
This is a repository copy of TEVoT: Timing error modeling of functional units under 
dynamic voltage and temperature variations.

White Rose Research Online URL for this paper:
https://eprints.whiterose.ac.uk/158883/

Version: Accepted Version

Proceedings Paper:
Jiao, Xun, Ma, Dongning, Chang, Wanli orcid.org/0000-0002-4053-8898 et al. (1 more 
author) (Accepted: 2020) TEVoT: Timing error modeling of functional units under dynamic 
voltage and temperature variations. In: Design Automation Conference (DAC). (In Press) 

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse 
Items deposited in White Rose Research Online are protected by copyright, with all rights reserved unless 
indicated otherwise. They may be downloaded and/or printed for private study, or other acts as permitted by 
national copyright laws. The publisher or other rights holders may allow further reproduction and re-use of 
the full text version. This is indicated by the licence information on the White Rose Research Online record 
for the item. 

Takedown 
If you consider content in White Rose Research Online to be in breach of UK law, please notify us by 
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request. 



TEVoT: Timing Error Modeling of Functional Units

under Dynamic Voltage and Temperature Variations

Xun Jiao‡, Dongning Ma‡, Wanli Chang§, Yu Jiang∗

‡Villanova University, §University of York, ∗Tsinghua University

{xjiao, dma2}@villanova.edu, wanli.chang@york.ac.uk, jiangyu198964@126.com

Abstract—With the continuous scaling of CMOS technology,
microelectronic circuits are increasingly susceptible to micro-
electronic variations such as variations in operating conditions.
Such variations can cause delay uncertainty in microelectronic
circuits, leading to timing errors. Circuit designers typically
combat these errors using conservative guardbands in the circuit
and architectural design, which can, however, cause significant
loss of operational efficiency. In this paper, we propose TEVoT,
a supervised learning model that can predict the timing errors
of functional units (FUs) under different operating conditions,
clock speeds, and input workload. We perform dynamic timing
analysis to characterize the delay variations of FUs under
different conditions, based on which we collect training data.
We then extract useful features from training data and apply
supervised learning methods to establish TEVoT. Across 100
different operating conditions, 4 widely-used FUs, 3 clocking
speeds, and 3 datasets, TEVoT achieves an average prediction
accuracy at 98.25% and is 100X faster than gate-level simulation.
We further use TEVoT to estimate application output quality
under different operating conditions by exposing circuit-level
timing errors to application level. TEVoT achieves an average
estimation accuracy at 97% for two image processing applications
across 100 operating conditions.

I. INTRODUCTION

As the transistor size scales down to deep nanometer era,

microelectronic circuits are increasingly susceptible to micro-

electronic variability [10]. Generally speaking, microelectronic

variability arises from various sources such as operating condi-

tions, manufacturing, or aging [10]. Due to the burgeoning use

of microelectronic devices in mobile and wireless applications,

the threat from variations in operating conditions, which is

typically caused by supply voltage droops and temperature

fluctuations, is continuing increasing. The most immediate

manifestation of such variations is the delay uncertainty which

can prevent circuits from meeting their timing specification,

resulting in timing errors. Without proper protection, such

timing errors can pose great threats to the reliability of digital

systems. Currently, circuit designers typically combat timing

errors by adding safety margins to the voltage and/or the clock

frequency, known as guardbands. This practice leads to overly

conservative design as the margins often exceed 40% of the

nominal target specifications [11].

To avoid such pessimistic design while also protecting cir-

cuits from timing errors, designers must understand and model

the timing effects of dynamic variations. Many models are pro-

posed to predict timing errors of arithmetic instructions [16],

[18], [4] or functional units (FUs) [22], [17], [21], [8]. For

example, instruction-level models [16], [18], [4] predict timing

errors based on instruction types. B-hive [22] and HFG [17]

both use machine learning methods to predict timing errors of

FUs under dynamic variations. Recently, to enable aggressive

energy saving via voltage scaling, the research community

embraces approximate computing by allowing errors only in

computation units that can tolerate them [21], [8], [19]. This

requires an accurate error models to explore the effects of

timing errors at the application level. Existing error models

include single bit flip [21], bit flip with uniform probability [8],

and last value [19].

Unfortunately, despite significant prior efforts, variation-

induced timing errors still cannot be accurately modeled and,

subsequently, exposed to the application level for a holistic

evaluation. This is due largely to a lack of consideration of

workload variation that can completely change the manifesta-

tion of dynamic variation in timing errors. Specifically, while

variations in operating conditions can change the delay of

(critical) paths and hence the static delay of a circuit, this

delay is not the “real” circuit delay at a certain time. The “real”

(dynamic) circuit delay is the delay of the sensitized longest

path, and path sensitization behavior is actually determined by

circuit workload (Sec. III). To capture such dynamic delay in

predicting timing errors, we propose an error model by jointly

considering workload variations and variations in operating

conditions. Specifically, our contributions are as follows:

• We perform dynamic timing analysis (DTA) to char-

acterize circuit dynamic delay under a wide range of

workload and operating conditions, based on which we

collect training data. The DTA is based on extensive gate-

level simulations with timing information extracted from

a standard ASIC flow that considers physical details of

post-layout designs in TSMC 45nm.

• We extract useful features from training data and apply

supervised learning methods to build TEVoT that can pre-

dict timing errors of functional units (FUs) under different

clock speeds, input workload, voltage, and temperature

conditions. To the best of our knowledge, TEVoT is the

first error model that can jointly consider the workload

variations and variations in operating conditions.

• We expose circuit-level errors to application level for a

holistic evaluation, based on which TEVoT can estimate

application quality under different operating conditions.

• We evaluate TEVoT across 100 different operating con-

ditions, 4 widely-used FUs, 3 clocking speeds, and 3

datasets. Results show that TEVoT achieves an average



x
y

1ns

0.5ns

1ns

0

0

CLK

0

1

0 0

(a) Initial state

x
y

1ns

0.5ns

1ns

0->1

0

CLK

0->1

1

0->1 0->1

(b) First input changes (delay = 2ns)

x
y

1ns

0.5ns

1ns

1

0->1

CLK

1

1->0

1->0 1->0

(c) Second input changes (delay = 1.5ns)

Fig. 1. Different delay under different input

prediction accuracy of 98.25% in predicting timing errors,

and an average prediction accuracy of 97% in estimating

application quality.

II. RELATED WORK

To combat microelectronic variability, researchers proposed

better-than-worst-case (BTWC) design methods [7] to enable

guardband reduction, which, however, can induce considerable

hardware overheads and performance penalty due to error

detection and correction.

A less-intrusive way to combat variability is to model the

timing errors in advance and then adaptively change the clock

speed to improve efficiency. Various models are proposed to

predict timing errors of arithmetic instructions [16], [18], [4]

or functional units (FUs) [22], [17], [21], [8]. Instruction-

level models predict timing errors based on the maximum

delay of each instruction measured during simulation [16],

[18], [4]. This method considers only instruction type to

discriminate between instructions. Going down to the circuit

level, B-Hive [22] divides timing errors into five categories

and classifies them using decision trees; HFG [17] uses linear

discriminant analysis to predict variability-induced errors of

functional units. MACACO [24] uses Monte-Carlo simulation

to model timing errors of voltage-scaled adders and multipli-

ers. VARIUS [20] uses probabilistic analysis to model timing

errors of microarchitectural blocks. Error models of voltage-

scaled FUs are also intensively used in approximate computing

research to assess the application-level effects. For example,

single bit flip model flips one randomly chosen bit [21]; bit flip

with uniform probability model flips different bits uniformly

with a per-FU error probability [8], [13]. However, none of

these works considers the impact of workload variations in

predicting timing errors.

Main Difference: Our analysis and results indicate that input

workload can completely change the manifestation of vari-

ability effects in timing errors. Thus, TEVoT is different than

all the previous work as it jointly considers the workload

variations and variations in operating conditions. Instead of

statistical analysis, TEVoT can deterministically classify each

circuit output as one of two classes: {timing correct, timing

erroneous}, for a given input workload, clock speed, voltage,

and temperature condition.

III. PROBLEM FORMULATION

Timing error(s) of a given FU is a function fe of clock

speed, input workload, and operating condition as shown in

Eq. 1. (We focus on dynamic variations here and but the

same principle can be used to incorporate process and aging

variations).

O = fe(V, T, tclk, I) (1)

where V, T represent respective voltage and temperature con-

dition, tclk is the clock period, I is the input workload to

the circuit, and O is the output class of an output value,

O ∈ {timing correct, timing erroneous}. Thus, a straightfor-

ward way of predicting timing errors is to learn the function

of fe directly. However, such direct prediction of timing errors

lacks flexibility because once the circuit changes clock speed,

the model needs to perform another inference.

Thus, we propose to predict circuit delay instead of pre-

dicting timing errors directly. This is because timing errors

only occur when the clock period does not meet the circuit

delay [3]. Circuits have two types of delays: static delay and

dynamic delay. Static delay refers to the delay of the critical

path in the circuit, which can be affected by variations of

operating conditions. This delay, however, is not useful in our

prediction because the critical path may not get sensitized.

Actually, critical path is rarely sensitized by real-world work-

load [4]. In order to predict timing errors, we need to compare

circuit clock period with the sensitized dynamic delay. The

dynamic delay is the delay of the sensitized longest path in

the circuit, which is determined by the input workload. For

example, as illustrated in Fig. 1, the dynamic delay in Fig. 1

(b) is 2ns while the delay in Fig. 1 (c) is 1.5ns. Thus, we

represent the dynamic delay as a function fd of input workload

and operating conditions, as shown in Eq. 2.

D = fd(V, T, I) (2)

Once a delay is predicted, such delay can be reused to predict

timing errors across different clock speeds. With this formu-

lation, TEVoT can provide more flexibility and scalability.

Our goal is to learn (an approximation of) fd given a set

of inputs and operating conditions without any knowledge of

the circuit structure. However, the potential input space of

workload is huge. For a circuit with two 32-bit inputs, the

potential input space is 264. Therefore, we propose to evaluate

a set of supervised learning methods to classify the inputs.

IV. TEVOT MODEL

TEVoT is comprised of three phases as shown in Fig. 2:

Dynamic Timing Analysis, Model Training and Model Evalu-

ation. a) The Dynamic Timing Analysis phase implements the

standard ASIC flow and uses gate-level simulation to generate

dynamic delay under different input workload and operating

conditions. b) In the Model Training phase, we extract useful

features from training data and apply supervised learning



VHDL/Verilog

of Circuits

Logic

Synthesis

Place & Route

Static Timing

Analysis

(Voltage,

Temp)

Standard
Delay

Format
(SDF files)

Gate-level

Simulation

Training

Data

Value
Change
Dump

(VCD files)

Delay Matrix

Feature

Generation

ML Training

Feature

Matrix

TEVoT

Dynamic Timing Analysis Model Training

TEVoT
Gate-level

Simulation

Testing Data

Accuracy

Evaluation

Model Evaluation

Fig. 2. The construction and evaluation of TEVoT.

methods to train TEVoT. c) In the Model Evaluation phase,

TEVoT predicts timing errors for a given condition, which are

compared with the simulation-based ground truth to evaluate

prediction accuracy. More details about the three phases are

illustrated as follows.

A. Dynamic Timing Analysis

The purpose of Dynamic Timing Analysis (DTA) phase

is to generate dynamic delay under different workload and

operating conditions. We focus on four FUs, 32-bit integer

adder (INT ADD) and multiplier (INT MUL), and 32-bit

floating point adder (FP ADD) and multiplier (FP MUL).

These four most-widely used FUs are basic computation

blocks for applications such as image-processing and deep

learning applications and have been main modeling targets

of similar works [22], [17]. The floating point units (FPUs)

are compatible with IEEE-754 standard, and can provide

more complex circuit structures compared to their integer

counterparts.

We perform logic synthesis and place&route to generate

gate-level netlists. Then, we perform static timing analysis

(STA) to generate standard delay format (SDF) files under

different operating conditions. To inject the dynamic varia-

tions, i.e., different voltage and temperature conditions, we

use voltage-temperature scaling features of EDA tools to

enable the composite current source method for modeling cell

behavior. Thus, we generate an SDF file for each voltage-

temperature (V, T ) pair. We use 20 different voltage points

and 5 different temperature points as shown in Table I (in

total 100 different (V, T ) pairs).
TABLE I

OPERATING CONDITION PARAMETERS.

Start Point End Point Step of Points

Voltage 0.81V 1.00V 0.01V 20

Temperature 0◦ 100◦ 25◦ 5

Clock Speedups 5% 15% 5% 3

We then feed SDF files to gate-level simulation to perform

back-annotation simulation. Since the main purpose of gate-

level simulation is to generate the value change dump (VCD)

file for DTA, we perform simulation with a relatively slow

clock period to make sure there are no timing errors. VCD

files contain the switching activity of interested circuit nodes,

e.g., output bits, in the circuit. With such detailed switching

activities, we then compute the dynamic delay at each cycle.

To get a dynamic delay at some cycle N , we use the time of

the very last toggled event at the input pins of all sequential

elements t′ to subtract the arrival time of the positive clock

edge t. For example, t′ could be the time of the last toggled

output bit. That is, the dynamic delay at this cycle is t′ − t.

We develop a Python script that can automatically parse VCD

files to extract dynamic delay at each cycle.

B. Model Training

1) Feature Generation: The purpose of Feature Generation

is to extract “useful variability feature” from raw training data.

The training input workload comes from two sources: random

data and application data profiled from real world applications.

To cover a wide range of input space, we use the homogeneous

distribution of two operands over 2D input space [22].

As presented in Eq. 2, dynamic delay is a function of op-

erating conditions V, T and workload I . Operating conditions

are typically at limited discrete levels such as shown in Table I,

hence it is possible to train the model using all operating

conditions. However, the potential input space of the workload

is huge. For a circuit with two 32-bit inputs, the potential input

space is 264. It is not feasible to apply all 264 input patterns

for training. Therefore, the key accomplishment of TEVoT is

to predict timing errors under unseen input data by learning

the path sensitization behavior under unseen input data.

We convert all input data to bit-level vectors since circuits

receive binary input; since each bit affects path sensitization,

each bit value is an individual feature. Next, we need to

determine if we need to incorporate history inputs. To do this,

we perform a path sensitization analysis. According to [2],

a sensitized path would have all of its nodes toggled. For

a node to be toggled, the current signal value at the node

needs to be different than the previous one. Thus, for a

combinational circuit as shown in Fig. 1, both the previous

and current input have impact on the path sensitization. For

example, when the second input changes, whether the value

of a node toggled depends on its current state, which is set

by previous input. Thus, the previous input sets the state and

current input toggles the circuit nodes based on current state.

Thus, we include current input x[t] (concatenation of multiple



inputs), and history input x[t − 1] as our feature. We verify

this conclusion by performing simulation with 100K cycles.

For every 20 cycles, if we randomly vary the preceding input

x[t−1] while fixing current input x[t], D[t] varies irregularly;

if we fix both x[t− 1] and x[t], D[t] is also fixed.

Therefore, our variability feature is {V, T, x[t], x[t − 1]}
and output label is D[t], which can then be used to predict

timing errors across different clock periods. After Feature

Generation, we can generate the following feature matrix I

and delay matrix D, where x[t] ∈ {0, 1}K , and V and T are

real numbers. For 32-bit circuit, K = 64 because x[t] and

x[t− 1] each has 64 bits. This makes a feature dimension of

130 and the possible input feature space is more than 2130.

I =











x[t] x[t− 1] V 1 T 1

x[t+ 1] x[t] V 2 T 2

...
...

...
...

x[t+N ] x[t+N − 1] V N TN











D =











D[t]
D[t+ 1]

...

D[t+N ]











(3)

2) ML Training: While specific classes of circuits show

certain positive learnability results [14], they do not cover the

circuits we consider here. In contrast, we focus on learning

when a circuit does not work as desired, i.e., the circuit

contains timing errors. Capturing the timing errors requires

learning the dynamic path sensitization by specific input

workload. Thus, we evaluate several widely-used supervised

learning classification methods: k-nearest neighbor (k-NN),

support vector machine (SVM), linear regression (LR), and

random forest (RF) for their increased sophistication and

practical use.

k-NN provides useful theoretical properties [5] and has

limited parameters to train. k-NN predicts the target by local

interpolation of the targets associated of the K nearest neigh-

bors in the training set. LR and SVM can learn weights w on

each feature including each bit position. By using these two

methods, we consider the disparity of significance of different

bit positions in sensitizing paths. RF is an ensemble learning

method that constructs multiple decision trees and uses major-

ity votes to improve accuracy and prevent overfitting. Decision

trees are a non-parametric supervised learning method that

aims to establish a set of decision rules from training data.

This method emphasizes the disparity of different features as

well as considering the interaction between different features.

Table.II presents the prediction accuracy, training and test-

ing time of four methods using 200K training data and 200K

test data under a computer configuration of 2-core Intel(R)

Xeon(R) CPU E5504@2.00GHz and 50GB memory. Based

on the results, we choose RF due to its high accuracy, fast

computing time and superior interpretability. Actually, RF fits

our task scenario better than other methods because it can

interpret the significance disparity between different features

(compared with KNN) and it considers the interactions among

different bits/features (compared with SVM and LR). Since the

training process is a one-shot offline activity, the testing time is

more important for users. We will open-source the pre-trained

models for research community.

TABLE II
PREDICTION ACCURACY, TRAINING AND TESTING TIME.

method Accuracy Training Time Testing Time

LR 82.3% 6.84s 2.24s
KNN 81.7% 127s 3548s
SVM 92.2% 15653s 9879s
RFC 98.3% 142s 3.5s

C. Model Evaluation

For a given input I , voltage V , temperature T , and clock

speed tclk, TEVoT classify the corresponding output as either

correct or erroneous. We evaluate the model performance us-

ing prediction accuracy, and compare it with baseline models.

The prediction accuracy is obtained by comparing TEVoT pre-

dicted result with simulation results:

prediction accuracy =
#matched cycles

#total cycles
(4)

where #total cycles is the number of total simulation cycles,

and #matched cycles is the number of cycles at which

predicted result matched simulation result, i.e., both results

are either Cc or Ce.

We compare TEVoT against following baseline models

which can help us evaluate the true performance of our model:

• Delay-based: this model is from [16], [4], [17] where a

timing error is predicted if the clock period does not meet

the maximum delay measured offline at each operating

condition. This model does not consider input workload

but only instruction types, V , and T .

• TER-based: this model is from [19], [8] where a timing

error is predicted with a probability based on the timing

error rate (TER) measured during offline simulation. This

model is widely-used in approximate computing.

• TEVoT-NH: this model is trained similarly with

TEVoT except it does not consider computation history,

i.e., preceding input x[t− 1], as input features.

V. EXPERIMENTAL RESULTS

A. Experimental Setup

We generate the RTL descriptions of FUs using

FloPoCo [6]. We peform logic synthesis, place&route, and

STA using Synopsysis Design Compiler, IC Compiler and

PrimeTime, respectively with TSMC 45nm technology. We

peform gate-level simulation using Mentor Graphics Model-

Sim. We use three datasets, random dataset and real-world

datasets profiled from two image processing applications from

AMD APP SDK v2.5 [1], Sobel filter and Gaussian filter. The

images are from butterfly image dataset in Caltech-101 [9].

For training, we use 200K randomly generated data and 5%

randomly-picked images as training data; for testing, we use

200K (unseen) random data and the rest images as testing

data. We profile application datasets by simulating the OpenCL

codes of these applications with customized Multi2Sim [23]

simulator, a cycle-accurate CPU-GPU heterogeneous architec-

tural simulator. We also perform error injection, i.e., inject

timing errors back to applications, using Multi2Sim to obtain

application-level quality. We use 100 operating conditions as

shown in Table I, and for each operating condition, we use



(0.
81

,0)

(0.
81

,50
)

(0.
81

,10
0)

(0.
90

,0)

(0.
90

,50
)

(0.
90

,10
0)

(1.
00

,0)

(1.
00

,50
)

(1.
00

,10
0)

Operating Condition (V, T)

200

300

400

500

600

700

800

Av
er

ag
e 

De
la

y 
(p

s)
random_data
sobel_data
gauss_data

(a) INT ADD delay

(0.
81

,0)

(0.
81

,50
)

(0.
81

,10
0)

(0.
90

,0)

(0.
90

,50
)

(0.
90

,10
0)

(1.
00

,0)

(1.
00

,50
)

(1.
00

,10
0)

Operating Condition (V, T)

200

400

600

800

1000

1200

1400

Av
er

ag
e 

De
la

y 
(p

s)

random_data
sobel_data
gauss_data

(b) INT MUL delay

(0.
81

,0)

(0.
81

,50
)

(0.
81

,10
0)

(0.
90

,0)

(0.
90

,50
)

(0.
90

,10
0)

(1.
00

,0)

(1.
00

,50
)

(1.
00

,10
0)

Operating Condition (V, T)

500

600

700

800

900

1000

1100

1200

Av
er

ag
e 

De
la

y 
(p

s)

random_data
sobel_data
gauss_data

(c) FP ADD delay

(0.
81

,0)

(0.
81

,50
)

(0.
81

,10
0)

(0.
90

,0)

(0.
90

,50
)

(0.
90

,10
0)

(1.
00

,0)

(1.
00

,50
)

(1.
00

,10
0)

Operating Condition (V, T)

500

600

700

800

900

1000

1100

1200

1300

Av
er

ag
e 

De
la

y 
(p

s)

random_data
sobel_data
gauss_data

(d) FP MUL delay

Fig. 3. Average delay under different datasets and operating conditions

TABLE III
AVERAGE TIMING ERROR PREDICTION ACCURACY OF TEVOT ACROSS 100 OPERATING CONDITIONS AND 3 CLOCK SPEEDS.

FU
random data sobel data gauss data

TEVoT Delay-based TER-based TEVoT-NH TEVoT Delay-based TER-based TEVoT-NH TEVoT Delay-based TER-based TEVoT-NH

INT ADD 99.9% 0.02% 96.5% 91.9% 99.2% 0.77% 82.0% 86.7% 99.7% 0.01% 65.7% 82.5%
FP ADD 98.6% 7.6% 87.1% 89.9% 98.2% 16.3% 80.2% 83.4% 98.6% 3.2% 78.1% 91.5%

INT MUL 97.1% 21.1% 73.7% 83.7% 99.2% 0.39% 17.7% 31.4% 99.5% 6.2% 79.8% 69.7%
FP MUL 97.0% 10.2% 84.9% 87.5% 95.4% 9.4% 73.1% 80.1% 96.7% 11.4% 82.1% 85.4%

three clock speedups (5%, 10%, and 15%) from its fastest

error-free clock frequency (so that the output has timing

errors). We adopt machine learning methods from Scikit-

learn [15] with default hyperparameter (e.g., 10 trees, all

features considered during split for RF).

B. Delay Variations

We first characterize the dynamic delay variations under

different operating conditions and datasets. Specifically, for

each dataset and operating condition, we compute the average

dynamic delay across the entire dataset. Fig. 3 presents an

example of 9 (V, T ) pairs (V ∈ {0.81, 0.90, 1.00} and

T ∈ {0, 50, 100}) and 3 datasets, based on which we can

observe several important facts. First, the dynamic delay is

varied with different operating conditions. Specifically, as

voltage increases, the delay is reduced. However, the impact

of temperature on delay is not fixed. For example, when the

voltage is 0.81V, the increased temperature reduces delay;

when the voltage is 0.90V, the increased temperature increases

the delay. This phenomenon is known as the inverse tempera-

ture dependence [25]. Second, the delay can also be changed

dramatically by different datasets. For example, for INT ADD,

the average delay of random dataset is 30% greater than that

of application datasets. This indicates the significant impact

of input workload on dynamic delay, thus motivating our

consideration of the workload variations in delay modeling.

C. Timing Error Prediction

Table III presents TEVoT prediction accuracy against the

baseline models: Delay-based, TER-based, and TEVoT-NH.

We compute the average prediction accuracy of such models

across 100 operating conditions and 3 clock speeds as shown

in Table I. We can observe several important facts. First,

for all the datasets and FUs, TEVoT can exhibit prediction

accuracy beyond 95%. On average, TEVoT exhibits 98.25%

prediction accuracy. As a comparison, Delay-based exhibits

extremely low prediction accuracy (7.21% on average) because

of its pessimistic prediction: it always predicts timing error

when the clock period does not meet its measured maximum

delay. This means that whenever there is a clock speed up,

it predicts timing errors, ignoring the case that the input

workload may sensitize smaller delay. The TER-based model

achieves on average 75.07% accuracy. TER-based model

uses a pre-determined error probability from training data

to predict testing data, without using any information from

testing data. However, the delay/error statistics of training data

and testing data may deviate significantly. Lastly, TEVoT-

NH presents an average accuracy of 80.30%. The difference

between TEVoT and TEVoT-NH indicates the importance of

incorporating the history input workload. Further, TEVoT is

100X faster than gate-level simulation on average across

different FUs. Typically, the more complex the circuit structure

is, the slower the simulation is. But for TEVoT, because it is

based on a fixed set of decision rules, it will not scale up with

the complexity of the circuit.

D. Application Quality Estimation

TABLE IV
APPLICATION QUALITY ESTIMATION ACCURACY USING FOUR MODELS.

Application TEVoT Delay-based TER-based TEVoT-NH

Sobel 97.6% 75.7% 53.8% 58.8%
Gauss 96.5% 84.1% 64.6% 71.2%

We present a case study of using TEVoT to estimate the

application output quality under different operating conditions.

Specifically, for each output image of Sobel filter and Gaussian

filter, TEVoT can classify it into either acceptable (PSNR

≥30dB) or unacceptable. This is especially important in

approximate computing for exploring quality-energy tradeoff.

At each operating condition and clock speed, we use

gate-level simulation, TEVoT, Delay-based, TER-based, and

TEVoT-NH to derive the corresponding timing error rates

(TERs) of FUs. Then, we inject timing errors based on these

TERs to applications using Multi2Sim simulator. During the



(a) Ground truth (27dB) (b) TEVoT (25dB)

(c) TEVoT-NH (56dB) (d) TER-based (48dB)

Fig. 4. Sobel filter output based on simulation (ground truth), TEVoT,
TEVoT-NH, and TER-based models. (The noisy pixels are more visible on
electronic version or color printing). Note that we do not put Delay-based
model here because it always leads to completely corrupted output.

error injection process, we let the FUs return a random value

each time they have timing errors, similar to [12].

estimation accuracy =
#matched estimations

#total estimations
(5)

We use Eq. 5 to compute the estimation accuracy.

TEVoT presents on average 97% estimation accuracy, while

the baseline models present 79.9%, 59.1%, and 65% average

accuracy. Specifically, Delay-based would always estimate the

output quality as unacceptable because it always predicts

timing errors when there is clock speedup. This prediction may

be consistent with actual outputs. For example, Fig. 4 shows an

unacceptable output (27dB) of Sobel filter: TEVoT estimates

correctly because its output is 25dB; TER-based and TEVoT-

NH are incorrect because their estimations are acceptable.

E. Discussion

Usage: TEVoT can help circuit designers perform early

design space exploration; software developers can assess

their program resilience to hardware variations without ac-

cess/knowledge to circuit simulation.

Scope: We focus on arithmetic circuits as they often represent

timing-critical parts in a pipeline [26], [4] and they are widely-

used in approximate computing [22], [17], [19]. Our future

work will incorporate other circuit types such as memory.

Learning method: While the selection and tuning of learning

algorithm is important to achieve good accuracy, it is not the

main focus of this paper. We leave this direction open to follow

up research, e.g., applying more advanced learning algorithms.

VI. CONCLUSION

We propose TEVoT, a supervised learning model that can

predict the timing errors of functional units under variations

in operating conditions and workload. We perform extensive

dynamic delay characterization under a wide range of oper-

ating conditions and extract useful features from the input

data to predict the dynamic delay, based on which we can

predict timing errors across different clock speeds. We apply

random forest methods to train TEVoT. On average across 100

operating conditions, 3 clock speeds, 4 functional units, and 3

datasets, TEVoT can obtain an average prediction accuracy at

98.25%, significantly higher than baseline models. We further

use TEVoT to estimate the application quality for two image-

processing applications and TEVoT can estimate the quality

with an 97% accuracy. Our future work focuses on developing

error models for more variation parameters such as process

variations and apply them on other circuit types.

REFERENCES

[1] Amd app sdk v2.5. [online]. available: http://www.amd.com/stream.
[2] Michael Bushnell et al. Essentials of electronic testing for digital,

memory and mixed-signal VLSI circuits. Springer Science & Business
Media, 2004.

[3] Hari Cherupalli et al. Graph-based dynamic analysis: Efficient char-
acterization of dynamic timing and activity distributions. In ICCAD,
2015.

[4] Jeremy Constantin et al. Exploiting dynamic timing margins in mi-
croprocessors for frequency-over-scaling with instruction-based clock
adjustment. In DATE, 2015.

[5] Thomas M Cover and Peter E Hart. Nearest neighbor pattern classifi-
cation. IEEE Transactions on Information Theory, 13(1):21–27, 1967.

[6] Florent De Dinechin et al. Designing custom arithmetic data paths with
flopoco. IEEE Design & Test of Computers, 2011.

[7] Dan Ernst et al. Razor: A low-power pipeline based on circuit-level
timing speculation. In MICRO, 2003.

[8] Hadi Esmaeilzadeh et al. Architecture support for disciplined approxi-
mate programming. ASPLOS, 2012.

[9] Li Fei-Fei et al. Learning generative visual models from few training
examples: An incremental bayesian approach tested on 101 object
categories. Computer vision and Image understanding, 2007.

[10] Puneet Gupta et al. Underdesigned and opportunistic computing in
presence of hardware variability. TCAD, 2012.

[11] Rajesh K Gupta et al. Variability expeditions: A retrospective. IEEE

Design & Test, 2019.
[12] Xun Jiao et al. An assessment of vulnerability of hardware neural

networks to dynamic voltage and temperature variations. In ICCAD,
2017.

[13] Evgeni Krimer et al. Lane decoupling for improving the timing-error
resiliency of wide-simd architectures. ISCA, 2012.

[14] Nathan Linial et al. Constant depth circuits, fourier transform, and
learnability. Journal of the ACM (JACM), 1993.

[15] Fabian Pedregosa et al. Scikit-learn: Machine learning in python.
Journal of machine learning research, 2011.

[16] Abbas Rahimi et al. Analysis of instruction-level vulnerability to
dynamic voltage and temperature variations. In DATE, 2012.

[17] Abbas Rahimi et al. Hierarchically focused guardbanding: an adaptive
approach to mitigate pvt variations and aging. In DATE. IEEE, 2013.

[18] Abbas Rahimi et al. Application-adaptive guardbanding to mitigate static
and dynamic variability. Computers, IEEE Transactions on, 2014.

[19] Adrian Sampson et al. Enerj: Approximate data types for safe and
general low-power computation. In PLDI, 2011.

[20] Smruti R Sarangi et al. Varius: A model of process variation and
resulting timing errors for microarchitects. IEEE Transactions on

Semiconductor Manufacturing, 2008.
[21] John Sartori et al. Stochastic computing: embracing errors in architec-

tureand design of processors and applications. In CASES, 2011.
[22] G Tziantzioulis et al. b-hive: A bit-level history-based error model with

value correlation for voltage-scaled integer and floating point units. In
DAC, 2015.

[23] Rafael Ubal et al. Multi2Sim: A Simulation Framework for CPU-GPU
Computing . In PACT, 2012.

[24] Rangharajan Venkatesan et al. Macaco: Modeling and analysis of circuits
for approximate computing. In ICCAD, 2011.

[25] Sean H Wu et al. How does inverse temperature dependence affect
timing sign-off. In Emerging Technologies and Circuits. Springer, 2010.

[26] Jing Xin et al. Identifying and predicting timing-critical instructions to
boost timing speculation. In MICRO, 2011.


