
Evolutionary Optimization in Code-Based Test Compression

Ilia Polian Alejandro Czutro Bernd Becker
Albert-Ludwigs-University
Georges-Köhler-Allee 51

79110 Freiburg i. Br., Germany
{polian|aczutro|becker}@informatik.uni-freiburg.de

Abstract

We provide a general formulation for the code-based test
compression problem with fixed-length input blocks and pro-
pose a solution approach based on Evolutionary Algorithms.
In contrast to existing code-based methods, we allow unspec-
ified values in matching vectors, which allows encoding of
arbitrary test sets using a relatively small number of code-
words. Experimental results for both stuck-at and path delay
fault test sets for ISCAS circuits demonstrate an improvement
compared to existing techniques.

Keywords: Test compression, code-based compression,
evolutionary algorithms

1 Introduction

Test data compression becomes increasingly popular for dis-
tributing test complexity between automatic test equipment
and on-chip structures. By transferring compressed infor-
mation from the tester and decompressing it on-chip, the re-
quirements on IC’s pin throughput can be significantly re-
duced while on-chip hardware cost is kept in check. Most
test compression techniques proposed so far are based either
on codes or on reseeding.

Code-based approaches assign a codeword C(v) to a se-
quence of test data v (an input block). For instance, v could
be 10011101, and C(v) could be 110. Then, if 110 is trans-
mitted from the tester, an on-chip decoder would generate
the sequence 10011101 and apply it to the circuit under test.
Schemes based on run-length codes [1], selective Huffman
codes [2], Golomb codes [3], frequency directed codes [4],
VIHC codes [5], LZ77 [6], mutation codes [7], packet-based
codes [8] and non-linear combinational codes [9] have been
proposed.

Reseeding is a technique that is applied to a pseudo-
random pattern generator in order to omit those parts of its
sequence that are not needed for testing. If the control in-
formation (on which patterns to omit) is fed by the tester,
reseeding becomes a test compression method. Pseudo-
random pattern generators used in reseeding architectures

so far include LFSRs [10, 11], multiple-polynomial LFSRs
[12, 13], twisted-ring counters [14] and folding counters
[15].

Further test compression techniques include Embedded
Deterministic Test [16], which is based on a ring generator
unfolding low-bandwidth test data from the tester and feed-
ing them into the scan chains of the circuit under test. It has
been proposed to use a reconfigurable switch [17] or a re-
configurable interconnection network [18] for this purpose.
A test compression architecture based on reconfiguring some
of the scan flip flops into pseudo-random pattern generators
is presented in [19].

In general, reseeding-based solutions embed test vectors
into a pseudo-random sequence, which makes them attrac-
tive for testing combinational circuits. However, their ap-
plicability to sequential (non-scan), delay or functional test
sets is limited. Embedded deterministic test is also designed
for full scan-based circuits. In contrast, code-based compres-
sion techniques precisely reproduce the original encoded test
set (possibly specifying the don’t-care bits); they do not re-
order the test set or add new vectors to it. Hence, code-based
methods have applications for which they are inherently bet-
ter suited than other compression techniques, irrespective of
the achieved compression rates.

Recently, Tehranipour et al. [20] have proposed a fixed-
length input block compression technique based on exactly
nine codes (9C compression). The codes are defined with
respect to an even number K which is the length of an in-
put block. For instance, let K be 6. Then, the test set is
partitioned into 6-bit long pieces, i.e. input blocks. Every
input block is mapped to one of the following nine match-
ing vectors (MVs): v(1) = 000 000; v(2) = 111 111;
v(3) = 000 111; v(4) = 111 000; v(5) = 111 UUU ;
v(6) = UUU 111; v(7) = 000 UUU ; v(8) = UUU 000;
v(9) = UUU UUU . Every vector v(i) is assigned a code-
word C(v(i)). For example, if 111000 appears in the test
sequence, it will be encoded by C(v(4)).

The symbol U denotes an unspecified value. For instance,
111100 and 111011 both match v(5) (as do other 6 input
blocks). In order to distinguish between these 8 possible
input blocks, the fill values for the U positions are spec-

Proceedings of the Design, Automation and Test in Europe Conference and Exhibition (DATE’05)
1530-1591/05 $ 20.00 IEEE

ified explicitly after the codeword. Thus, the input block
111100 will be coded as C(v(5))100, and 111011 will be
coded as C(v(5))011. It is possible to represent 111000 both
as C(v(4)) and as C(v(5))000, although the first code will
probably be shorter. It is also possible to encode 111000 as
C(v(8))111 or as C(v(9))111000. Note that any arbitrary in-
put block can be encoded using v(9). However, the number
of Us in an MV corresponds to the number of fill values that
have to be applied after the codeword for that vector; hence,
it is better to use MVs with as few U values as possible.

In this paper, we generalize the use of the unspecified
value U in fixed-length input block code-based test com-
pression. We allow MVs with 1, 0 and U values on ar-
bitrary positions instead of the fixed MV set v(1), . . . , v(9)

used in 9C compression. We also do not require the num-
ber of MVs (and thus codewords) to be 9. So, if the only
input blocks starting with 111 are 111100 and 111110, we
can use 1111U0 instead of 111UUU , saving two fill values
for each such code. Furthermore, if the test set string in-
cludes many input blocks 110100 and 110000, an efficient
set of MVs should contain the matching vector 110U00 (in
9C compression, MVs UUUUUU and UUU000 would be
required, respectively). In general, our technique is advanta-
geous when there are input blocks that “almost” match.

Given a test set (that can contain don’t-care values), we
are looking for a number L of MVs of length K that en-
sure best compression. K and L are inputs of the algorithm.
Since any of the test vectors can have a 0, a 1 or a U on any of
its K positions, the space of all possible alternatives is huge.
Hence, we employ Evolutionary Algorithms (EAs) [21, 22]
for optimization. EAs have been employed in many areas of
VLSI CAD and design automation [23, 24], including test
pattern generation [25, 26] and BIST configuration [27, 28],
but not in test compression. We assign codewords to the de-
termined MVs using Huffman coding [29]. Experimental
results for ISCAS circuits show a substantial improvement
compared to 9C compression.

The remainder of the paper is organized as follows: the
next section formally defines the fixed-length input block
compression with unspecified values. The compression
method, including EA-based calculation of matching vec-
tors, is discussed in Section 3. Experimental results are re-
ported in Section 4. Section 5 concludes the paper.

2 Problem Formulation
Suppose that the circuit has n inputs and the number of
test patterns is T . Let tp(i) denote the ith test pattern, and
let tp

(i)
j denote the jth bit position of the ith test pattern

(tp
(i)
j ∈ {0, 1, X}; 1 ≤ i ≤ T ; 1 ≤ j ≤ n). Note

that X denotes a don’t-care value that can be set to 0 or
1 without violating the fault coverage targets. The over-
all number of bit positions in a test set is T · n. We con-

sider the complete test set as one large string of information
t1t2 . . . tT ·n := tp

(1)
1 tp

(1)
2 . . . tp

(2)
1 . . . tp

(T)
1 . . . tp

(T)
n . Our

target is to efficiently encode this string of information.
Let K be a positive integer number. (Note that in contrast

to 9C compression it is not required to be odd.) The test set
string t1 . . . tTn is partitioned into fixed-length input blocks
of length K, as formalized in the next definition. K should
be a divisor of the length Tn of the test set string; if that is
not the case , the test set string is filled up by adding (K ·
�Tn/K� − Tn) X values in the end.
Definition: An input block is a subsequence
t(j−1)K+1t(j−1)K+2 . . . tjK of the test set string t1 . . . tTn

(which has the length K), where 1 ≤ j ≤ Tn/K (remember
that K is a divisor of Tn). The kth input block is denoted as
ib(k) ∈ {0, 1, X}K . �

The fixed-length input block encoding is based on match-
ing vectors to which the input blocks are mapped if they
match.
Definition: A matching vector (MV) v consists of K bit
positions v1v2 . . . vK , where vj ∈ {0, 1, U}, 1 ≤ j ≤ K
(where U stands for “unspecified”). An MV v matches an
input block ib if there is no bit position j for which either
ibj = 1 and vj = 0 or ibj = 0 and vj = 1. (I.e. 1 matches
with 1, 0 matches with 0, and X and U match with arbitrary
values). �

Let L be the number of MVs, and let the set of MVs be
v(1), v(2), . . . , v(L). Note that as the MVs can contain the U
value, different MVs can match the same input block.

Every MV v(i) is assigned a codeword C(v(i)) ∈ {0, 1}∗.
We allow the codewords to have different length, but we re-
quire the whole code {C(v(1)), C(v(2)), . . . , C(v(L))} to be
a prefix code, i.e. no codeword is identical to a beginning of
a different codeword. An input block that matches an MV is
encoded by the codeword of that MV followed by the values
in the input block corresponding to unspecified values (Us)
in the MV:
Definition: Let a matching vector v have NU (v) unspec-
ified values U at the positions u1, . . . , uNU (v) (i.e. vu1

=
· · · = vuNU (v)

= U), 0 ≤ NU (v) ≤ K. Let an input block
ib be matched by v. The encoding C(ib, v) of ib by v is given
by C(v)ibu1

ibu2
. . . ibuNU (v)

. The length of the encoding
|C(ib, v)| is the sum of the length of C(v) and the number
NU (v) of the unspecified values in v. Note that |C(ib, v)| is
independent from ib. �

Our goal is to efficiently encode a test set string
t1t2 . . . tTn (which aggregates the whole test set) divided
into Tn/K input blocks. We formulate the following sub-
problems:
Problem Formulation Given the test set (i.e. the se-
quence of input blocks ib1, ib2, . . . , ibTn/K), the size K and
the number of MVs L, determine:

1. L MVs v(1), v(2), . . . , v(L), where v(i) ∈ {0, 1, U}K ,
1 ≤ i ≤ L, and

Proceedings of the Design, Automation and Test in Europe Conference and Exhibition (DATE’05)
1530-1591/05 $ 20.00 IEEE

2. a prefix code {C(v(1)), . . . , C(v(L))},

such that the sum of the encoding lengths of the input blocks
is minimal. �

Note that the problem solved by Tehranipour et al. [20] is
a special case of our generic formulation: they use L = 9,
a fixed set of MVs (specified in the introduction) and also a
fixed encoding for the MVs.

3 Solution Approach

We solve the problem formulated above by iteratively ap-
plying the following process to the sequence of input blocks
corresponding to the test set:

1. Determine L matching vectors (MVs).

2. (Covering) Assign an MV to each input block; calcu-
late the frequency-of-use for each MV.

3. (Encoding) Encode the input blocks using the collected
frequency-of-use data.

Suppose that the L MVs are fixed. Covering is done by
selecting an input block and identifying an MV that matches
it. If multiple MVs match an input block, we select the one
with the lowest number of Us, as the encoding is more com-
pact for such MVs (Note that it is possible that none of the L
MVs matches the input block; in this case, encoding is im-
possible with this set of L MVs. This can be ruled out by
setting all positions of one of the MVs to U .) Encoding is
done using Huffman’s algorithm.

The solution space for determining L MVs of dimension
K (i.e. the number of different sets of L K-dimensional vec-
tors over {0, 1, U}) is 3KL (or 3KL/(L!), observing that the
ordering of the test vectors is irrelevant), which is a huge
number even for relatively small values of K and L. Hence,
we apply an evolutionary algorithm for this sub-problem.
Details are reported in the sections below.

3.1 Matching vector determination

We employ Evolutionary Optimization [21, 22] to deter-
mine L matching vectors (MVs). We define an indi-
vidual as a set of L K-dimensional MVs, i.e. a string
v
(1)
1 v

(1)
2 . . . v

(1)
K v

(2)
1 . . . v

(L)
1 . . . v

(L)
K of length KL over the

alphabet {0, 1, U}. Figure 1 shows the pseudocode for an
Evolutionary Algorithm (EA). The algorithm starts with a
random initial population of S individuals. For each individ-
ual, its fitness is calculated by running covering and encoding
procedures (described below) and determining the reached
compression rate, which is given as 100%· (original test set
size − size of compressed data) / (original test set size).
Higher fitness corresponds to a higher encoding efficiency.
Fitness of an individual for which covering is impossible is

Generate random population (S individuals);
for each individual i ∈ population

f(i) := compression rate achieved by matching
vectors corresponding to i’s genes;

repeat {
Generate C children, using evolutionary operators;
for each child c

f(c) := compression rate achieved by matching
vectors corresponding to c’s genes;

New population := S individuals with best fitness;
}
until (termination condition fulfilled);

return individual with best fitness;

Figure 1: Evolutionary Algorithm

set to a sufficiently small number, such that it is lower than
the fitness of an individual leading to a valid solution.

C new individuals (children) are generated by applying
evolutionary operators (namely crossover, mutation and in-
version) to randomly selected individuals from the initial
population. The fitness of each of the C children is deter-
mined in the same way as for the individuals in the initial
population. From these S + C individuals, S having highest
fitness (thus leading to the highest compression) are selected
to form the new population (second generation).

The crossover operator takes two individuals (parents)
and produces two children by exchanging bit positions
(genes) of the parents. Note that for our encoding, an in-
dividual has KL genes. The resulting children have genes
of one parent in several positions and the genes of the other
parent in others. The mutation operator generates one child
from one parent by replacing one randomly selected gene of
a parent by a random value. The inversion operator produces
a child by reverting the ordering of the genes between two
random positions of a parent.

The evolutionary optimization process stops when a ter-
mination condition is satisfied. We used limits on the num-
ber of generated legal solutions and on the number of gen-
erations in which no fitness improvement was registered as
termination conditions. Then, the MV set given by the fittest
individual is returned.

3.2 Covering

Once the L matching vectors (MVs) are generated, they are
sorted in the order of increasing number of Us: NU (v(1)) ≤
NU (v(2)) ≤ · · · ≤ NU (v(L)). When matching an input
block ib, this sorted list is processed, and the first matching
MV v(i) is taken. We will comment on the implications of
this technique on the optimality of the overall algorithm in
the next section. For every MV v(i), we calculate its fre-

Proceedings of the Design, Automation and Test in Europe Conference and Exhibition (DATE’05)
1530-1591/05 $ 20.00 IEEE

quency Fi, i.e. the number of input blocks encoded by v(i).

3.3 Encoding

Given the L MVs v(1), . . . , v(L) and their frequencies
F1, . . . FL, the optimal prefix code is obtained by Huffman
coding [29]. However, the problem formulation is slightly
different here: first, an MV with a frequency of 0 can be sim-
ply left out without allocating a codeword to it. Second, due
to the existence of the unspecified values (Us) one MV may
be subsumed by another. The following example demon-
strates a situation in which the Huffman coding algorithm
leads to a suboptimal solution due to these specifics:
Example: Suppose that the MVs are v(1) = 111U with
frequency F1 = 5, v(2) = 1110 with frequency 3 and
v(3) = 0000 with frequency 2. Huffman coding yields
C(v(1)) = ′

0
′, C(v(2)) = ′

10
′ and C(v(3)) = ′

11
′. Since

v(1) contains one U value, it is encoded by |′0′|+1 = 2 bits;
v(2) and v(3) are encoded by |′10′| = 2 bits and |′11′| = 2
bits, respectively, resulting in the total size of compressed
data of 5 · 2 + 3 · 2 + 2 · 2 = 20 bits.

However, 3 input blocks that are matched by v(2) = 1110
are also matched by v(1) = 111U . If we omit v(2) altogether,
we can encode v(1) as ′

0
′ and v(3) as ′

1
′. Since v(1) now

subsumes v(2), its frequency is now 5+3 = 8. Its encoding is
still 2 bits long, while the encoding of v(3) is 1 bit long. The
total size of compressed data is 8 · 2 + 2 · 1 = 18 bits, which
is less than 20 bits calculated by the Huffman algorithm. �

The suboptimal result of the example is a consequence of
the covering algorithm from the previous section: if the three
input blocks had been covered by v(1) rather than v(2), the
Huffman algorithm would have produced the optimal result.
Handling such cases explicitly could improve the compres-
sion rate.

4 Experimental Results

We applied our method to uncompacted stuck-at test sets
with don’t-cares obtained by the method from [30] for IS-
CAS 85 and combinational parts of ISCAS 89 circuits, and
to uncompacted path delay test sets with don’t-cares for com-
binational parts of ISCAS-89 circuits generated by the tool
TIP [31, 32] (with 100% robust path delay coverage). We
used the package GAME [33] for evolutionary optimization.

Table 1 summarizes the results for stuck-at test sets.
The first two columns contain the name of the cir-
cuit and the size of the test set (note that the cir-
cuits are sorted with respect to increasing test set size).
All other columns quote the compression rate 100% ·
original test set size − size of compressed data

original test set size of various

methods. The compression is better for higher values of this
number.

Circuit Test set Compression rate
size 9C 9C+HC EA EA-Best

s349 624 23.0% 30.0% 54.2% 55.8%
s344 624 25.0% 33.0% 51.8% 55.8%
s298 629 19.0% 27.0% 45.2% 51.2%
s208 722 26.0% 32.0% 47.8% 50.4%
s400 984 29.0% 36.0% 54.4% 56.4%
s382 1008 29.0% 36.0% 52.0% 54.2%
s386 1157 0.0% 13.0% 30.4% 30.6%
s444 1176 40.0% 43.0% 54.4% 57.8%
c6288 1216 8.0% 19.0% 17.6% 20.4%
s510 1850 42.0% 45.0% 57.6% 57.6%
c432 1944 26.0% 36.0% 49.2% 50.4%
s526 1944 25.0% 29.0% 46.4% 46.4%
s1494 2324 -1.0% 11.0% 23.0% 28.9%
s420 2380 53.0% 55.0% 54.4% 56.2%
s1488 2436 2.0% 15.0% 25.6% 30.0%
s832 3404 35.0% 38.0% 43.8% 43.8%
s820 3496 31.0% 35.0% 42.8% 43.4%
c499 3854 43.0% 51.0% 45.0% 51.6%
s713 4104 51.0% 52.0% 61.4% 61.8%
s641 4212 51.0% 52.0% 60.2% 62.2%
c880 4680 40.0% 42.0% 47.8% 49.8%
c1908 4950 -2.0% 10.0% 18.4% 19.0%
s953 5220 51.0% 53.0% 61.6% 63.2%
c1355 5289 38.0% 45.0% 40.8% 44.8%
s1196 6016 34.0% 38.0% 46.2% 46.2%
s1238 6240 34.0% 37.0% 44.0% 45.8%
s1423 8463 59.0% 59.0% 61.0% 61.6%
s838 8509 67.0% 68.0% 66.2% 68.6%
c3540 10350 36.0% 39.0% 43.8% 44.2%
c2670 33086 70.0% 70.0% 70.4% 70.6%
c5315 33108 65.0% 65.0% 66.2% 67.0%
c7552 60030 63.0% 64.0% 63.2% 63.2%
s5378 71262 73.0% 73.0% 76.8% 76.8%
s9234 118560 75.0% 75.0% 76.2% 76.4%
s35932 133988 71.0% 71.0% 73.8% 73.8%
s15850 305500 80.0% 80.0% 83.0% 83.0%
s13207 410200 83.0% 83.0% 85.8% 85.9%
s38584 1250256 82.0% 82.0% 86.2% 86.2%
s38417 2068352 84.0% 84.0% 87.0% 87.9%
Average 42.6% 46.8% 54.2% 55.9%

Table 1: Experimental results for stuck-at test sets

Column ‘9C’ reports the compression rate obtained by
our reimplementation of the 9C compression method from
[20] for K = 8 (which yielded best results in that paper).
Note that our numbers do not match the figures in that paper,
as we use different test sets. Since the compression rates are
higher for the test sets that we use than the rates reported in
[20], it would be unfair to quote those results. We did not

Proceedings of the Design, Automation and Test in Europe Conference and Exhibition (DATE’05)
1530-1591/05 $ 20.00 IEEE

Circuit Test set Compression rate
size 9C 9C+HC EA1 EA2

s27 448 -5.0% 9.0% 46.2% 51.6%
s298 6018 41.0% 44.0% 48.9% 54.2%
s386 6032 8.0% 19.0% 24.7% 26.0%
s208 7524 40.0% 43.0% 43.5% 46.6%
s444 14544 49.0% 52.0% 55.6% 55.8%
s382 16272 50.0% 55.0% 58.0% 59.2%
s400 16320 50.0% 55.0% 57.1% 58.2%
s526 17088 44.0% 45.0% 59.3% 60.0%
s349 17712 41.0% 44.0% 57.0% 61.2%
s344 17712 41.0% 44.0% 57.0% 60.8%
s510 18450 45.0% 47.0% 48.9% 52.6%
s1494 20300 1.0% 15.0% 19.9% 25.0%
s1488 20664 2.0% 15.0% 20.5% 24.6%
s820 21850 34.0% 38.0% 38.2% 42.4%
s832 22448 34.0% 38.0% 38.4% 42.4%
s420 43588 58.0% 59.0% 57.9% 51.2%
s713 56376 61.0% 63.0% 64.6% 69.0%
s953 75510 57.0% 59.0% 59.4% 62.8%
s641 94500 60.0% 62.0% 62.6% 66.2%
s1196 95616 40.0% 42.0% 46.9% 46.4%
s1238 96128 39.0% 41.0% 46.3% 45.8%
s838 269808 70.0% 70.0% 69.3% 64.2%
s1423 2321592 49.0% 50.0% 51.8% 52.8%
s5378 3625588 78.0% 78.0% 77.5% 81.2%
s9234 4666324 81.0% 82.0% 80.1% 83.2%
s35932 7108416 87.0% 87.0% 86.7% 91.0%
s13207 10234000 85.0% 85.0% 85.9% 89.6%
s15850 36502362 84.0% 84.0% 82.7% 86.3%
s38584 81190512 87.0% 87.0% 67.5% 90.0%
Average 48.7% 52.1% 55.6% 58.6%

Table 2: Experimental results for path delay test sets

implement further compression methods, however [20] con-
tains comparisons with several techniques.

Matching vectors (MVs) have a fixed encoding in [20]:
’0’ for 000000; 10 for 111111; 11000 for 000111;
’11001’ for 111000; ’11010’ for 111UUU ; ’11011’
for UUU111; ’11100’ for 000UUU ; ’11101’ for
UUU000; and ’1111’ for UUUUUU (for K = 6; the
same assignment applies for other K values). We ran the
reimplemented 9C algorithm with this encoding replaced by
Huffman coding and report the results in column ‘9C+HC’.

The results of our proposed approach are given in column
‘EA’. We used L = 64 and K = 12; in the evolutionary
algorithm, we used the population size S of 10, the number
of children C of 5, the crossover probability of 30%, the
mutation probability of 30% and the inversion probability
of 10%. One of the MVs was set to all-U , such that there
were no insolvable instances. We report the average over 5
algorithm runs.

We generated data for numerous values of K and L.
While the space does not allow us to include all data, we
report our best results in the last column. Additional im-
provements could be achieved by varying the parameters of
the evolutionary algorithm, which we did not do.

Our proposed approach outperforms the original 9C al-
gorithm for all circuits except s838 (but our best result is
higher for this circuit). This could be ruled out by adding
the 9C matching vector set to the initial population (which
we did not). If 9C compression is combined with Huffman
coding, it outperforms our method with default values for 6
circuits, and it is more efficient than our best results for two
circuits (out of 39). This can be explained by the large size
of the solution space; a larger population size or a reduced
evolutionary pressure might be appropriate for such circuits.

The last line of the table quotes the average values. It
can be seen that our results are considerably better on aver-
age than those obtained by 9C compression, both with and
without Huffman coding. It can also be seen that the differ-
ence between our technique with default values and the best
compression rate is relatively small. We conclude that our
algorithm is relatively stable with respect to the parameters
K and L.

The structure of Table 2 is similar to that of Table 1. We
report the results for the proposed method for L = 9 and
K = 8 (column ‘EA1’) and L = 64 and K = 12 (column
‘EA2’). Both values are averages over 5 successful algo-
rithm runs with termination after 500 populations without
improvement. The All-U MV was included into the popula-
tion. The proposed methods yields best results for all but two
circuits (s420 and s838), and the second set of parameters re-
sults in an improvement of the compression from 48.7% for
the original 9C compression to 58.6%, on average.

5 Conclusions

We provided an Evolutionary Optimization-based solution
for test set encoding with fixed-length input blocks. For
the first time, our problem formulation allows unspecified
values (Us) at arbitrary positions of the matching vectors.
This enables the employment of compact on-chip decoders
for arbitrary test sets. No decoder re-design is required in
case of a test set modification, if an all-U matching vector is
used; however, the compression rate might suffer. A recon-
figurable decoder, into which the codeword/matching vector
information can be loaded, would solve this problem.

Experimental results show the superiority of our tech-
nique. However, further improvements are possible by fit-
ting the parameters of the Evolutionary Optimization, such
as population size and operator probabilities. Another direc-
tion for further research is the application of our method in a
multiple scan chain environment.

Proceedings of the Design, Automation and Test in Europe Conference and Exhibition (DATE’05)
1530-1591/05 $ 20.00 IEEE

Acknowledgment

We would like to thank Kohei Miyase and Seiji Kajihara for
providing the stuck-at test sets for ISCAS circuits containing
don’t-care values.

6 References
[1] A. Jas and N.A. Touba. Test vector decompression using

cyclical scan chains and its application to testing core-based
designs. In Int’l Test Conf., pages 458–464, 1998.

[2] A. Jas, J. Ghosh-Dastidar, and N.A. Touba. Scan vector com-
pression/decompression using statistical coding. In VLSI Test
Symp., pages 114–120, 1999.

[3] A. Chandra and K. Chakrabarty. Test data compression for
system-on-a-chip using golomb codes. In VLSI Test Symp.,
pages 113–120, 2000.

[4] A. Chandra and K. Chakrabarty. Frequency-directed run
length codes (FDR) codes with application to system-on-a-
chip test data compression. In VLSI Test Symp., pages 42–47,
2001.

[5] P.T. Gonciari, B. Al-Hashimi, and N. Nicolici. Improving
compression ratio, area overhead, and test application time
for system-on-a-chip test data compression/decompression.
In Design, Automation and Test in Europe, pages 604–611,
2002.

[6] F.G. Wolff and C. Papachristou. Multiscan-based test com-
pression and hardware decompression using lz77. In Int’l Test
Conf., pages 331–339, 2002.

[7] S. Reda and A. Orailoglu. Reducing test application time
through test data mutation encoding. In Design, Automation
and Test in Europe, pages 387–393, 2002.

[8] A. Khoche E.H. Volkerink and S. Mitra. Packet-based input
test data compression techniques. In Int’l Test Conf., pages
154–163, 2002.

[9] S.M. Reddy, K. Miyase, S. Kajihara, and I. Pomeranz. On
test data volume reduction for multiple scan chain designs. In
VLSI Test Symp., pages 103–108, 2002.

[10] C.V. Krishna, A. Jas, and N.A. Touba. Test vector encoding
using partial LFSR reseeding. In Int’l Test Conf., pages 885–
893, 2001.

[11] N. Zacharia, J. Rajski, and J. Tyszer. Decompression of test
data using using variable-length seed LFSRs. In VLSI Test
Symp., pages 426–433, 1995.

[12] S. Hellebrand, J. Rajski, S. Tarnick, S. Venkataraman, and
B. Courtois. Built-in test for circuits with scan based on re-
seeding of multiple-polynomial linear feedback shift register.
IEEE Trans. on Comp., 44(2):223–233, February 1995.

[13] S. Hellebrand, S. Tarnick, B. Courtois, and J. Rajski. Gen-
eration of vector patterns through reseeding of multiple-
polynomial linear feedback shift registers. In Int’l Test Conf.,
pages 120–129, 1992.

[14] K. Chakrabarty, B.T. Murray, and V. Iyengar. Built-in test pat-
tern generation for high performance circuits using twisted-
ring counters. In VLSI Test Symp., pages 22–27, 1999.

[15] S. Hellebrand, H.G. Liang, and H.J. Wunderlich. A mixed-
mode BIST scheme based on reseeding of folding counters.

Jour. of Electronic Testing: Theory and Applications, 17(3-
4):159–170, February 2001.

[16] J. Rajski, J. Tyszer, M. Kassab, and N. Mukherjee. Embedded
deterministic test. IEEE Trans. on CAD, 23(5):776–792, 5
2004.

[17] H. Tang, S.M. Reddy, and I. Pomeranz. On reducing test data
volume and test application time for multiple scan chain de-
signs. In Int’l Test Conf., pages 1079–1088, 2003.

[18] L. Li and K. Chakrabarty. Deterministic BIST based on a
reconfigurable interconnection network. In Int’l Test Conf.,
pages 460–469, 2003.

[19] C.V. Krishna and N.A. Touba. 3-stage variable length
continuous-flow scan vector decompression scheme. In VLSI
Test Symp., pages 79–86, 2004.

[20] M. Tehranipour, M. Nourani, and K. Chakrabarty. Nine-coded
compression technique with application to reduced pin-count
testing and flexible on-chip decompression. In Design, Au-
tomation and Test in Europe, pages 173–178, 2004.

[21] T. Bäck. Evolutionary Algorithms in Theory and Practice.
Oxford University Press, 1996.

[22] D.E. Goldberg. Genetic Algorithms in Search, Optimization
& Machine Learning. Addision-Wesley Publisher Company,
Inc., 1989.

[23] P. Mazumder and E. Rudnick. Genetic Algorithms for VLSI
Design, Layout and Test Automation. Prentice-Hall PTR,
1999.

[24] R. Drechsler. Evolutionary Algorithms for VLSI CAD. Kluwer
Academic Publisher, 1998.

[25] P. Girard, C. Landrault, S. Pravossoudovitch, and B. Ro-
driguez. A diagnostic atpg for delay faults based on genetic
algorithms. In Int’l Test Conf., pages 286–293, 1996.

[26] M. Keim, N. Drechsler, R. Drechsler, and B. Becker. Com-
bining GAs and Symbolic Methods for High Quality Tests of
Sequential Circuits. Journal of Electronic Testing - Theory
and Applications, 17(1):37–51, 2001.

[27] C. Ökmen, M. Keim, R. Krieger, and B. Becker. On optimiz-
ing BIST architecture by using OBDD-based approaches and
genetic algorithms. In VLSI Test Symp., pages 426–431, 1997.

[28] I. Polian, B. Becker, and S.M. Reddy. Evolutionary optimiza-
tion of Markov sources for pseudo random scan BIST. In De-
sign, Automation and Test in Europe, pages 1184–1185, 2003.
(poster).

[29] D.A. Huffman. A method for the construction of minimum-
redundancy codes. Proceedings of the I.R.E., pages 1098–
1102, 9 1952.

[30] S. Kajihara and K. Miyase. On identifying don’t care inputs
of test patterns for combinational circuits. In Int’l Conf. on
CAD, pages 364–369, 2001.

[31] M. Henftling and H. Wittmann. Bit Parallel Test Pattern Gen-
eration for Path Delay Faults. In European Design andTest
Conf., pages 521–525, Mar. 1995.

[32] P. Tafertshofer, A. Ganz, and M. Henftling. A SAT-based
implication engine for efficient ATPG, equivalence checking,
and optimization of netlists. In Int’l Conf. on CAD, pages 648
– 655, 1997.

[33] N. Göckel, R. Drechsler, and B. Becker. GAME: A software
environment for using genetic algorithms in circuit design. In
Applications of Computer Systems, pages 240–247, 1997.

Proceedings of the Design, Automation and Test in Europe Conference and Exhibition (DATE’05)
1530-1591/05 $ 20.00 IEEE

