
ezRealtime: A Domain-Specific Modeling Tool for Embedded Hard Real-Time
Software Synthesis

Fabiano Cruz, Raimundo Barreto, Lucas Cordeiro
Departamento de Ciência da Computação

Universidade Federal do Amazonas
{fcruz,rbarreto,lcc}@dcc.ufam.edu.br

Paulo Maciel
Centro de Informática (CIn)

Universidade Federal de Pernambuco
prmm@cin.ufpe.br

Abstract

In this paper, we introduce the ezRealtime project, which
relies on the Time Petri Net (TPN) formalism and defines a
Domain-Specific Modeling (DSM) tool to provide an easy-
to-use environment for specifying Embedded Hard Real-
Time (EHRT) systems and for synthesizing timely and pre-
dictable scheduled C code. Therefore, this paper presents
a generative programming method in order to boost code
quality and improve substantially developer productivity by
making use of automated software synthesis. The ezReal-
time tool reads and automatically translates the system’s
specification to a time Petri net model through composition
of building blocks with the purpose of providing a com-
plete model of all tasks in the system. Hence, this model
is used to find a feasible schedule by applying a depth-first
search algorithm. Finally, the scheduled code is generated
by traversing the feasible schedule, and replacing transi-
tion’s instances by the respective code segments. We also
present the application of the proposed method in an ex-
pressive case study.

1 Introduction

This work considers Embedded Hard Real-Time (EHRT)
software development. Regarding real-time systems, the
correct behavior depends not only on the integrity of the re-
sults, but also the time in which such results are produced.

In this paper, we adopted Time Petri net formal model
for modeling the system and finding a feasible schedule in
order to prove that it exists. However, for the effective use
of formalisms, an important issue to be considered is the
availability of an abstraction layer, through which develop-
ers can model their application without necessarily knowing
that there is an underlying formal semantics .

Domain-Specific Modeling (DSM) environments are in-
tended to automate the creation of program parts that are

costly to build from scratch. It is a graphical representa-
tion of a Domain-Specific Language (DSL) that is targeted
to a particular matter, rather than a general purpose lan-
guage that can be used to develop all kinds of programs.
Therefore, we created the ezRealtime1 tool, which provides
a DSM Language (DSML) based on a time Petri net for-
malism and a code generator engine with the purpose of
automating several parts of the development of EHRT soft-
wares. Therefore, the proposed work aims at developing an
open source DSM environment to provide not just a friendly
GUI from where all system’s functionalities can be speci-
fied, but also a generative programming approach to boost
code quality and improve developer productivity with auto-
mated software synthesis.

A DSML is one of the most suitable approach to deal
with today’s software complexity with high abstraction lev-
els. There are some DSL building frameworks used to speed
up the development process, such as GME[7], Microsoft
DSL Tools[5], and Eclipse Modeling Project Platform2.

2 Related Works

We have identified other projects that also consider this
important subject.

The TOPCASED project[12] relies on the Eclipse Mod-
eling Project Platform, and the metamodeling principle is
the core of this project. A new DSL is proposed, namely
SimplePDL, which is an experimental language for speci-
fying processes. It introduces a temporal extension of OCL,
TOCL, based on process states and formalized using a LTL
(Linear Temporal Logic). Furthermore, Petri nets are also
used to model checking purposes.

Sztipanovits and Karsai[11] discuss challenges and op-
portunities of generative programming (developing pro-
grams that synthesize other programs) for embedded soft-
ware development. It explains the the principles of MIC

1http://pnmp.sourceforge.net/ezrealtime/
2EMP, http://www.eclipse.org/modeling/

978-3-9810801-3-1/DATE08 © 2008 EDAA

1510

(Model-Integrated Computing), which places models as
center piece for the integrated software development.

These works are very close to what we achieved in this
work. Indeed, ezRealtime also combines a operational se-
mantics based on timed Petri nets with DSL Engineering. In
addition, ezRealtime provides an easy-to-use model-based
software development environment for modeling, checking
properties, generating schedule, and synthesizing code.

3 Modeling

3.1 Computational Model

Computational model syntax is given by a time Petri
net [9], and its semantics by a timed labeled transition sys-
tem (TLTS) which uses a time discrete model. A time Petri
net (TPN) is a bipartite directed graph represented by a tu-
ple P= (P,T,F,W,m0, I). P (places) and T (transitions) are
non-empty disjoint sets of nodes. The edges are represented
by F ⊆ (P×T)∪(T ×P). W : F →N represents the weight
of the edges. A TPN marking mi is a vector mi ∈ N

|P|,
and m0 is the initial marking. I : T → N×N represents the
timing constraints, where I(t) = (EFT (t),LFT (t)) ∀t ∈ T ,
EFT (t) ≤ LFT (t), EFT (t) is the Earliest Firing Time, and
LFT (t) is the Latest Firing Time. An extended time Petri
net with code and priorities is represented by P a = (P , C S ,

π). P is the time Petri net, C S :T 9 S T is a partial function
that assigns transitions to behavioral source code, where
S T is a set of source tasks codes, and π : T →N is a priority
function.

The set of states S of P is given by S ⊆ (M ×C), where
each state is defined by a marking, and its clock vector.

FT (s) is the set of fireable transitions at state s defined
by: FTP(s) = {ti ∈ET (m) | π(ti) = min(π(tk)) ∧ DLB(ti)≤
min(DUB(tk)), ∀tk ∈ ET (m)}. The firing domain for t
at state s, is defined by the interval: FDs(t) = [DLB(t),
min(DUB(tk))].

The semantics of a TPN P is defined by associating a
TLTS LP = (S,Σ,→,s0): (i) S is the set of states of P ; (ii)
Σ ⊆ (T ×N) is a set of actions labeled with (t,θ) corre-
sponding to the firing of transition (t) at time (θ) in the firing
interval FDs(t), ∀s ∈ S; (iii) →⊆ S×Σ×S is the transition
relation; (iv) s0 is the initial state of P .

Definition 3.1 (Reachable States) Let LP be a TLTS de-
rived from a TPN P , and si = (mi,ci) a reachable state.
si+1 =fire(si,(t,θ)) denotes that firing a transition t at
time θ from the state si, a new state si+1 = (mi+1,ci+1)
is reached, such that: (1) ∀p ∈ P, mi+1(p) = mi(p) −
W (p, t) + W (t, p); (2) ∀tk ∈ ET (mi+1): (i) Ci+1(tk) = 0
(if (tk = t)∨ (tk ∈ ET (mi+1)−ET (mi))), or (ii) Ci+1(tk) =
Ci(tk)+ θ, otherwise.

Definition 3.2 (Feasible Firing Schedule) Let LP be a
TLTS derived from a TPN P , s0 its initial state, sn = (mn,cn)
a final state, and mn = MF is the desired final marking.

s0
(t1,θ1)
−→ s1

(t2,θ2)
−→ s2 −−→ sn−1

(tn,θn)
−→ sn is defined as a fea-

sible firing schedule, where si = fire(si−1, (ti,θi)), i > 0,
if ti ∈ FT (si−1), and θi ∈ FDsi−1(ti).

The modeling methodology guarantees that the final
marking MF is well-known since it is explicitly modeled.

3.2 Specification Model

The proposed specification model is composed by: (i) a
set of tasks with timing constraints; (ii) intertask relations;
(c) the schedule method for each task (preemptive or non-
preemptive), and the behavioral specification.

Let T be the set of tasks in a system. The proposed
approach considers only periodic tasks, where the definition
of timing constraints is as follows. Let τi ∈ T be a periodic
task. The constraints of τi is defined by (phi,ri,ci,di, pi),
where phi is the phase offset time; ri is the release time; ci
is the worst-case execution time (WCET); di is the deadline;
and pi is the period.

The phase (phi) is the delay associated to the first time
request of task τi after the system starting. The periodicity
in which τi is requested is denoted by the period pi. Re-
lease time ri, WCET ci, and deadline di, are time instants
considering the beginning of the period as the start point.
Thus, ri is the earliest time where the task τi may start ex-
ecution, ci is the WCET required for executing task τi; and
di is the time at which task τi must be completed. This work
considers that ci ≤ di ≤ pi.

The considered inter-tasks relations are precedence and
exclusion relations. A task τi PRECEDES task τ j , if τ j can
only start executing after τi has finished. A task τi EX-
CLUDES task τ j, if no execution of τ j can start while task
τi is executing, i.e., task τi could not be preempted by task
τ j. Exclusion relations may prevent simultaneous access to
shared resources. We consider symmetrical exclusion rela-
tion, that is, if A EXCLUDES B then B EXCLUDES A.

The behavioral specification consists of the source code
for each task. This code is programmed using the C pro-
gramming language, and it must be in accordance with the
respective compiler for the target processor.

3.3 Modeling the Specification

This section details how to model the specification using
time Petri net formal model through composition of build-
ing blocks. It is worth observing that such blocks are spe-
cific for the pre-runtime scheduling policy.

The proposed modeling method is conducted by building
block compositions. This work adopts several operators for

2

1511

building block compositions. Details about such operators
is beyond the scope of this paper. The interested reader is
referred to [2].

Pre-runtime scheduling considers the entire set of peri-
odic tasks occurring within a time period that is equal to the
least common multiple (LCM) among periods of the given
set of tasks. The LCM is also called schedule period (PS)
or hyper-period. Therefore, there are several tasks instances
of the same task within the schedule period.

Figure 1. Proposed Blocks - Part 1

pw ri pw gi pw ci pw fi pfi

tri tgi tci

tfi

ppro ck ppro ck

pw d i

ci ci

[ri, d i - ci] [0 , 0] [1 , 1]
[0 , 0]

[ci, ci]

pw ri pw gi pw ci pw fi pfi

tri tgi tci

tfi

ppro ck ppro ck

pw d i

[ri, d i - ci] [0 , 0]

[0 , 0]

(a)

(b)

Figure 2. Proposed Blocks - Part 2

3.3.1 Building Blocks

Tasks are modeled by composition of building blocks de-
picted in Figures 1 and 2, and summarized below: a)
Fork Block. The fork block (Fig. 1(a)) models the start-
ing of n concurrent tasks. The timing interval of transi-
tion tstart is always equal to [0, 0]; b) Join Block. The
join block (Fig. 1(b)) models the fact that all n tasks have
concluded their execution in the schedule period. In the
proposed join block, mi(pend) = 1 indicates that a feasi-
ble firing schedule (Def. 3.2) was found; c) Periodic Task
Arrival Block. This block (Fig. 1(c)) models the periodic
invocation of all instances of all tasks in the schedule pe-
riod (PS). It is worth noting the weight (αi = N (τ〉)−∞)
of the arc (tphi , pwai), where this weight models the invoca-
tion of all remaining instances after the first task instance.
The timing intervals of transitions tai and tphi are fulfilled by
phi (phase) and pi (period) of task τi; d) Deadline Check-
ing Block. Some works (e.g. [1]) extended the Petri net
model for dealing with deadline checking. The proposed
modeling method uses elementary net structures to capture
deadline missing. Obviously, Deadline missing (Fig. 1(d))
is an undesirable situation when considering hard real-time
systems. The timing interval for transition tpci is constant,
and for transition tdi is fulfilled by the deadline di of task
τi. e) Non-preemptive Task Structure Block. Consider-
ing a non-preemptive scheduling method, the processor is
just released after the entire computation has been finished.
Figure 2(a) shows that time interval of computation tran-
sition has bounds equal to the task computation time (i.e.,
[ci,ci]). The timing interval for transition tgi is constant, and
for transitions tri and tci are fulfilled by release ri, and ex-
ecution time ci of task τi. f) Preemptive Task Structure
Block. This scheduling method (Fig. 2(b)) implies that a
task is implicitly split into subtasks, where the computation
time of each subtask is exactly equal to one time unit. The
timing of transition tri is fulfilled by ri (release) of task τi.
All remaining timing intervals are constants; g) Processor
Block. This work is constrained to mono processor archi-
tecture. Hence, as the processor is considered as a resource,
the processor block consists of a single place pproc with one
marking. This modeling is important since the processor is
used in a mutually exclusive way.

3.3.2 Inter-tasks Relations Modeling

Inter-tasks relations are modeled as follows:
a) Modeling Precedence Relations. Precedence rela-

tions are defined between pairs of tasks. Let us suppose
that τi PRECEDES τ j is specified. After modeling the two
tasks (τi and τ j), represented by nets Ni and N j, respectively,
some actions are performed in order to model such prece-
dence relation. Figure 3 shows a TPN model representing
a precedence relation. It worth observing that task T2 can

3

1512

only proceed after task T1 has finished its execution.

pwa2 pwr2

pwd2ps t2

ta2

tph 2

2

[25 0, 25 0]

[0, 0]

pwg2 pwc2 pwf2

tr2 [0, 13 0] tg2 tc2[0, 0] [20,20]

pwpc2 pdm 2

td2 tpc2[15 0,15 0] [0, 0]

pwa1 pwr1 pwg1 pwc1 pwf1

ps t1 pwd1 pwpc1 pdm 1

ta1[25 0, 25 0]

tph 1[0, 0]

tr1[0, 8 5]

tg1
[0, 0]

tc1
[15 ,15]

td1 tpc1[100,100] [0, 0]

2

pwp12

tpre c12
[0, 0]

ppre c12

pf1
tf1

[0, 0]

pf2

tf2[0,0]

Figure 3. Precedence Relation Model

pwa0 pwr0

pwd0ps t0

ta0

tph 0

2

[25 0, 25 0]

[0, 0]

pwg0 pwc0 pwf0

tr0 [0, 9 0] tg0 tc0[0, 0] [1,1]

pwpc0 pdm 0

td0 tpc0[100,100] [0, 0]

pwa2 pwr2
pwg2 pf2

ps t2 pwd2 pwpc2 pdm 2

ta2 [25 0, 25 0]

tph 2[0, 0]

tr2
[0, 13 0] [0, 0]

tc2 [1,1]

td2 tpc2[15 0,15 0] [0, 0]

2

pwe x cl02

te x cl02

[0, 0]

pe x cl02

tf2 [0,0]

pwf2

pf0

tf0 [0,0]

10 10

20 20
pwc2

tg2
[0,0]

pwe x cl20

te x cl20

Figure 4. Exclusion Relation Model

b) Modeling Exclusion Relations. Exclusion relations
are also defined between pairs of tasks. Let us suppose that
τi EXCLUDES τ j is specified. The modeling method adds
a single place shared by the two tasks. This place has one
marking and it is pre-condition for the execution of the two
tasks. Therefore, just one of both tasks is executing simul-
taneously. After modeling the two tasks (τi and τ j), rep-
resented by nets Ni and N j , respectively, some actions are
performed to model the exclusion relation: Fig. 4 shows a
TPN model representing an exclusion relation.

4 ezRealtime: The EHRT Modeling Tool

4.1 Project Overview

The ezRealtime is an open source project which relies
on the time Petri net formalism and defines a Domain Spe-
cific Modeling Language (DSML) to provide an easy-to-
use environment for specifying embedded hard real-time
systems and for synthesizing timely and predictable sched-
uled C code. It uses the International Standard ISO/IEC
15909-2[6] which defines a universal XML-based transfer
syntax for Petri nets, namely Petri Net Markup Language
(PNML)[13].

ezRealtime is distributed under the Apache License ver-
sion 2.0 and it has been developed using Eclipse Modeling

Project Platform, in particular the Eclipse Modeling Frame-
work (EMF) [3]. EMF plays an important role in this work
and it has proved to be a mature tool that offers a straightfor-
ward approach to develop DSLs. EMF is a Java framework
and code generation facility for building tools and other ap-
plications based on a metamodel. Once the metamodel for
a particular domain is specified, the EMF can generate a
set of Java code, including Eclipse plug-ins, and graphi-
cal/customizable editors. EMF metamodels can be defined
as an UML class diagram, Annotated Java interfaces with
some model properties, XML Schema Definitions (XSDs),
or directly in a XMI document.

4.2 Metamodeling

Modeling describes the concepts of a domain with the
concepts provided by a modeling language. Metamodeling
explores the use of modeling languages. Thus, it allows
the definition of tailored or DSM languages. ezRealtime
uses the EMF to transform the proposed specification meta-
model, represented as a UML class diagram, into Ecore (see
Figure 5). For lack of space, the entire metamodel is not
shown in this paper.

M e s s ageC

- n am e : S trin g
- bu s : S trin g
- gran tB u s : in t
- com m u n ication : in t
- ide n tifie r: S trin g

P roce s s orC

- n am e : S trin g
- ide n tifie r: S trin g

E z R T S pe cC

- n am e : S trin g
- dis pO v e h : boole an
- ide n tifie r: S trin g

T as kC

- n am e : S trin g
- pe riod: in t
- ph as e : in t
- e n e rgy : in t
- re le as e : in t
- com pu tation : in t
- de adlin e : in t
- s ch : S ch e du lin gT y pe
- ide n tifie r: S trin g

S ou rce C odeC

- con te n t: S trin g
- ide n tifie r: S trin g

S ch e du le T y pe

- n on P re e m ptiv e
- pre e m ptiv e

E

code

0..1

pre ce de s T as ks

0..*

e x clu de s T as ks

0..*

pre ce de s

0..1

pre ce de s M s gs

0..*

tas k 1..*

proce s s or

1..*

m s g

1..*

Figure 5. Specification Metamodel

4.3 The tool architecture of ezRealtime

In order to develop the ezRealtime, we created a DSML
based on a time Petri net formalism and the EMF. Code-
gen code generator facility translates this model into a tree
view graphical editor, where end-users define a set of tasks
and their inter-relations, which is in turn transformed into a
human and machine readable PNML (a XML-based docu-
ment markup standard) description of the application. This
PNML file is built in compliance with the proposed Build-
ing Blocks, Operators, and Net Compositions approaches.
Furthermore, it serves as basis for the pre-runtime ezReal-
time scheduler engine that is used to find a feasible sched-
ule, and then C code is automatically synthesized.

4

1513

In the proposed tool, end-users do not need to know that
there is an underlying formal semantics that provide the ba-
sis for the automation of software synthesis. Therefore, it
ensures that system’s properties are satisfied and the system
is properly validated according to the specification. The tool
architecture of ezRealtime is illustrated in Figure 6.

ezRealtime
 D SL

< < creates> > < < Eclipse J ET> >

Eclipse Modeling F ramework
Meta-model (Ecore)

Is structure by

Is structure byMeta-metamodel level
(Es s en tial MO F)

ezRealtime
 model < < Is created by> >

Is structure by

Metamodel level

Model level

Tool D eveloper

U ser

ezRealtime
 A PI

T0

T1

T2
T3

Precedes

T2
M1

Precedes Tasks

T1

< < uses> >

< < exports > >
 PN ML

scheduled
 C code

< < ezRealtime > >
 Code G en

< < uses> >

Figure 6. tool architecture of ezRealtime

In order to generate a model from the specification, the
following steps should be taken into account: i) generate
a model for arrival, deadline, and task structure blocks for
each task; ii) generate each precedence and exclusion rela-
tions; iii) generate each inter-tasks communication; iv) gen-
erate the fork block; and v) generate the join block.

The ezRealtime uses its transformation engine (a
domain-specific component library) with a third-party API
called PNML Framework3 for mapping from ezRealtime
DSL (see Figure 7) into timed Petri nets through the PNML
(ezRealtime2PNML).

<?xml version="1.0" encoding="UTF-8"?>
<rt:ez-spec xmlns:rt="http://pnmp.sf.net/EZRealtime">
<Task precedesTasks="#ez1151891690363" identifier="ez1151891">

<processor>p124365</processor>
<name>T1</name>
<period>9</period>
<power>10</power>
<schedulingMode>NP</schedulingMode>
<computing>1</computing>
<deadline>9</deadline>

</Task>
...

</rt:ez-spec>

Figure 7. ezRealtime DSL

4.4 Code Generator Engine

A ezRealtime CodeGen library was developed in order
to automate the code generation process. Such engine uses
the Ruby4 programming language to generate code for mi-
crocontrollers. The next subsections are concerned with

3PNML Framework, http://www.lip6.fr/pnml
4http://www.ruby-lang.org

describing the scheduler synthesis and the scheduled code
generator.

4.4.1 Pre-Runtime Schedule Synthesis

Scheduling is very important in embedded real-time sys-
tems. The proposed scheduler synthesis algorithm is a
depth-first search method on a finite timed labeled transi-
tion system derived from a TPN model. The algorithm may
experience the state explosion problem when searching for
a feasible schedule. In order to keep the state space growth
under control, the proposed method adopts a partial-order
minimization technique [8] in order to prune the state space.
The proposed algorithm is a depth-first search method on a
generated timed labeled transition system (TLTS). The stop
criterion is obtained whenever the desirable final marking
MF is reached. The algorithm is explained in our previous
works presented in [2].

4.4.2 Scheduled Code Generation

The proposed method for code generation includes not
only tasks’ code, but also a timer interrupt handler, and a
small dispatcher. Such dispatcher automates several control
mechanisms required during the execution of tasks. Timer
programming, context saving, context restoring, and tasks’
calling are examples of such additional controls. An ar-
ray of registers (struct ScheduleItem) is created to
store the schedule table. Each input represents the execu-
tion part of a task instance. In case of preemption, a task
instance may have more than one execution part. The regis-
ter struct ScheduleItem contains the following in-
formation: (i) start time; (ii) flag, indicating if the task
was preempted before; (iii) task id; and (iv) a pointer to
a function (task code). Figure 8 depicts the schedule table
for a preemptive application. It includes two instances of
TaskA, two instances of TaskB, two instances of TaskC,
and one instance of TaskD.

struct ScheduleItem scheduleTable [SCHEDULE_SIZE] =
{{ 1, false, 1, (int *)TaskA}, /* A1 starts */
{ 4, false, 2, (int *)TaskB}, /* B1 preempts A1 */
{ 6, false, 3, (int *)TaskC}, /* C1 preempts B1 */
{ 8, true, 2, (int *)TaskB}, /* B1 resumes */
{10, false, 4, (int *)TaskD}, /* D1 preempts B1 */
{11, true, 2, (int *)TaskB}, /* B1 resumes */
{13, true, 1, (int *)TaskA}, /* A1 resumes */
{18, false, 1, (int *)TaskA}, /* A2 starts */
{20, false, 3, (int *)TaskC}, /* C2 preempts A2 */
{22, false, 2, (int *)TaskB}, /* B2 starts */
{28, true, 1, (int *)TaskA} /* A2 resumes */

};

Figure 8. Example of a Schedule Table

5 Case Study: Mine System

This case study is a real-world application, where de-
tailed specification for this example can be found in [4].

5

1514

This system is a simplified pump control system for a min-
ing environment. The system is used to pump mine-water,
collected in a sump at the bottom of the shelf to the sur-
face. When the water reaches a given high-level the pump
is turned on and the sump is drained until the water reaches
the low-level. At this point, the pump is turned off. The
pump should only be allowed to operate if the methane level
(CH4) in the mine is below a critical level. The monitor-
ing also measures the level of carbon monoxide (CO) in the
mine and detects whether there is as adequate flow of air.

Table 1. Specification for Mine Pump
task Computation Deadline Period
PMC 10 20 80
WFC 15 500 500
RLWH 1 1000 1000
CH4H 25 500 500
CH4S 5 100 500
COH 15 100 2500
AFH 15 200 6000
WFH 15 300 500
PDL 15 500 500
SDL 10 500 500

Table 1 presents the system specification. This problem
has 10 tasks, implying 782 tasks’ instances and, at the be-
ginning, all 10 tasks arrive at the same time. Our solution
searched 3268 states (where minimum number of states is
3130) in 330 ms. The platform was an AMD Athlon 1800
MHz processor, with 768 MB RAM, adopting Linux oper-
ating system with GCC 4.0.2 compiler.

6 Conclusion and Future Work

ezRealtime has been designed to provide developers
with an easy-to-use interface for specifying Embedded Hard
Real-Time systems and for synthesizing timely and pre-
dictable scheduled C code, which can be leveraged in the
applications. Such software uses transformation component
library for mapping the proposed DSL into the rigorous se-
mantics of time Petri nets.

The ezRealtime tool per se is a contribution. The more
specific contributions to the DSL Engineering and EHRT
domains are: (i) propose a formalized software modeling
process using time Petri nets, (ii) describe a DSML that sup-
ports developers to specify EHRT systems, and also gener-
ate C code that make system deployment easier, and (iii)
provide a tool based methodology for development of pre-
dictable scheduled code for EHRT systems.

For further steps, we are evolving the ezRealtime
project, both to improve its CodGen component and tran-
formation rules. Our aim is to apply the proposed method-
ology in the development of the EHRT software for sev-
eral kinds of microcontrollers and processors (e.g., ARM9,

8051, M68K, x86) in a generative way. Moreover, we also
aim to optimize the generated code to specific platforms.

Acknowledgments

The authors would like to thank the support received
from the Nokia Institute of Technology (INdT) and the
Brazilian Agency CNPq process number: 553164/2005-8.

References

[1] K. Altisen, G. Göbler, A. Pnueli, J. Sifakis, S. Tripakis, and
S. Yovine. A framework for scheduler synthesis. IEEE Real-
Time System Symposium, pages 154–163, December 1999.

[2] R. Barreto. A Time Petri Net-Based Methodology for Em-
bedded Hard Real-Time Software Synthesis. PhD Thesis,
Centro de Informática - UFPE, April 2005.

[3] F. Budinsky, S. A. Brodsky, and E. Merks. Eclipse Modeling
Framework. Pearson Education, 2003.

[4] A. Burns and A. Wellings. HRT-HOOD: A structured de-
sign method for hard real-time systems. Real-Time Systems
Journal, 6(1):73–114, 1994.

[5] J. Greenfield, K. Short, S. Cook, and S. Kent. Software
Factories: Assembling Applications with Patterns, Models,
Frameworks, and Tools. Wiley, 2004.

[6] E. Kindler. Software and systems engineering - high-level
petri nets. part2: Transfert format, 2005.

[7] A. Ledeczi, M. Maroti, A. Bakay, G. Karsai, J. Garrett,
C. Thomason, G. Nordstrom, J. Sprinkle, and P. Volgyesi.
The Generic Modeling Environment. In Workshop on Intel-
ligent Signal Processing, Hungary, volume 17, May 2001.

[8] J. Lilius. Efficient state space search for time petri nets.
In Electronic Notes in Theoretical Computer Science, vol-
ume 18. Elsevier Science, 1998.

[9] P. Merlin and D. J. Faber. Recoverability of communication
protocols: Implicatons of a theoretical study. IEEE Trans-
actions on Communications, 24(9):1036–1043, Sept. 1976.

[10] A. K. Mok. Fundamental Design Problems of Distributed
Systems for the Hard-Real-Time Environment. PhD Thesis,
MIT, May 1983.

[11] J. Sztipanovits and G. Karsai. Generative programming for
embedded systems. In PPDP ’02: Proc 4th ACM SIGPLAN
conf on Principles and practice of declarative programming,
2002.

[12] F. Vernadat, C. Percebois, P. Farail, R. Vingerhoeds,
A. Rossignol, J.-P. Talpin, and D. Chemouil. The TOP-
CASED Project - A Toolkit in OPen-source for Critical
Applications and SystEm Development. In Data Sys-
tems In Aerospace (DASIA), Berlin, Germany, 22/05/2006-
25/05/2006. European Space Agency (ESA Publications),
mai 2006.

[13] M. Weber and E. Kindler. The Petri Net Markup Language.
In H. Ehrig, W. Reisig, G. Rozenberg, and H. Weber, ed-
itors, Petri Net Technology for Communication Based Sys-
tems, LNCS 2472. Springer-Verlag, 2003.

6

1515

