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Abstract 

A new algorithm is presented that combines performance 
and variation objectives in a behavioural model for a 
given analogue circuit topology and process. The trade-
offs between performance and yield are analysed using a 
combination of a multi-objective evolutionary algorithm 
and Monte Carlo simulation. The results indicate a 
significant improvement in overall simulation time and 
efficiency compared to conventional simulation based 
approaches, without a corresponding drop in accuracy. 
This approach is particularly useful in the hierarchical 
design of large and complex circuits where computational 
overheads are often prohibitive. The behavioural model 
has been developed in Verilog-A and tested extensively 
with practical designs using the Spectre™ simulator. A 
benchmark OTA circuit was used to demonstrate the 
proposed algorithm and the behaviour has been verified 
with transistor level simulations of this circuit and a 
higher level filter design. This has demonstrated that an 
accurate performance and yield prediction can be 
achieved using this model, in a fraction of the time of 
conventional simulation based methods. 

1  Introduction 
Advances in silicon technology over the last decade 

have led to increased integration of analogue and digital 
functional blocks onto the same chip. In such a mixed 
signal environment, the analogue circuits must use the 
same transistors as their digital neighbours. The increasing 
complexity and accuracy of device models has led to wide 
acceptance of simulation and optimisation based design 
techniques for the design of analogue blocks rather than 
hand calculations [1-4]. With reducing transistor sizes, the 
impact of process variations on analogue design has 
become very prominent and can lead to circuit 
performance and yield falling below specification. This 
issue has led to the consideration of yield in the design 
process, known as design for yield (DFY) [5]. The use of 
hierarchical design is commonplace in the IC design world 

and involves breaking down a large system into its 
constituent building blocks. A typical hierarchical design 
is shown in Figure 1. Not only does this approach simplify 
the design task but it also speeds up the design flow by 
encouraging design reuse. Behavioural and macro 
modelling is a useful technique that involves developing 
models from simulation that relate performance to circuit 
parameters. Although the initial time investment is high, 
subsequent design flows are significantly faster [6]. 
Recently, macromodelling has been used to predict the 
parametric yield and performance of a design [7].  

In this paper, a novel approach is proposed that 
develops a combined performance and statistical variation 
behavioural model for analogue circuits. Multi-objective 
optimisation is used to capture optimal design points then 
a statistical variation analysis is performed using Monte 
Carlo simulation. A behavioural description is constructed 
to model the performance and variation of the circuit. The 
remainder of this paper is organized as follows: Section 2 
provides necessary background; the proposed algorithm is 
detailed in section 3 and example results in sections 4 and 
5. Concluding remarks are given in section 6. 

 

Figure 1.  A typical system design hierarchy. 
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2  Background 

2.1 Multi-Objective Optimisation 
The optimisation formulation for more than one 

objective function is called multi-objective optimisation 
(MOO) which can be generally stated as: 
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Where fm(x) is the set of M performance functions and 
gj(x) is the set of J constraints. The outcome from multi-
objective optimisation is a set of optimal solutions [8]. 
MOO has an objective space with the number of 
dimensions equal to the number of objectives. Figure 2 
shows the relationship between the parameter space and 
objective space where each point in the parameter space is 
a solution that corresponds to a point in the objective 
space. The black curve shown on the objective space is 
called the Pareto front and all solution points lying on this 
curve are called Pareto-optimal solutions. For example, 
point B shown in Fig. 2 is an example of a non-Pareto 
optimal point since a more optimal solution exists: point 
A. The method used in this work combines performance 
into a single objective using the following weighted 
summation, where Wm are the weightings for the 
performance functions: 

 MmxfW mm ...2,1,)( =∑  (2) 

2.2 Table Model Functions 
Behavioural models employing table model functions 

require the generation of sampled data points from circuit 
simulation. Interpolation and extrapolation techniques are 
then used to estimate a new value from the set of known 
values. Verilog-A supports three type of spline 
interpolation: linear, quadratic and cubic. The choice of 
interpolation is a trade off between accuracy and 
complexity. Cubic spline interpolation has been employed 
in this work to maximise accuracy. The third degree 
polynomial used to create the piece-wise interpolation 
curve is defined by equation (3), where ai, bi, ci, and di are 
the coefficients for the polynomials. 
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Figure 2.  Parameter space and objective space. 

3   Proposed Algorithm 
The key steps in the proposed algorithm are shown in 

Figure 3. These steps are now discussed in more detail. 

3.1 Netlist and Objective Function Generation 
The starting point for the proposed algorithm is a 

circuit topology, process models and a set of performance 
functions. The first step involves generating a transistor 
level netlist for the chosen circuit topology. From this 
netlist a set of designable parameters are derived which 
will be used to change the circuit’s performance. Examples 
of designable parameters include a transistor’s length and 
width. Each parameter will have constraints imposed by 
the designer and once determined, these define the 
parameter space. The performance functions of the circuit 
are defined as the objective functions, for example open 
loop gain or phase margin. Testbench netlists are defined 
to simulate the performance for a certain set of parameters.  

3.2 Muti-Objective Optimisation 
In this stage the parameter space is explored and the 

design improved with respect to the objective functions. 
The optimisation implementation (MOO) is based on an 
evolutionary algorithm known as weight-based genetic 
algorithm (WBGA) [9]. WBGA is a powerful and efficient 
approach that uses a genetic algorithm (GA) to determine 
the objective function weighting. This is unlike classical 
weighted optimisations which often suffer difficulties in 
determination of the weight vector.  

 

Figure 3.  Novel yield targetted algorithm. 



The GA process involves generating a number of 
individuals (parameter sets), and optimising them over a 
number of generations, using selection techniques to 
identify the best solutions. The individuals are 
encapsulated in a set of parameters and weights defined as 
a GA string. Figure 4 shows an example of the GA string 
for 4 designable parameters and 2 objective function 
weightings. 

 
Figure 4. Construction of an example GA string. 

P1 - P4 and W1, W2 are the designable parameters and 
performance weights respectively, where the weights for 
the performance functions are normalised using (4). 
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During optimisation, populations of the GA string 
individuals are randomly generated. Throughout the 
evolutionary algorithm, the individuals will go through a 
process of crossover, mutation and selection from one 
generation to another [10]. The evolving designable 
parameter set replaces the existing designable parameters 
in the design netlist. This new netlist is then simulated and 
the performance for each of the objective functions is 
determined. The performance functions are multiplied by 
their respective weights given in the GA string and 
summed to determine a total (normalised) fitness score. 
This summation is shown in equation (5). 
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Where fj(x(i)) is the objective function and wj
x is its 

weight. This process will continue until the total number 
of generations is reached. 

3.3 Performance Model from Pareto-front 
In multi-objective optimisation with conflicting 

objectives, there cannot be a single optimum solution that 
optimises all the objectives. The previous optimisation 
step results in a number of optimal and non-optimal 
solutions. It is necessary at this point to determine the 
Pareto front which consists of the most optimal, non-
dominated, solutions in the objective space. The two 
conditions below outline the procedure to establish these 
non-dominated solutions, thus giving the Pareto-front: 

a) Any two solutions of the optimal set must be non 
dominated with respect to each other. 

b) Any solution that does not belong to the optimal set 
is dominated by at least one member of optimal set 
Having obtained the Pareto-front, the optimal 

performance functions and their designable parameters are 
stored in a data file which defines the optimal performance 
model of the design.  

3.4 Variation Model from Monte Carlo Analysis 
It is important to consider process variation as early as 

possible in the design flow. Such variations can cause a 
circuit’s performance to vary from their nominal point, 
reducing the overall yield. This step in the proposed 
algorithm uses Monte Carlo (MC) analysis to model 
degradation of the performance function due to process 
variation. The MC analysis uses foundry variation models 
to simulate the effect of randomly selected parameter 
values on a circuit’s performance [11]. During this step in 
the proposed algorithm, a MC analysis is run for each 
parameter solution set that lies on the Pareto-front. From 
this simulation, a set of performance variations is obtained. 

3.5 Table Model Generation 
The performance and variation data obtained from the 

previous stage are used to define the look-up table for a 
$table_model() function in Verilog-A. This function 
allows the module to approximate the behaviour of a 
system by interpolating between the performance and 
variations data points extracted from the MC analysis. At 
this stage, data files exist that describe the performance 
and variation functions for all the designable parameters. 
The syntax of the $table_model() function is shown below: 
 $table_model(f1,f2, “datafile.tbl”, “control_string”); 

Where f1 & f2 are the performance functions, 
‘datafile.tbl’ is the text file that contains the performance 
functions and design parameters and ‘control_string’ 
determines the interpolation and extrapolation method. In 
this algorithm, a cubic spline method is used for the 
interpolation. No extrapolation method is used, in order to 
avoid approximation of the data beyond the sampled data 
points. A $table_model() function is created for both the 
performance functions and the variation functions. 

4  Design Example: Symmetrical OTA 
This section presents a complete design example using 

a symmetrical operational transconductance amplifier 
(OTA) as the target circuit. OTAs are fundamental 
building blocks, often employed in analogue circuit design 
applications such as filters. All the following simulations 
were performed using the industry standard Cadence 
Spectre™ simulator with foundry level BSim3v3 transistor 
models from a standard 0.35µm AMS process (C35B4).  

4.1 OTA Design and Objective Functions 
The initial chosen circuit topology is a symmetrical 

OTA shown in Figure 5 which is a common benchmark 
circuit. The first step was to determine the designable 
parameters for the topology. In this example the lengths 
and widths for M3 to M10 make up a total of 8 designable 
parameters (M1and M2 dimensions are fixed). The two 
performance functions for the OTA are the open-loop gain 
and phase margin which both have a weighting. 



 

Figure 5.  Symmetrical OTA topology. 

4.2 Multi-Objective Optimisation  
The designable parameters, W1-W4 and L1-L4 are 

constrained within a reasonable range. Table 1 shows these 
ranges along with the two normalised performance 
function weights, Wg1 and Wg2. 

  
Design Parameter: Range: 

W1   (M5,M4) 10um - 60um 
L1    (M5,M4) 0.35µm - 4µm 
W2    (M7,M9) 10um - 60um 
L2    (M7,M9) 0.35µm - 4µm 

W3   (M10,M8) 10um - 60um 
L3    (M10,M8) 0.35µm - 4µm 
W4    (M3,M6) 10um - 60um 
L4   (M3,M6) 0.35µm - 4µm 

Wg1   (Gain weight) 0 – 1 (normalised) 
Wg2   (Phase weight) 0 – 1 (normalised) 

Table 1.  Design parameters. 
Once the parameters have been determined, a GA 

string can be constructed consisting of these and the 
performance weightings. The string is shown in Figure 6. 

 

Figure 6.  GA string for the design example. 
The parameters are all normalised to keep them within 

the same range of [0~1]. The weighting vectors have 
already been normalised between [0~1] using equation (4). 
Each individual generated by the GA will consist of a set 
of designable parameters as defined by the GA String. The 
designable parameters are used for simulation and the 
weight vectors for the weight summation. 

The same testbench netlist was used to determine both 
the open loop gain and phase margin for each individual. 
The total fitness score for each individual was calculated 
using the normalised weighted-summation formula 
explained in the previous section. A total of 100 
generations each with a population size of 100 were used 
in this case, giving a total number of samples for the 
optimization of 10,000. 

 
Figure 7. Gain and phase margin for individuals. 

During the optimisation, the GA generates and 
optimises the designable parameters and weight vectors to 
achieve a higher fitness score, and hence optimises the 
performance functions. The result of the optimisation is a 
full set of designable parameters, weight vectors and 
performance functions. 

4.3 Pareto-optimal front 
To illustrate the results of the optimisation, Figure 7 

shows a plot of open loop gain and phase margin for the 
10,000 individuals in the example. The Pareto front can be 
clearly seen and contains 1022 optimum solutions (circuit 
candidates). These solutions define the performance model 
and this information is stored in a data file. 

4.4 Monte Carlo analysis 
Every optimal solution on the Pareto-front undergoes a 

Monte Carlo simulation using process variation and 
mismatch models. 200 samples were chosen for the MC 
simulation and from these the variation for each 
performance is calculated. This completes the variation 
model and this information is stored in a data file. 

 
Design: Gain (dB):  ∆Gain (%): PM (deg): ∆PM (%):

21 49.78 0.52 76.3 1.50 
22 49.90 0.52 76.1 1.51 
24 49.98 0.51 76.0 1.51 
25 50.17 0.51 75.8 1.52 
26 50.35 0.50 75.5 1.56 
27 50.45 0.49 75.3 1.57 
34 51.06 0.44 74.1 1.69 
35 51.14 0.51 74.0 1.71 
37 51.24 0.42 73.8 1.69 
38 51.62 0.42 73.2 1.68 

Table 2.  Performance and variation values. 
At this point, a combined performance and variation 

model for the OTA is developed. Selection design points 
are shown in Table 2 which details the associated 
performance and variation values for each point. This table 



is defined as a look-up table for a $table_model() function 
with the resulting Verilog-A model given below: 
analogue begin 
   
  gain_delta = $table_model (gain, "gain_delta.tbl", "3E"); 
  pm_delta = $table_model (pm, "pm_delta.tbl", "3E"); 
  gain_prop = ((gain_delta/100)*gain)+gain; 
  pm_prop = ((pm_delta/100)*pm)+pm; 
  $display ("Propose Gain : %e", gain_prop); 
  $display ("propose PM : %e", pm_prop); 
  lp1 = $table_model (gain_prop,pm_prop,"lp1_data.tbl","3E,3E"); 
  lp2 = $table_model (gain_prop,pm_prop,"lp2_data.tbl","3E,3E"); 
  lp3 = $table_model (gain_prop,pm_prop,"lp3_data.tbl","3E,3E"); 
  lp4 = $table_model (gain_prop,pm_prop,"lp4_data.tbl","3E,3E"); 
  fptr=$fopen("params.dat");  
  $fwrite(fptr, "\n Generated Design Parameters\n "); 
  $fwrite(fptr, "%e %e %e %e", lp1,lp2,lp3,lp4); 
  $fclose(fptr); 
  $display ("params: = %e %e %e %e", lp1, lp2, lp3, lp4); 
  gain_in_v = pow(10,gain_prop/20); 
  V(out) <+ V(inp)*(-gain_in_v)-I(out)*ro; 
   
end 

From a given performance specification, the model 
will interpolate a new performance value that can produce 
the highest yield based on the performance variation. A 
new set of designable parameters is then interpolated from 
this new performance value. Table 3 shows an example 
where the required performance is a gain of greater than 
50dB and a phase margin of greater than 74 degrees. The 
variation for the gain is obtained from the $table_model() 
function. In this case, the relevant lookup table points are 
those shown in Table 2 where it can be seen that the gain 
of 50dB is between design point 24 and 25. Interpolation is 
used to determine the variation for the gain between these 
points which is 0.51%. From this variation value it can be 
seen that the actual gain may vary from 49.75dB to 
50.26dB. Therefore, in order to achieve maximum yield, 
the specified gain of the design must be at least 50.26dB. 
This will ensure that the required 50dB gain will be 
achieved within the process extremes. The value of 
50.26dB therefore becomes the new targeted performance 
value and using this new value, the design parameters are 
interpolated from the performance table. The same 
strategy is applied for phase margin. Both of the new 
performance values for gain and phase margin will 
produce 100% yield. 

 
Performance: Required 

Performance: Variation: New 
Performance: 

Gain > 50dB 0.51%  50.26dB 
Phase Margin > 74 deg 1.71%  75.27 deg 

Table 3.  Interpolation example. 
 To verify the performance and yield from the 

behavioural model design, a comparison has been made 
with transistor level simulation using design parameters 
obtained from the $table_model(). This comparison is 
shown in Table 4.  The percentage error in passband gain 
and phase margin was calculated between the OTA 
transistor simulation and interpolated values. Figure 8 
shows the open loop gain for the Verilog-A model and 
transistor model. It can be seen from these comparisons 
that the Verilog-A function matches closely with the 
transistor level simulation. 

 

Figure 8.  Open loop gain comparison. 
Figure 8 shows a divergence in the comparison above 

40MHz which is attributed to parasitic poles in the 
transistor circuit. Although these higher order effects are 
not modelled in this example, they could easily be 
incorporated if required. A Monte Carlo simulation using 
500 samples was carried out and verified a yield of 100%. 

 
Performance 

Functions 
Transistor 

Model 
Verilog-A 

Model % error 

Gain 50.73 50.26 0.93% 
Phase Margin 76.06 75.27 1.03% 

Table 4.  Performance comparison. 
Table 5 summarises the parameters associated with 

model development. A total of 10,000 simulations were 
run in the initial MOO step for the performance model and 
Monte Carlo analysis was performed on 1022 Pareto-
optimal points for the variation model. The OTA design 
optimisation stage took 4 hours on a 1.2GHz Ultra Sparc 
3, which compares well with a previously reported 
optimisation time of 7 hours for the same circuit [5]. 

 
Parameters: Values: 

No. Generations 100 
Evaluation Samples 10,000 

Pareto Points 1022 
CPU Time (1.2GHz  Sparc 3) 4 hours  

 

Table 5.  Design parameter summary. 

5  Example Application 
To demonstrate the advantages of the proposed 

approach the model developed for the OTA has been used 
to design a 2nd order low pass filter as shown in Figure 9.  

 

Figure 9. 2nd Order low-pass filter 



 

Figure 10. Filter specification 
The filter was designed to typical anti-aliasing filter 

specification as shown in Figure 10. The specifications for 
the open loop gain and phase margin for the OTA are 
50dB and 60 degrees respectively. The performance and 
variation model was used to select OTAs that met these 
specifications taking into account their variations. 
Simulation-based optimisation was performed on the filter 
design to find an optimum solution for capacitor values 
C1, C2 and C3 within the filter specifications. A total of 
30 individuals and 40 generations were used for the MOO. 
To verify the predicted yield given by the proposed 
approach, a Monte Carlo analysis with 500 samples was 
run on the final design. This analysis confirmed a yield of 
100%. Figure 11 shows the transistor level typical mean 
response of the filter which can be seen to meet the 
specifications. 

6  Conclusions 
This paper has presented a new algorithm that 

combines performance and process variation objectives in 
a behavioural model for an analogue circuit topology. 
Multi-objective optimisation with genetic algorithm is 
used to explore tradeoffs between performance and yield, 
leading to a set of Pareto optimal solutions for the design. 
Monte Carlo variation analysis is performed on all the 
Pareto optimal solutions, and a table is constructed for 
both the performance and variation analysis. A 
behavioural model developed in Verilog-A is used 
together with this table to determine the parameters 
required to achieve the highest yield within a given 
specification. After the initial time investment to create the 
model and table there are significant improvements in 
overall simulation time and efficiency compared to 
conventional simulation based approaches. These benefits 
are enjoyed without a corresponding drop in accuracy. A 
benchmark OTA topology and standard filter design were 
used to demonstrate the proposed algorithm and the 
behaviour has been verified with transistor level 
simulations.  

 

Figure 11.  Filter response 
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