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Abstract

We initiate the study of sub-linear sketching and streaming techniques for estimating the
output size of common dictionary compressors such as Lempel-Ziv ’77, the run-length
Burrows-Wheeler transform, and grammar compression. To this end, we focus on a mea-
sure that has recently gained much attention in the information-theoretic community and
which approximates up to a polylogarithmic multiplicative factor the output sizes of those
compressors: the normalized substring complexity function δ. As a matter of fact, δ itself
is a very accurate measure of compressibility: it is monotone under concatenation, invari-
ant under reversals and alphabet permutations, sub-additive, and asymptotically tight (in
terms of worst-case entropy) for representing strings, up to polylogarithmic factors.

We present a data sketch of O(ε−3 log n + ε−1 log2 n) words that allows computing a
multiplicative (1±ε)-approximation of δ with high probability, where n is the string length.
The sketches of two strings S1, S2 can be merged in O(ε−1 log2 n) time to yield the sketch
of {S1, S2}, speeding up the computation of Normalized Compression Distances (NCD). If
random access is available on the input, our sketch can be updated in O(ε−1 log2 n) time for
each character right-extension of the string. This yields a polylogarithmic-space algorithm
for approximating δ, improving exponentially over the working space of the state-of-the-art
algorithms running in nearly-linear time. Motivated by the fact that random access is not
always available on the input data, we then present a streaming algorithm computing our
sketch in O(

√
n · log n) working space and O(ε−1 log2 n) worst-case delay per character. We

show that an implementation of our streaming algorithm can estimate δ on a dataset of
189GB with a throughput of 203MB per minute while using only 5MB of RAM, and that
our sketch speeds up the computation of all-pairs NCD distances by one order of magnitude,
with applications to phylogenetic tree reconstruction.

1 Introduction

Sketching techniques allow to summarize in sub-linear space information on big
datasets, enabling the approximation of useful statistics such as high-order moments
[1], norms [2], and frequencies [3] (to name a few). Additionally, most data sketches
can be computed on data streams in sub-linear space, making them attractive in big
data scenarios. In this paper, we consider data sketches summarizing the informa-
tion content of a string as approximated by data compression techniques. Previous
research on this problem has focused on empirical entropy. Chakrabarti et al. [4]
showed that the zero-order empirical entropy H0 of a data stream can be efficiently
approximated up to a multiplicative (1 + ε)-factor in poly-logarithmic space, but
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any multiplicative approximation of the k-th order entropy Hk requires nearly-linear
space for k ≥ 1. In addition to this fact, it is well-known that Hk is a weak measure
when the dataset is highly repetitive [5]. As extensively shown in the literature (see,
for example, the survey by Navarro [6]), dictionary compression measures such as
the number z of phrases of the Lempel-Ziv’77 factorization (used by winzip, 7-zip,
gzip, xz), the number r of equal-letter runs in the Burrows-Wheeler transform (used
by bzip-2), and the size g of a smallest context-free grammar generating (only) the
text, are exempt from such a limitation. The information-theoretic quality of these
measures is strengthened by the fact that Normalized Compression Distances based
on dictionary compressors yield very precise notions of string similarity [7]. Sketch-
ing and streaming techniques for such measures would thus speed up tasks such as
the computation of all-pairs similarities when the underlying metric is based on data
compression (useful, for example, in the computation of phylogenetic trees [7]).

Motivated by the above considerations, in this paper we present the first sub-
linear-space sketching and streaming techniques for estimating the output sizes of
dictionary compressors. This result is obtained by describing a data sketch yielding
a (1 ± ε)-approximation of the normalized substring complexity δ = maxk≥1{dk/k},
where dk is the number of distinct length-k substrings of the string, a measure in-
troduced by Raskhodnikova et al. in [8]. As shown by Kociumaka et al. [9] and
Kempa and Kociumaka [10], any of the above dictionary compression measures is
lower-bounded by δ and upper-bounded by δ(log n)c, where n is the string’s length
and c is an opportune constant depending on the compressor. Even better, Bonnie
et al. in [11] experimentally showed that δ, z, and r (normalized to the interval [0, 1])
are almost indistinguishable on collections of genomic data. As a matter of fact, δ
is known to be an even more accurate information measure than z, r, and g: it is
monotone under string concatenation, invariant under reversals and alphabet permu-
tations, sub-additive, and asymptotically tight (in terms of worst-case entropy) for
representing strings, up to polylogarithmic factors [9]. None of the measures z, r, g
possesses simultaneously all of these properties.

Overview of the paper. After providing all necessary definitions in Section 2, in
Section 3 we prove new properties of the normalized substring complexity δ and of
the Normalized Compression Distance [7] NCDδ based on δ. In particular, we show
that δ is perfectly sub-additive, that NCDδ(x, y) always lies in [0, 1] (according to
[12], this is an indicator that δ is a compressibility measure of good quality), and that
NCDδ̃(x, y) is an additive Θ(ε)-approximation of NCDδ(x, y) if δ̃ is a multiplicative
(1± ε)-approximation of δ. This motivates designing data sketches for δ, a problem
that we solve in Section 4. Our sketch is based on the observation (already noted in
[13] for the particular case ε = 1) that maxi≥0{d⌈(1+ε)i⌉/⌈(1 + ε)i⌉} is a (1 − Θ(ε))-
approximation of δ. We approximate dk, for each sampled length k = ⌈(1 + ε)i⌉, by
keeping a count-distinct sketch [14] for the subset of distinct (Rabin’s fingerprints
[15] of the) length-k substrings. Our sketch uses space polynomial in ε−1 log n and
supports updates and queries (returning a (1±ε) approximation of δ), in O(ε−1 log2 n)
time. The sketches of two strings S1 and S2 can moreover be merged in O(ε−1 log2 n)
time to obtain the sketch of {S1, S2}, from which one can compute an additive ε-
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approximation of NCDδ(S1, S2). In Section 5 we show how to compute our sketch
in sub-linear space on an input stream of length n. The main difficulty in achieving
sub-linear space is that, in order to compute the Rabin’s fingerprints of the stream’s
length-k substrings, we need random access to the k-th most recent stream’s character.
Since the largest k for which we need to compute dk is linear in n, storing the most
recent k characters would require Θ(n) working space. Our solution relies on the
observation that, if k̂ = argmaxk≥1{dk/k} is small, then we can afford keeping a

sliding window of the last k̂ stream’s characters. If, on the other hand, k̂ is large, then
the stream is highly repetitive so we can compress it in small space while supporting
bookmarked access to its characters. We conclude in Section 6 with experimental
results. Complete proofs can be found in the full version [16].

Related work. Bonnie et al. [11] have already observed that dk can be efficiently
estimated by employing count-distinct sketches, and that this can yield an heuristic
algorithm for estimating δ. Their strategy relies on estimating dk/k for increasing
values of k, until a local maximum is found. While this strategy works well in practice
because, as they showed, k̂ = argmaxk≥1{dk/k} tends to be a very small number, on

particular strings (for example, Thue-Morse) k̂ is of the order of Θ(n) and, as a result,
computing all the sketches for dk requires linear space and quadratic processing time in
the worst case. Moreover, local maxima of dk/k do not always coincide with the global
maximum, so this strategy does not yield any provable approximation of δ. We are
not aware of other works in the literature describing data sketches for estimating the
output sizes of dictionary compressors (the literature on estimating empirical entropy
is, on the other end, much richer: see [4] and references therein). Our results can be
viewed also as a space-efficient way to approximate measure δ. Christiansen et al. [17]
showed how to compute δ for a given string T in linear time and space. Recently,
Bernardini et al. [13] provided space-time trade-offs for computing/approximating
δ in sub-linear working space on top of the input string. If O(n polylog n) time is
allowed, their algorithms require Θ(n/ polylog n) working space, which they proved
to be optimal for computing δ exactly. Our algorithm, on the other hand, computes a
multiplicative (1±ε)-approximation of δ using working space polynomial in ε−1 log n.

2 Preliminaries

We denote [n] := {1, . . . , n} for any integer n ([n] = ∅ for n ≤ 0). For a ∈ R+ and a
real number ε ∈ [0, 1], we write [(1±ε)a] for the interval [(1−ε)a, (1+ε)a]. Similarly,
we write [a± ε] for the interval [a− ε, a+ ε].

We assume to be given a string S of length n > 1 over an alphabet Σ of cardinality
σ > 1. For k ≥ 1, we define Dk(S) := {S[i..i + k − 1] : i ∈ [n − k + 1]}, i.e., the
set of all distinct substrings of length k of S. Notice that Dk(S) = ∅ if k > n. The
k-substring complexity dk(S) of S is the cardinality of this set, i.e., dk(S) := |Dk(S)|.
The normalized substring complexity δ is defined as follows:

δ(S) := max
k≥1
{|Dk(S)|/k} = max

k≥1
{dk(S)/k}.
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We omit the argument from Dk, dk, and δ in case it is clear from the context. Here,
we also extend this measure to pairs of strings S and T . Rather than using δ(ST ),
we propose the following natural definition that does not take into account artificial
length-k substrings crossing the border between S and T :

δ(S, T ) := max
k≥1
{|Dk(S) ∪Dk(T )|/k}.

This version also gives mathematically cleaner results (e.g., perfect sub-additivity)
and, in any case, differs from δ(ST ) by at most 1. As a consequence, most of our
results (read also below) hold also by replacing δ(S, T ) with δ(ST ).

TheNormalized Compression Distance has been defined by Cilibrasi and Vitányi [7]
as a proxy for the non-computable Normalized Information Distance [18]. For two
strings S and T and an arbitrary compressibility measure Z (for example, the output
size of compression software such as gzip and xz), it is defined as

NCDZ(S, T ) :=
Z(S, T )−min{Z(S), Z(T )}

max{Z(S), Z(T )}
.

Given a uniform prime q = nΘ(1), the Rabin’s fingerprint [15] of S is defined as
ρ(S) =

∑n
i=1 S[i] · σn−i mod q. Collisions between substrings of S through ρ happen

with low probability, so the results of our paper hold with high probability. We
extensively use the fact that the fingerprint of the concatenation of two strings S1, S2

can be computed in constant time from (i) the fingerprints of S1 and S2 and (ii) σ|S2|

mod q (see [15]). Given a set B ⊆ Σ∗ of strings, we define ρ(B) = {ρ(s) : s ∈ B}.
Given a set U , a count-distinct sketch CD(U) is a sub-linear-space data struc-

ture supporting three main operations: CD(U).add(x), which turns the sketch into
CD(U ∪ {x}), CD(U1).merge(CD(U2)), which turns the sketch into CD(U1 ∪ U2),
and CD(U).estimate(), which returns a (1 ± ε) approximation of |U |. In our work,
we use the optimal count-distinct sketch of Kane et al. [14]. Letting U ⊆ [u], this
sketch uses O(ε−2 + log u) words of space and computes a (1 ± ε) approximation of
|U | with high probability of success. All operations are supported in O(log u) time1.

Assume S[1] = $, where $ is lexicographically smaller than all other alphabet’s
characters and does not appear anywhere else in S. The Burrows-Wheeler transform
(BWT) of the reverse SR of S is obtained by sorting lexicographically all suffixes of
SR and then taking, in this order, the character preceding each suffix. For example,
if S = $babba, then the sorted suffixes and the BWT of SR are shown in Table 1.

The LF property of the BWT states that the i-th occurrence of c ∈ Σ in the BWT
corresponds to the position of the i-th suffix starting with c ∈ Σ in Table 1. The LF
function is the permutation of [1, n] implementing this observation: for instance, in
the above example BWT.LF (2) = 5 because character BWT [2] corresponds to the
first character (b) of the fifth (in lexicographic order) suffix bab$. We denote with r
the number of equal-letter runs of the BWT; in the above example, r = 5 (runs are
highlighted in alternating bold/italic). We moreover use the following result:

1The authors claim O(ε−2+log u) bits of space and 2/3 success probability, which can be amplified
by taking the median of Θ(log u) sketches (thus yielding the bounds we claim above). In our paper,
the universe is composed by Rabin’s fingerprints and has therefore size u = nΘ(1).
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suffixes of SR BWT
$ b
a b $ b
a b b a b $ $
b $ a
b a b $ b
b b a b $ a

Table 1: Burrows-Wheeler transform BWT (SR) of the string SR = abbab$.

Lemma 2.1 ([19], Thm. 2). Letting S be a string and r be the number of equal-letter
runs in BWT (SR), there exists a data structure of O(r) words storing BWT (SR)
supporting right-extensions of S (i.e. BWT (SR) → BWT ((Sa)R), for any a ∈ Σ)
in O(log |S|) time. Within the same time, the structure supports computing the LF
function and retrieving any character of BWT (SR).

3 Properties of δ and NCDδ

We start by proving some properties of δ. Proofs of some statements are omitted due
to space limitations and can be found in the full version [16]. The first main property
that we show is that δ is both sub-additive and monotone in the following sense.

Lemma 3.1. For any strings S and T , max{δ(S), δ(T )} ≤ δ(S, T ) ≤ δ(S) + δ(T ).

The proof of the lemma uses the properties of the corresponding maximizers to-
gether with the fact that the union is a superset of both its arguments (left inequality)
and that the union is of smaller cardinality than the sum of the cardinalities of its
arguments (right inequality). We remark that it is a well-known fact that the mono-
tonicity property holds for the case of concatenation of the two strings [9]. Using the
sub-additivity of δ, we obtain:

Corollary 3.2. For any strings S and T it holds that 0 ≤ NCDδ(S, T ) ≤ 1.

To see why this holds, assume, w.l.o.g., that max{δ(S), δ(T )} = δ(S). Then,

NCDδ(S, T ) =
δ(S,T )−δ(T )

δ(S)
≥ δ(T )−δ(T )

δ(S)
= 0 and NCDδ(S, T ) ≤ δ(S)+δ(T )−δ(T )

δ(S)
= 1. Ming

et al. [12] state that common compressors yield a normalized compression distance
between 0 and 1 + ε, where the ε is due to “imperfections” of the compression algo-
rithm. Above we proved that in the case of the normalized substring complexity δ,
the corresponding ε is equal to 0.

We conclude by showing that a multiplicative approximation of δ can be used to
obtain an additive approximation of the Normalized Compression Distance NCDδ.

Lemma 3.3. Let ε ∈ (0, 1), ε′ := ε/5 and let S and T be two strings. Assume that
δ̃(S), δ̃(T ), and δ̃(S, T ) are approximations of δ in the sense that δ̃(S) ∈ [(1±ε′)δ(S)],
δ̃(T ) ∈ [(1± ε′)δ(T )], as well as δ̃(S, T ) ∈ [(1± ε′)δ(S, T )]. Then

NCDδ̃(S, T ) ∈ [NCDδ(S, T )± ε].
5



We prove this lemma by using the facts that δ̃ is a multiplicative approximation of
δ, that δ is sub-additive (see Lemma 3.1), and that NCDδ ∈ [0, 1] (see Corollary 3.2).

4 A data sketch for estimating δ

We introduce our data sketch, then prove that it yields a good approximation of δ.

Definition 4.1 (Sketch for δ). Let S be a string, A := {⌈αi⌉ : i ∈ [⌊logα n⌋]} be
a set of sampled lengths for some real number (sample rate) α > 1, and CDk =
CD(ρ(Dk(S))), where CD is the count-distinct sketch described in Section 2 and ρ is
Rabin’s hash function. Our data sketch is defined as κ(S) = ⟨CDk : k ∈ A⟩.

We define κ(S).estimate() = max{CDk.estimate()/k : k ∈ A}. When extending
the stream S with a new character a, yielding string Sa, the sketch is updated by
calling CDk.add(ρ(S[|S| − k + 2, |S|]a)) for all k ∈ A. We denote this operation by
κ(S).extend(a). Note that, if constant-time random access is available on S and if
σk−1 mod q has been pre-computed for all k ∈ A (in O(ε−1 log2 n) time), ρ(S[|S| −
k + 2, |S|]a) can be computed in constant time from ρ(S[|S| − k + 1, |S|]); see [15].
Finally, κ(S1).merge(κ(S2)) returns the sketch κ({S1, S2}) = ⟨CD′

k : k ∈ A⟩, where
CD′

k = CD1
k.merge(CD2

k) and CDi
k is the count-distinct sketch for the (fingerprints

of the) length-k substrings of Si, i ∈ {1, 2}. Operation extend(a) is not defined when
the sketch represents a set of strings; this is not an issue, since we will call merge
only to estimate δ(S1, S2) and NCDδ(S1, S2).

With the next theorem we show that κ(S).estimate() returns a multiplicative
(1± ε)-approximation of δ(S) (analogous for κ({S1, S2}).estimate()).

Lemma 4.2. Let S be a string of length n. Let ε > 0, ε′ = ε/4, and α = 1 + ε′.
Assume that d̃k ∈ [(1 ± ε′)dk(S)] for all k ∈ A := {⌈αi⌉ : i ∈ [⌊logα n⌋]}, then
δ̃ := max{d̃k/k : k ∈ A}, satisfies δ̃ ∈ [(1± ε)δ].

We show this theorem by quantifying the impact of two types of errors on the
quantity δ. These two types are (1) the error obtained when approximating the
values dk by d̃k and (2) the error due to the restriction of the string’s offsets [n] to
the set A. The error of type (1) directly implies an error of the same magnitude
(1 ± ε′) on δ. We note that this error actually itself has two sources, namely (1.1)
errors due to collisions when computing Rabin’s fingerprints and (1.2) errors due to
the count-distinct sketch when applied to the fingerprints. Both of these errors are
accounted for in the assumption d̃k ∈ [(1± ε′)dk(S)]. The error of type (2) instead is
more subtle to analyse – the main observation here is that dj+1 ≥ dj − 1 for every j,
as every distinct length-j substring other than possibly S[n− j + 1..n] gives at least
one distinct length-(j + 1) substring. Now assume that i ∈ [n] \ A and that a ∈ A
is the minimum element of A larger than i. Then applying the previous observation
iteratively yields da ≥ di − β, where β = a− i. Hence, we can quantify how much δ
gets “perturbed” by restricting to the subset A of the string’s offsets [n].

From Lemmas 3.3 and 4.2, the sketch of Definition 4.1 yields a multiplicative (1±
ε)-approximation of δ and an additive ε-approximation of NCDδ if CD is the count-
distinct sketch of [14] with error rate ε/20, and the set A is built with sample rate α =
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1 + ε/20. From [14] and since |A| ∈ Θ(ε−1 log n), our data sketch uses Θ(ε−3 log n+
ε−1 log2 n) words of space and supports all operations in time O(ε−1 log2 n).

Using repeatedly operation extend on our data sketch we immediately obtain:

Theorem 4.3. For any string S of length n supporting random access in time at
most O(log n), and any approximation rate ε > 0, we can compute a multiplicative
(1 ± ε)-approximation of δ(S) in O(ε−1n log2 n) time using Θ(ε−3 log n + ε−1 log2 n)
words of working space on top of the string. The result is correct with high probability.

5 Streaming algorithm

We now show how to compute the sketch of Definition 4.1 in O(
√
n log n) words of

working space (on top of the sketch) with one pass over the streamed input string.
Let S denote the current stream, and SR be the reversed stream. We assume

that an upper-bound n to the maximum stream length is known before the algorithm
starts. Let r be the number of equal-letter runs in the Burrows-Wheeler transform
of SR. By [10] and by the fact that δ is invariant under string reversals, it holds r ≤
8δ log2 n. Our streaming algorithm works as follows. We keep a sliding window S[|S|−
K + 1, |S|] of the last K stream characters, for some parameter K to be determined
later, and at the same time we keep a dynamic run-length BWT (RLBWT) of SR

that we update by appending the stream’s characters using Lemma 2.1. Before the
algorithm starts, in O(ε−1 log2 n) time we compute σk−1 mod q for all the |A| ∈
O(ε−1 log n) sampled substring lengths k ∈ A in our sketch, using fast exponentiation.

Let k ∈ A be one of the sampled string lengths in our sketch, and let a be a new
character arriving on the stream (so that the new stream is Sa). In order to update
our sketch, we need to compute the fingerprint of the last k stream’s characters:
ρ(S[|S|− k+2, |S|]a). At any stage of the algorithm, we keep the Rabin’s fingerprint
ρ(S[2, |S|]) of the whole stream, excluding character S[1] = $. If |Sa| = k + 1,
then ρ(S[|S| − k + 2, |S|]a) is equal to the Rabin’s fingerprint of the whole stream.
Otherwise, if |Sa| > k + 1 then ρ(S[|S| − k + 1, |S|]) has already been computed in
the previous steps and we can use the formula ρ(S[|S|−k+2, |S|]a) = (ρ(S[|S|−k+
1, |S|]) − S[|S| − k + 1] · σk−1) · σ + a mod q. As a result, updating the fingerprint
reduces to extracting character S[|S| − k+1]. We use the window S[|S| −K +1, |S|]
to extract S[|S|− k+1] for any k ≤ K, and the RLBWT to extract S[|S|− k+1] for
any k > K using a bookmarking technique that we sketch in Figure 1 and we describe
in full detail in the full version [16]. This allows us to update the Rabin’s fingerprints
for all sampled substring lengths k and thus to implement operation extend(a).

We now describe the policy we employ to keep space usage under control. Let
r′ be the number of equal-letter runs in the BWT obtained by ignoring (removing)
character $. It is easy to see that (i) r− 2 ≤ r′ ≤ r and (ii) r′ is non-decreasing upon
appending characters at the end of the stream. As soon as r′ ≥ 8n(log2 n)/K, we
discard the RLBWT and keep only the sliding window for the rest of the stream. As a
consequence, from this point on we are only able to extract (fingerprints of) length-k
substrings with k ≤ K. However, we show that this is enough: if we discard the
RLBWT, then it means that δ ≥ r

8 log2 n
≥ r′

8 log2 n
≥ n/K. Let k̂ = argmaxk≥1{dk/k}.7



suffixes of SR BWT
$ $

suffixes of SR BWT
$ b
b$ $

suffixes of SR BWT
$ b j = 1
ab$ $
b$ a

suffixes of SR BWT
$ b
aab$ $
ab$ a
b$ a j = 4

Figure 1: Example showing how the BWT (of the reversed stream) is updated upon character right-
extensions of the stream, and how the bookmark j corresponding to window length k = 2 is initialized
and updated. Top left: empty stream (S = $). Top right: a new character b arrives on the stream
(S = $b): in the BWT, $ is replaced by b and a new $ is inserted in the position corresponding to
the lexicographic rank i = 2 of the new suffix b$. Position i is computed in O(log |S|) time using
the algorithm described in [19, Thm. 2]. Bottom left: a new character a arrives on the stream
(S = $ba): in the BWT, $ is replaced by a and a new $ is inserted in the position corresponding to
the lexicographic rank i = 2 of the new suffix ab$. Since the stream length is equal to k + 1 = 3,
we initialize the bookmark j ← BWT.LF (i) = BWT.LF (2) = 1. Note that BWT [j] = b indeed
contains character S[|S| − k + 1] = b. Bottom right: a new character a arrives on the stream
(S = $baa): in the BWT, $ is replaced by a and a new $ is inserted in the position corresponding
to the lexicographic rank i = 2 of the new suffix aab$. Since 1 = j < i = 2 ($ is inserted after
position j), j = 1 is not modified (otherwise, it would have been incremented by 1). Finally, we
update j by advancing it by one position in the text: j ← BWT.LF (j) = BWT.LF (1) = 4. Note
that BWT [j] = a indeed contains character S[|S| − k + 1] = a. Importantly, the data structure of
[19, Thm. 2] uses always a space proportional to the number r of equal-letter runs of the BWT.

Then, k̂ = dk̂/δ ≤ n/δ ≤ K so to compute δ on the rest of the stream we can focus
only on the length-k substrings with k ≤ K.

The sliding window S[|S| − K + 1, |S|] uses K words of space. We discard the
RLBWT when r′ ≥ 8n(log2 n)/K, so (since r ≤ r′ + 2) this structure always uses
at most O(r) ⊆ O(n(log2 n)/K) words. As a consequence, in total we use O(K +
n(log2 n)/K) words of space, which is optimized asymptotically when K =

√
n log n;

then, our algorithm uses at most O(
√
n log n) words of space.

We keep one bookmark (a position in the BWT) for every sampled length k ∈ A, so
our bookmarking technique does not affect the asymptotic working space if ε ≥ n−1/2

(i.e. |A| ≤
√
n log n). Updating each bookmark and extracting S[|S| − k + 1] from

the RLBWT take O(log n) time by Lemma 2.1. This running time is absorbed by
operation merge() on the count-distinct sketches, see Section 4. We obtain:

Theorem 5.1. Given an upper-bound n to the stream’s length, we can compute the
sketch of Definition 4.1 in O(

√
n log n) words of working space and O(ε−1 log2 n)

worst-case delay per stream character, for any approximation factor ε ≥ n−1/2.

6 Implementation and experiments

We implemented a parallel version of our streaming algorithm in C++.2 We ran exper-
iments on a server with Intel(R) Xeon(R) W-2245 CPU @ 3.90GHz with 16 threads
and 128GB of RAM running Ubuntu 18.04 LTS 64-bit. Our complete experimental

2https://github.com/regindex/substring-complexity
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results are reported in [16]. We used the repetitive real Pizza&Chilli dataset (P&C)3,
large Canterbury corpus4, and datasets from AF Project5. We computed the relative
error of our approximation δ̃ with respect to δ for different sampling densities (i.e.
parameter α of Definition 4.1). With the sparsest (less precise) sampling scheme
(option -p 1), δ̃ always differed from δ by up to 5% and the average throughput was
of 174 MB per minute using up to 16 threads (option -t 0). For efficiency reasons,
the RLBWT is disabled by default: in practice this does not affect precision, since
k̂ = argmaxk dk/k was always extremely small (k̂ ≤ 100 in all datasets), meaning
that the RLBWT is never required. We also computed δ̃ on a big dataset of 189GB
long reads of Rana Muscosa6. Our software finished the computation in 15:31 hours
with a throughput of 203MB per minute using only about 5MB of internal memory.
Experiments on repetitiveness measures. We studied the effectiveness of δ̃ as
a repetitive measure. We compared it to exact δ, to the number of runs of the
BWT r, to the number of phrases of the LZ77 parse z, and to the output of two
popular compressors, xz and 7z. For each dataset in the repetitive P&C corpus, we
computed these five measures for prefixes of increasing length. We observe that δ̃ not
only follows closely the values of δ, but it also mirrors the trend of the other four
measures. This suggests experimentally that δ̃ computed by our streaming algorithm
is a good indicator of repetitiveness and compressibility.

Figure 2: From left to right: δ̃ error distribution on P&C repetitive corpus, lineplot showing
five repetitiveness measures (normalized to [0, 1]) computed on increasing prefixes of para.

Experiments on phylogeny reconstruction. We verified that NCD based on
the compression software xz, on δ, and on δ̃ yield similar phylogenetic trees with
the Gene-trees dataset from AF Project; the average normalized Robinson-Foulds
distances ranged from 0.1 to 0.3, indicating that the reconstructed trees were very
similar. We also measured the running time to compute all-pair NCDs on 29 sequences
of average length ∼81k. This process took only 3 minutes for δ̃ and 24 minutes for
the exact δ, while for xz it required 42 minutes.

3https://pizzachili.dcc.uchile.cl/repcorpus/real/
4http://corpus.canterbury.ac.nz/resources/large.tar.gz
5https://afproject.org
6https://trace.ncbi.nlm.nih.gov/Traces/?view=run_browser&acc=SRR11606868
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A Missing Proofs

We start with the following two easy observations that we use in our proofs later on.

Observation A.1. If S ̸= an for a ∈ Σ, then δ(S) ≥ d1/1 ≥ 2/1 = 2.

Note that if at least two distinct letters appear, it follows that d1 > 1 and thus
δ ≥ d1/1 ≥ 2. Since it is easy to recognize the case S = an for some a ∈ Σ in constant
space and constant delay per character, from now on we assume w.l.o.g. that δ ≥ 2.

We continue with the following simple observation that we will use in the proof
of Lemma 4.2.

Observation A.2. It holds that k̂ = argmaxk≥1{dk(S)/k} ≤ n/2.

Proof. Assume that k̂ > n/2. Then it is immediate that dk̂ ≤ n − k̂ + 1 < n/2 (as
the right most character in the substring can be at index at most n). We now obtain
that dk̂/k̂ < 1, contradicting Observation A.1.

Lemma 3.1. For any strings S and T , max{δ(S), δ(T )} ≤ δ(S, T ) ≤ δ(S) + δ(T ).

Proof. Let kS,T , kS, and kT be such that δ(S, T ) = |DkS,T (S)∪DkS,T (T )|/kS,T , δ(S) =
|DkS(S)|/kS, and δ(T ) = |DkT (T )|/kT . Let, w.l.o.g., δ(S) = max{δ(S), δ(T )}. Then,

δ(S, T ) =
|DkS,T (S) ∪DkS,T (T )|

kS,T
≥ |DkS(S) ∪DkS(T )|

kS
≥ |DkS(S)|

kS
= δ(S),

where the second inequality uses the fact that kS is the maximizer for S. For the
second claim,

δ(S, T ) =
|DkS,T (S) ∪DkS,T (T )|

kS,T
≤
|DkS,T (S)|

kS,T
+
|DkS,T (T )|

kS,T

≤ |DkS(S)|
kS

+
|DkT (T )|

kT
= δ(S) + δ(T ),

where the second inequality uses the fact that kS and kT are the respective maximizers
for S and T .

Lemma 3.3. Let ε ∈ (0, 1), ε′ := ε/5 and let S and T be two strings. Assume that
δ̃(S), δ̃(T ), and δ̃(S, T ) are approximations of δ in the sense that δ̃(S) ∈ [(1±ε′)δ(S)],
δ̃(T ) ∈ [(1± ε′)δ(T )], as well as δ̃(S, T ) ∈ [(1± ε′)δ(S, T )]. Then

NCDδ̃(S, T ) ∈ [NCDδ(S, T )± ε].
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Proof. We start with the lower bound. Using the definition of NCDδ̃(S, T ), we obtain

NCDδ̃(S, T ) ≥
(1− ε′) · δ(S, T )− (1 + ε′)min{δ(S), δ(T )}

(1 + ε′)max{δ(S), δ(T )}

=
1

1 + ε′
· NCDδ(S, T )−

ε′

1 + ε′
· δ(S, T ) + min{δ(S), δ(T )}

max{δ(S), δ(T )}

= NCDδ(S, T )−
ε′

1 + ε′
·
(δ(S, T ) + min{δ(S), δ(T )}

max{δ(S), δ(T )}
+NCDδ(S, T )

)
≥ NCDδ(S, T )−

4ε′

1 + ε′

≥ NCDδ(S, T )− ε

using the sub-additivity of δ from Lemma 3.1, the fact that NCDδ(S, T ) ≤ 1 according
to Corollary 3.2, and the definition of ε′. Similarly, now for the upper bound, we
obtain

NCDδ̃(S, T ) ≤
(1 + ε′) · δ(S, T )− (1− ε′)min{δ(S), δ(T )}

(1− ε′)max{δ(S), δ(T )}

=
1

1− ε′
· NCDδ(S, T ) +

ε′

1− ε′
· δ(S, T ) + min{δ(S), δ(T )}

max{δ(S), δ(T )}

= NCDδ(S, T ) +
ε′

1− ε′
·
(δ(S, T ) + min{δ(S), δ(T )}

max{δ(S), δ(T )}
+NCDδ(S, T )

)
≤ NCDδ(S, T ) +

4ε′

1− ε′

≤ NCDδ(S, T ) + ε

again using the sub-additivity of δ from Lemma 3.1, the fact that NCDδ(S, T ) ≤ 1
according to Corollary 3.2, the definition of ε′ and the assumption that ε < 1.

Lemma 4.2. Let S be a string of length n. Let ε > 0, ε′ = ε/4, and α = 1 + ε′.
Assume that d̃k ∈ [(1 ± ε′)dk(S)] for all k ∈ A := {⌈αi⌉ : i ∈ [⌊logα n⌋]}, then
δ̃ := max{d̃k/k : k ∈ A}, satisfies δ̃ ∈ [(1± ε)δ].

Proof. We first observe that ⌈α⌊logα n⌋⌉ ≤ n. To see this, assume otherwise, i.e., that
α⌊logα n⌋ = n+x for some x > 0. Then x = α⌊logα n⌋−n ≤ αlogα n−n = 0, contradicting
the assumption that x > 0. It follows that A ⊆ [n]. Now, for the upper bound notice
that δ̃ ≤ max{(1 + ε′)dk/k : k ∈ A} ≤ (1 + ε′) · δ ≤ (1 + ε) · δ.

For the lower bound, let k̂ ∈ [n] be such that δ = dk̂/k̂ and let i be such that

⌈αi−1⌉ ≤ k̂ ≤ ⌈αi⌉. Notice that obviously ⌈αi−1⌉ ∈ A, but also ⌈αi⌉ ∈ A as αi ≤ αk̂ ≤
αn/2 ≤ n by Observation A.2. We now distinguish two cases: (1) ⌈αi⌉ = ⌈αi−1⌉+ 1
and (2) ⌈αi⌉ ≥ ⌈αi−1⌉ + 2. In case (1), we get that k̂ ∈ {⌈αi−1⌉, ⌈αi⌉} ⊆ A and
consequently δ̃ ≥ max{(1− ε′)dk/k : k ∈ A} = (1− ε′) · δ ≥ (1− ε) · δ. In case (2), it
holds that

αi−1 · ε′ = αi − αi−1 ≥ ⌈αi⌉ − 1− αi−1 ≥ ⌈αi−1⌉+ 1− αi−1 ≥ 1. (1)
12



Now let β := ⌈αi⌉− k̂. We note that dj+1 ≥ dj−1 for every j, as every distinct length-
j substring other than possibly S[n− j +1..n] gives at least one distinct length-j +1
substring. Applying the same observation iteratively yields d⌈αi⌉ ≥ dk̂ − β. Hence

δ̃ ≥ (1− ε′) ·
d⌈αi⌉

⌈αi⌉
≥ (1− ε′) ·

dk̂ − β

k̂ + β
= (1− ε′)δ ·

1− β
dk̂

1 + β

k̂

≥ (1− ε′)δ ·
1− β

2k̂

1 + β

k̂

,

where we used that δ(S) = dk̂/k̂ ≥ 2 in the last step. We can now upper bound β by

⌈αi⌉ − ⌈αi−1⌉ ≤ αi + 1− αi−1 = αi−1 · ε′ + 1 ≤ k̂ε′ + 1. This yields

δ̂ ≥ (1− ε′)δ ·
1− ε′

2
− 1

2k̂

1 + ε′ + 1

k̂

≥ (1− ε′)δ · 1− ε′

1 + 2ε′
≥ (1− ε) · δ,

where the second inequality uses that k̂ ≥ 1/ε′ following from (1) and the last in-
equality uses the definition of ε′.

B Details on Bookmarking the RLBWT

We show how to extract S[|S| − k + 1] from the RLBWT, for any of the sampled
lengths k. See also the example in Figure 1. We show how to initialize and update
(upon character extensions of the stream) an index (bookmark) j such that BWT [j] =
S[|S| − k + 1]. This allows us retrieving S[|S| − k + 1] in O(log |S|) ⊆ O(log n) time
with a random access operation BWT [j] on the RLBWT data structure.

We first discuss how to initialize the bookmark j as soon as the stream’s length
becomes S = k+1 (before that, the window of the last k characters is not completely
filled). The initialization works by setting j = BWT.LF (i), where i is the position
such that BWT [i] = $. Since the LF mapping on the BWT of the reversed stream
corresponds to advancing one position in the stream, it is easy to see that, after this
operation, it holds BWT [j] = S[|S| − k + 1]. See Figure 1 for an example.

Suppose we are storing the bookmark j such that BWT [j] = S[|S| − k + 1].
We now show how to update j when a new character a arrives; let S ′ = Sa be the
updated stream. Our goal is to modify j so that BWT [j] = S ′[|S ′| − k + 1] holds.
The observation is that, upon the extension of the stream by one character a, the
algorithm of [19] modifies the BWT as follows: letting i being the index such that
BWT [i] = $, the algorithm (1) replaces BWT [i]← a, and (2) inserts $ in the position
i′ corresponding to the lexicographic rank of the new reversed stream (Sa)R (position
i′ is computed in O(log |S|) time using basic operations on the RLBWT, see [19] and
Example 1): the new BWT becomes BWT ← BWT [1, i′− 1] · $ ·BWT [i′ +1, |S|]. If
j < i′ (i.e. $ is inserted after position j), then after these modification we have that
BWT [j] = S ′[|S ′| − k]; if, on the other hand, j ≥ i′ (i.e. $ is inserted before position
j), then we increment j as j ← j + 1, and BWT [j] = S ′[|S ′| − k] holds also in this
case. Finally, we need to “advance” j by one position on the stream; this operation
corresponds to one LF mapping step on the BWT: j ← BWT.LF (j) (O(log |S|)
time). After these operations, we finally have that BWT [j] = S ′[|S ′| − k + 1].
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C Detailed Experimental Results

C.1 Estimation of dk.

As mentioned above, there are two types of errors in the computation of the approx-
imation δ̃ of δ: (1) the error obtained when approximating the values dk by d̃k and
(2) the error due to the restriction of the string’s offsets [n] to the “sampled set”
A. The error of type (1) itself has two sources, namely (1.1) errors due to collisions
when computing fingerprints with Rabin’s hash function and (1.2) errors due to the
count-distinct sketch when applied to the fingerprints. We experimentally evaluated
the error of type (1.1) and (1.2) as follows. For the Pizza&Chili repetitive corpus, we
compute the exact values of dk and their estimated values d̃k for k ∈ {2i : 0 ≤ i ≤ 7}.
We observe that the error (1.1) caused by collisions in Rabin’s fingerprint were negligi-
ble; the error in the ratio of the distinct number of fingerprints and the actual number
of distinct substrings was less than 0.01%. The error due to the count-distinct sketch
(1.2) was dependent on its parameter: the number of registers used for estimation.
It is worth noting that the number of registers does not affect the time complexity
when updating sketches, but only affects the space usage by a constant factor (and
the time to compute the actual estimation at the end, which is negligible). When
more than 214 registers were used for count-distinct sketches, the maximum relative
error was observed to be below 2%, and the average error on dk was below 0.5%; see
Table 2.

The number of registers 210 212 214 216

Maximum 0.0641 0.0313 0.0186 0.0077
Average 0.0204 0.0089 0.0041 0.0017

Table 2: The relative error measured in estimating dk

C.2 Experiments on phylogenetic tree reconstruction.

To show similar behavior of NCDxz, NCDδ, and NCDδ̃, we conducted experiments
on phylogenetic tree reconstruction using Gene-Trees dataset from AF project7. It
contains 11 groups of sequences (651 sequences in total) where each group yields a tree.
We constructed 11 phylogenetic trees (i.e. one tree for each group) for each of the NCD
measures, and compare the constructed trees by measuring the normalized Robinson-
Foulds (nRF) distance, a widely-used distance measure for this purpose. The distance
tends to 0 as trees become similar, and tends to 1 when comparing with a random
tree. The average nRF between NCDxz and NCDδ was measured as 0.2, indicating
similar trees were reconstructed. The average nRF between NCDδ and NCDδ̃ ranges
from 0.115 to 0.250 depending on the parameters. For ease of interpretation of these

7https://afproject.org/

14



CITE1 MACMU
CITE1 PANTR
CITE1 BOVIN
CITE1 CANFA
CITE1 MOUSE
CITE1 RAT
CITE1 ORNAN
CITE1 DANRE
CITE2 HUMAN
CITE2 PANTR
CITE2 BOVIN
CITE2 MOUSE
CITE2 RAT
CITE2 MONDO
CITE2 MACMU
CITE2 CHICK
CITE2 XENTR
CITE2 DANRE
CITE4 CHICK
CITE4a DANRE
CITE4a TAKRU
CITE4b DANRE
CITE4b TAKRU
CITE4 XENTR
CITE4 HUMAN
CITE4 PANTR
CITE4 MACMU
CITE4 BOVIN
CITE4 MOUSE
CITE4 RAT
CITE4 MONDO
CITED BRAFL
CITED NEMVE
CITE1 HUMAN

CITE1 PANTR
CITE1 MACMU
CITE1 BOVIN
CITE1 CANFA
CITE1 MOUSE
CITE1 RAT
CITE1 ORNAN
CITE1 DANRE
CITE2 HUMAN
CITE2 PANTR
CITE2 BOVIN
CITE2 MOUSE
CITE2 RAT
CITE2 MONDO
CITE2 MACMU
CITE2 CHICK
CITE2 XENTR
CITE2 DANRE
CITED BRAFL
CITE4 CHICK
CITE4a DANRE
CITE4b DANRE
CITE4b TAKRU
CITE4a TAKRU
CITE4 XENTR
CITE4 HUMAN
CITE4 PANTR
CITE4 MACMU
CITE4 BOVIN
CITE4 MOUSE
CITE4 RAT
CITE4 MONDO
CITED NEMVE
CITE1 HUMAN

Figure 3: Two similar phylogenetic trees constructed using normalized compression distance
(NCD) with estimated normalized substring complexity δ̃ (left) and a popular compression
software xz (right). Normalized Robinson-Foulds distance is 0.194.

values, we depict two similar phylogenetic trees with nRF=0.194 in Figure 3, which
is an actual example of reconstructed trees using NCD with δ̃ and xz.

Running Time. To construct a phylogenetic tree from a sequence set, we usually
need to compute all-pair distances. When sequences are long, computing NCDs can
be quite costly because we need to compress concatenated sequences for all pairs of
sequence in the input set. On the other hand, our sketching can be more efficient
because we only need to compute sketches for each sequence, then merging sketches
can be done very quickly compared to processing the entire sequences all over again.
To demonstrate this, we measure the running time for computing all-pair NCDs on
E.coli dataset from AF Project that consists of 29 sequences of average length 81,588.
Computing all-pair NCDs with xz and the exact δ took about 42 and 24 minutes.
On the other hand, our sketching method took only 3 minutes.
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