprocessing approach are discussed in
later sections. Regarding to the network architecture, we de-
sign our model under the two-branch framework [15,36,37].
In the first branch, we adopt the Swin Transformer V2
model [24] pre-trained on ImageNet dataset [12] as the en-
coder. The powerful Swin Transformer is accredited to be
able to supersede the previous methods in many contexts of
transfer learning, where the knowledge gained from large-
scale benchmark is adapted to task-specific datasets [20,24].
Such pertinent features are of vital importance when deal-
ing with small real-world non-homogeneous datasets [37].
Alongside a refined decoder and skip connections, the first
branch extracts multi-level features of the hazy images. The
second branch is introduced to complement the knowledge
learned from the pre-trained model by exclusively working
on the domain of target data. For simplicity, we follows [37]

to build the second branch with a RCAN [40]. Since there is
no down-sampling and up-sampling operations in the sec-
ond branch, we expect it to extract features distinct from
the ones obtained by the first branch. Finally, a fusion tail
aggregates the results from both branches and produces de-
hazed output images.

Overall, our contributions are summarized as fol-
lows. Firstly we put forward a simple but effective data-
preprocessing approach inspired by data-centric AI, lever-
aging extra data to significantly enhance our model. Sec-
ondly, we incorporate the state-of-the-art backbone in the
two-branch framework. By carefully balancing the two
branches, our model demonstrates promising results us-
ing limit-sized datasets, and outperforms other current ap-
proaches adopting this pipeline. Finally, we conduct ex-
tensive experiments to demonstrate the competitive perfor-
mance of our proposed method. With substantial ablation
study on different combinations of models and data, we
hope to convince the future competition participants to pay
equal attention to model design and data engineering.

2. Related Works
In this section, we briefly review the literature of single

image dehazing and learning with limited data.
Single Image Dehazing. Approaches proposed for sin-

gle image dehazing are divided into two categories: prior-
based methods and learning-based methods. To guarantee
the performance, prior-based methods require reasonable
assumptions and knowledge on hazy images to obtain ac-
curate estimations about the transmission map and atmo-
spheric light intensity in ASM modeling [26]. Representa-
tive works in this category include [9,14,18,34,44]. Specif-
ically, [34] observed that clear images have higher contrast
comparing to the hazy counterparts, and proposed a local
contrast maximization method. Based on the assumption
that image pixels in no-haze patches have intensity val-
ues close to zero in at least one color channel, [18] intro-
duced Dark Channel Prior (DCP). [44] presented a linear
model adapting color attenuation prior (CAP) to estimate
the depth according to the knowledge about the difference
between the brightness and the saturation of hazy images.
Prior-based methods left a permanent mark in single im-
age dehazing but their vulnerability when adapted in vari-
able scenes pivoted the researchers to another direction, the
learning-based methods. With the advances in neural net-
works, [10, 11, 21, 29, 39, 42] have proposed progressively
more powerful models that are capable of directly recov-
ering the clean image from hazy image without estimating
the transmission map and depth. The superiority of these
methods in removing homogeneous haze is attributed to the
availability of large training datasets. When applied on non-
homogeneous haze, they fail to yield comparable results.
The limited quantity of existing non-homogeneous haze



Figure 2. Comparison of RGB-wise distribution of datasets (GT) before and after being processed by our proposed method.

datasets prevents researchers from adopting simple end-to-
end training methods.

Learning with Limited Data. Data is indispensable for
all the AI models. Many of the models demand a huge
dataset for training, but large dataset is not always avail-
able. Therefore, it urges the researchers to find solutions to
accomplish training with limited data. In terms of dehazing,
a seemingly straightforward solution to address the issues
caused by small non-homogeneous training datasets is com-
posing a relatively large dataset by combining several small
datasets all together. In terms of NTIRE2023 challenge [8],
it can be done by augmenting the NH-HAZE datasets (aug-
mented dataset) [6, 7] with this year’s data (target dataset).
Surprisingly, against the common believe that larger dataset
is always better in deep learning, [22] observed that the
models perform better when training and testing are con-
ducted on a single dataset (as opposed to the union of all
datasets). This observation indicates that the augmented
dataset locates in a different domain comparing to the target
data. Direct aggregation introduces domain shift problem
within the dataset. Thereby, [22] proposed a testing time
training strategy to mitigate the problems, while [15,31,37]
chose to adjust the domains of training data before send-
ing them into the dehazing modules. Interestingly, the idea
of focusing on improving the dataset rather than the model
was introduced by the Data-Centric AI competition [1].
Data-Centric AI is anticipated to deliver a set of approaches
for dataset optimization, thereby enabling deep neural net-
works to be effectively trained using smaller datasets [27].
The set of proposed techniques ranges widely from simple
ones to complex combinations [38]. Through our experi-
ments and qualitative analysis, we find that a too simple ap-
proach, such as the gamma correction adopted by [15, 37]
fails to recover the color accurately. Nevertheless, a compli-
cated method, like [31] applying domain adaptation to learn
a separate neural network to translate the data, is infeasible
due to the scarcity and lacking of depth information of the

available data. In the next section, we introduce our innova-
tive solution standing out in the NTIRE challenge settings.

3. Proposed Method
In this section, we introduce the details of our method-

ology following the order of the working pipeline. Firstly,
we demonstrate the data-preprocessing method inspired by
the idea of data-centric AI. Secondly, details of our model
architecture are presented, as well as the functions of each
component. Finally, we introduce the loss functions applied
to train our proposed networks.

3.1. Data-Centric Engineering

Systematically engineering the data is a key requirement
for training deep neural networks. The idea of data-centric
AI moreover emphasizes on assessing the data quality be-
fore deployment [38]. By comparing the NH-HAZE20 and
21 dataset [6, 7] to the data provided this year both numeri-
cally and empirically, we notice obvious color discrepancy.
When evaluating on this year’s test data, training on a direct
combination of all data does not boost the score comparing
to training on this year’s data only (see results in Section
4.3.1). Therefore, our goal is to propose an approach that
reduces the color differences, and shifts the distribution of
augmented data towards that of target data. Inspired by the
success application of gamma correction [15, 37] as a sim-
ple yet effective data-preprocessing technique, we propose
a more systematic solution for data engineering. Instead of
the practice in [15, 37] by applying gray-scale gamma cor-
rection, we here introduce to correct on each R,G,B channel
separately:

OR,G,B = (
IR,G,B

255
)

1
γR,G,B (1)

where O and I are output and input pixel intensity (∈
[0, 255]), respectively. γ is the gamma factor. The sub-
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Figure 3. An overview of our network. The model consists of two branches. The transfer learning branch is composed by Swin Transformer
based model. The data fitting branch consists of residual channel attention groups.

scripts R,G,B indicate that the values for different chan-
nels are unique.

As for implementation, we first calculate the average
pixel intensity of each channel of the three datasets; then for
each channel of the NH-HAZE20 or 21 dataset, we apply a
transformation with a unique gamma value to all the pixels,
resulting in similar mean and variance values comparing
with the corresponding channel of NH-HAZE23 dataset. In
Figure 2, we present the histogram change with correspond-
ing γ values. From observation, our method adjusts the
color of NH-HAZE20 and 21 data to become much similar
to the NH-HAZE23 data. Numerically, the average pixel
intensity of 2023 data is 107.46(R), 114.48(G), 101.92(B).
After applying our method, the adjusted average pixel
intensity of NH-HAZE20 data is 107.77(R), 114.33(G),
102.08(B); and the adjusted ones of NH-HAZE21 data is
107.43(R), 115.01(G), 102.13(B). Note that, we not only
apply such preprocessing method on the clean ground truth
images but also on the hazy images (as opposed to [15, 37]
only manipulating the ground truth images).

With this novel data-preprocessing method, the distribu-
tions of all three color channels of NH-HAZE20 and 21 data
are shifted closer to those of NH-HAZE23 dataset. Benefit-
ing from more in-distribution data, the models gain substan-
tial improvements. Being able to work with small but good
dataset, rather than a larger but internally diverged one helps
us stand out in the competition. This indeed aligns with the
idea of data-centric AI [27,38]. For future competition par-
ticipants, we elect this approach to be a good starting point
for data engineering.

3.2. Network Architecture

As shown in Figure 3, the pre-processed data is fed
into a two-branch model architecture. This two-branch
framework has been successfully employed in various com-
puter vision tasks [19], and has facilitated several works
[15, 36, 37] winning the awards in the past NTIRE chal-
lenges. In our implementation, the first Transfer Learning
Branch aims to extract pertinent features of the inputs with
pre-trained weights initialization. The second Data Fitting
Branch is responsible to complement the knowledge learned
from the first branch and work on the domain of target data.
The fusion tail aggregates the outputs from both branches
and produces dehazed images.

Swin Transformer based Transfer Learning. To lever-
age the power of transfer learning [33], we use the Ima-
geNet [12] pre-trained Swin Transformer [24] as the back-
bone of our encoder. Swin Transformer achieves the state-
of-the-art performance in many vision tasks. It is exception-
ally efficient and more accurate as comparing to its prede-
cessor, Vision Transformer (ViT) [13], which struggles with
high resolution images because its complexity is quadratic
to the input size. The working pipeline of the Swin Trans-
former is summarized as follows. First, Swin Transformer
splits an input image into non-overlapping patches with a
patch splitting module. Through a linear embedding layer,
the patches and their features are set as a concatenation of
the raw pixel RGB values, also referred to as “token”, and
then be projected to an arbitrary dimension. These tokens
are processed by a cascade of stages. Each stage consists
of a linear embedding layer and several Swin Transformer



Block (SwinT Block) modules. SwinT Block uses cyclic-
shift with MSA modules to implement efficient batch com-
putation for shifted window partitioning. From the previ-
ous stage to the next, the spatial dimension of the feature
maps are effectively reduced, resulting in hierarchical fea-
ture maps. These modules compose our encoder part of
the Transfer Learning Branch. As for the decoder part, we
adopt the ideas from [15,37]. With skip connections, the at-
tention blocks and up-sampling layers gradually restore the
hierarchical feature maps and produce an output with the
same spatial dimension as the input.

Rest of the Model. We adopt the Data Fitting Branch
from [40], which is based on residual channel attention
block [40]. Trained from scratch, this second branch com-
plements the first one by exclusively working on the domain
of target data. With no down-sampling and up-sampling op-
erations, this branch operates in the full-resolution mode,
thus extracts features distinct from the ones obtained by the
first branch. A simple yet insightful fusion tail consisting
of a reflection padding layer, a 7 × 7 convolutional layer
and the Tanh activation [37] combines the features from two
branches and produces dehazed images.

3.3. Loss Functions

Since our method mainly focuses on the data-centric en-
gineering and implementing transformers, we follow [15,
37] to adopt a combination of several losses for training our
model.

Smooth L1 Loss. For image fidelity reconstruction, the
smooth L1 loss [17] has been proved to be more robust than
the MSE loss in various image restoration tasks [41]. The
formulation follows:

Ll1 =
1

N

N∑
i

smoothL1
(yi − fθ(xi)), (2)

smoothL1
(z) =

{
0.5z2 if |z| < 1

|z| − 0.5 otherwise,
(3)

where xi and yi denote the i-th pixel of clean and hazy im-
ages, respectively. N is the total number of pixels. fθ(·)
represents the network.

MS-SSIM Loss. Multi-scale Structure similarity (MS-
SSIM) is based on the assumption that human eyes are
adapted for extracting structural information, and therefore
a metric of evaluating structural similarity can provide a
good approximation to perceived image quality. Let O and
G represent two windows centered at the i-th pixel in the
dehazed image and the ground truth image, respectively.
Gaussian filters are applied on both windows, and produce
resulting values of corresponding means (µO, µG), standard
deviations σO, σG, and covariance σOG. The SSIM formu-

lation for the i-th pixel follows:

SSIM(i) =
2µOµG + C1

µ2
O + µ2

G + C1
· 2σOG + C2

σ2
O + σ2

G + C2
, (4)

where C1 and C2 help stabilize the division.
Perceptual Loss. Besides pixel-scale supervision on

perceptual quality, we adopt ImageNet [12] pre-trained
VGG16 [32] to measure perceptual similarity, which helps
reconstruct finer details [43]. Denoting x and y as hazy
inputs and ground truth images respectively, the loss is de-
fined as:

Lperc =
1

N

∑
j

1

CjHjWj
||ϕj(fθ(x))− ϕj(y)||22, (5)

where fθ(x) is the dehazed image. ϕj(·) denotes the feature
map. We choose L2 loss to measure the distances between
them. N denotes the number of features.

Adversarial Loss. Compensating for the risks that
pixel-wised loss functions fail to provide sufficient super-
vision when training on a small dataset, we employ the ad-
versarial loss [43]:

Ladv =

N∑
n=1

−logD(fθ(x)), (6)

where fθ(x) denotes the dehazed image. D(·) represents
the discriminator.

Total Loss. The total loss is a weighted sum of afore-
mentioned four components with pre-defined weights:

L = Ll1 + 0.5LMS-SSIM + 0.01Lperc + 0.0005Ladv. (7)

4. Experiments
In this section, we first introduce the datasets used to

conduct experiments along with implementation details.
Then, we conduct ablation studies to verify the effective-
ness of our model design and data-preprocessing method.
Finally, we evaluate the dehazing results of our proposed
method qualitatively and quantitatively, and compare with
several state-of-the-art methods.

4.1. Datasets

O-HAZE. With the help of the professional haze ma-
chine that generate real haze, O-HAZE [5] was published
in 2018, containing 45 clean and hazy image pairs in total.
Each pair has a unique spatial resolution. We conduct our
evaluation based on the official train, and test split [2].

DENSE-HAZE. DENSE-HAZE [3, 4] was introduced
with the NTIRE2019 challenge. It characterizes in dense
and homogeneous haze. The dataset contains 45 training
images, 5 validation images and 5 test images. All images



Figure 4. Qualitative ablation study on the data-centric design. (a)
the results generated by the model trained on NH-HAZE20+21+23
GC, (b) the results generated by the model trained on NH-
HAZE20+21+23 RGB, and (c) ground truth.

are of the same 1600×1200 dimension. In our experiments,
we follow the official train, val and test split.

NH-HAZE20 & NH-HAZE21. In NTIRE2020 [6]
and NTIRE2021 [7] challenges, NH-HAZE20 and NH-
HAZE21 were released. The haze pattern in these two
datasets is non-homogeneous. The images in these two
datasets are of the size of 1600 × 1200. NH-HAZE20 con-
tains 45 training data, 5 validation data and 5 testing data.
We adopt the official train, and test split to conduct experi-
ments on NH-HAZE20. For NH-HAZE21, we take the first
20 training images as our training set, and the rest 5 images
are used for testing.

NH-HAZE23. Inheriting the non-homogeneous haze
style from previous years, NTIRE2023 introduces 50 image
pairs, each of a much higher resolution of 4000 × 6000.
The increase in image size leads to larger volume of train-
ing data and greater demand in computation resources. As
the ground truth images of the 5 validation data and 5 test
data are not public so far, we can only make use of the 40
train data when not evaluating on the server. We adopt dif-
ferent train/test splitting strategies for performing quanti-
tative comparisons of SOTA methods and ablation studies.
For methods comparison, we choose the first 35 images of
the official training set as our training data, and the rest 5
are used for testing. For ablation study, we use all 40 pairs
to perform training, and get testing scores using the online
validation server of the challenge.

4.2. Implementation Details

The input images are randomly cropped to a size of
256 × 256, and augmented by several data augmentation
strategies, including 90, 180, 270 degrees of random ro-

Table 1. Ablation study for architectures and data-preprocessing
techniques. The scores are evaluated using NTIRE2023 online
validation server.

Data Res2Net+RCAN Ours
PSNR SSIM PSNR SSIM

NH-HAZE23 only 20.68 0.678 21.54 0.682
NH-HAZE20+21+23 20.86 0.688 21.54 0.689

NH-HAZE20+21+23 GC 21.08 0.690 21.58 0.693
NH-HAZE20+21+23 RGB 21.26 0.693 21.94 0.697

tation, horizontal flip, and vertical flip. Note that, we do
not apply any augmentation strategy related with bright-
ness or color change as we have no intention to jeopar-
dize the adjusted color distributions produced by our data-
preprocessing method. We use the AdamW [25] (β1 =
0.9, β2 = 0.999) as our optimizer. The learning rate is
initially set to 1e−4 and decreased to 1e−6 with a cosine
annealing strategy. We implement with the PyTorch library
[28] on two Nvidia Titan XP GPUs. Peak Signal to Noise
Ratio (PSNR) and the Structural Similarity Index (SSIM)
are used as two metrics for quantitative evaluation.

4.3. Ablation Study

We conduct comprehensive ablation studies to analyze
and demonstrate the effectiveness of our data-preprocessing
method and proposed network architecture.

4.3.1 Importance of Data-Centric Design.

In Section 3.1, we emphasize the importance of data for
succeeding in non-homogeneous dehazing. To further
demonstrate, we conduct experiments on several datasets
with different data-preprocessing methods. There are four
sets of training data, including: 1) NH-HAZE23 only:
only the data from NTIRE2023 challenge is used; 2) NH-
HAZE20+21+23: a direct combination of data from NH-
HAZE20, NH-HAZE21 and NH-HAZE23 datasets; 3) NH-
HAZE20+21+23 GC: a combination of data from NH-
HAZE20, NH-HAZE21 and NH-HAZE23 with the GT data
from NH-HAZE20 and 21 being processed by gray-scale
gamma correction as [15, 37]; 4) NH-HAZE20+21+23
RGB: a combination of data from NH-HAZE20, NH-
HAZE21 and NH-HAZE23 with both the hazy and GT
data from NH-HAZE20 and 21 being processed by our pro-
posed approach described in Section 3.1. We employ these
sets of data on two different model architectures. The first
model is from the NTIRE2021 challenge [37] (we refer to
as Res2Net+RCAN), where Res2Net [16] is adopted as the
backbone. The second model is our proposed one intro-
duced in Section 3.2. In total, we conduct 8 individual
experiments, and report their best results (in terms of the
PSNR index) evaluated on the NTIRE2023 online valida-
tion sever. The results are shown in Table 1.



Figure 5. Comparison of RGB-wise distribution of datasets (hazy) before and after being processed by our proposed method.

By comparing the first and second row of Table 1, we
find that the direct combination of all the available data
yields limited improvements for both our model and [37].
By comparing the last two rows with the second row in Ta-
ble 1, it can be observed that performing data-preprocessing
is generally beneficial. Not surprisingly, the models trained
on our dataset achieve the best performance. These results
reinforce the importance of data-centric engineering.

To qualitative evaluate the importance of data engineer-
ing, we show in Figure 4 by the images generated from the
models respectively trained on NH-HAZE20+21+23 GC
and NH-HAZE20+21+23 RGB. By comparing the two re-
sults with ground truth, it is obvious that the model trained
on our processed dataset can generate more faithful results
in terms of color and brightness. Specifically, the colors of
the building and trees of ours are much more in line with
those in the ground truth, while the compared one tend to
generate green objects.

4.3.2 Effectiveness of Transformer

As noted in Section 3.2, our network is built upon the re-
cent work [37]. The main difference is that we replace
the Res2Net branch in [37] with the proposed Transformer-
based structure. By quickly check the performance of our
method and that of Res2Net+RCAN on four datasets in Ta-
ble 1, it can be easily observed that our method always out-
performs Res2Net+RCAN by a significant margin. This
illustrate the effectiveness of using Transformer in non-
homogeneous dehazing.

4.4. Further Analysis on Data-Centric Engineering

In Figure 2, we show the distribution change of the
ground truths after applying the proposed RGB gamma cor-
rection. In Figure 5, we provide the distribution change
of NH-HAZE20 and 21 hazy images as a supplement. It
can be observed that after our data-preprocessing, the dis-
tribution of the three image channels (RGB) of the NH-
HAZE20 and 21 hazy images are more in line with those
of NH-HAZE23 data. Figure 6 further qualitatively illus-
trates the images before and after data-preprocessing. The
results shows that colors of the processed NH-HAZE20 and
NH-HAZE21 data are much more similar to that of NH-

Figure 6. Examples from NH-HAZE20 and NH-HAZE21 datasets
to visually showcase the color correction.

HAZE23. We emphasize that this data-centric engineering
is the key that helps our method stand out in the competi-
tion. Based on both the analysis in this section and Section
4.3.1, we conclude that the data quality is one of the deter-
mining factors, possibly the most important one under the
NTIRE dehazing challenges.

4.5. Comparisons with the State-of-the-art Methods

To conduct comparisons, we select five state-of-the-art
methods, including DCP [18], AOD-Net [21], GCANet
[11], FFA [29], and Res2Net+RCAN [37].

In Table 2, we illustrate the best PSNR and SSIM in-
dexes of each method on five different datasets. The meth-
ods adopting the two-branch framework perform generally
well on all the datasets, where in Figure 7, Res2Net+RCAN
and our method can produce visual pleasing results on
all datasets. They unveil significantly better performance
when dealing with non-homogeneous haze patterns, as we
could observe from the results on NH-HAZE20, 21 and 23.
Therefore, the two branch framework remains dominating
in the limited data scenarios.



Figure 7. Qualitative evaluation on the four representative datasets, i.e., DENSE-HAZE, NH-HAZE20, NH-HAZE21 and NH-HAZE23.
For DENSE-HAZE and NH-HAZE20, we follow the official train, val and test split. For NH-HAZE21 and NH-HAZE23, due to the
unavailable of test data, we split the released official training data to our training set and test set.

Table 2. Quantitative evaluation on DENSE-HAZE, NH-HAZE20, NH-HAZE21 and NH-HAZE23 datasets. The best results are marked
in bold, and the second bests are marked with underlines.

Methods O-HAZE DENSE-HAZE NH-HAZE20 NH-HAZE21 NH-HAZE23
PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM

DCP 12.92 0.505 10.85 0.404 12.29 0.411 11.30 0.605 11.87 0.470
AOD 17.69 0.616 13.30 0.469 13.44 0.413 13.22 0.613 12.47 0.369

GCANet 19.50 0.660 12.42 0.478 17.58 0.594 18.76 0.768 16.36 0.512
FFA 22.12 0.768 16.26 0.545 18.51 0.637 20.40 0.806 18.09 0.585

Res2Net+RCAN 25.54 0.783 16.36 0.582 21.44 0.704 21.66 0.843 20.11 0.627
Ours 25.98 0.789 16.31 0.561 21.44 0.710 21.67 0.838 20.53 0.636

It is worth noticing that our model substantially outper-
forms the Res2Net+RCAN model only on O-HAZE and
NTIRE2023. We argue the reason behind is that due to
the huge increase of image resolution on O-HAZE and NH-
HAZE23 datasets. For example, the number of pixels in
NH-HAZE23 data is 6.25 times larger than that of the com-
bination of NH-HAZE20 and NH-HAZE21 datasets. Since
our transformer-based model contains more learnable pa-
rameters, a larger training dataset can essentially alleviate
the overfitting problem. This phenomenon further indicates
that when it comes to a limited data setting, it is more criti-
cal to investigate in a data-centric manner other than simply

improving the model’s capacity.

5. Conclusion
In this paper, we propose a method targeting on non-

homogeneous dehazing. It consists of a data-preprocessing
strategy inspired by data-centric AI and a Transformer
based two-branch model structure. Combining them to-
gether, we construct a solution that outperforms the SOTA
methods, which stimulates our advocation on treating the
model and the data equally important. Additionally, exten-
sive experimental results provide strong support to the ef-
fectiveness of our method.
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