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Abstract 
 

Searching for humans lost in vast stretches of ocean 
has always been a difficult task.  In this paper, a range 
of machine vision approaches are investigated as 
candidate tools to mitigate the risk of human fatigue 
and complacency after long hours performing these 
kind of search tasks.  Our two-phased approach 
utilises point target detection followed by temporal 
tracking of these targets.  Four different point target 
detection techniques and two tracking techniques are 
evaluated.  We also evaluate the use of different colour 
spaces for target detection.  This paper has a 
particular focus on Hidden Markov Model based 
tracking techniques, which seem best able to 
incorporate a priori knowledge about the maritime 
search problem, to improve detection performance. 
 
1. Introduction 
 

Human maritime search and rescue missions have 
always been a challenging task and an element of 
chance is involved in the detection of survivors [1].  
Humans become fatigued and complacent after long 
hours of searching, reducing the chance of finding 
survivors.  We propose the use of machine vision to 
automate the location of human survivors lost at sea, 
and present an evaluation of a number of techniques to 
achieve this. 

Australia’s search and rescue region alone covers 
approximately 53 million square kilometres, which is 
equivalent to nearly one tenth of the Earth’s surface.  
This is a vast area to search and if robots, such as 
Unmanned Aerial Vehicles (UAVs) are employed, this 
could increase the probability of locating survivors.  
Given this search capability, robots would be able to 
assist and aid present manned search endeavours by 

utilising UAVs as a force-multiplier.  This would allow 
the current search efforts to be more flexible and to 
respond with appropriate force in a timelier manner. 

A small number of studies into the automation of 
maritime searches have previously been conducted, yet 
all of these have restricted the search to small vessels 
and high visibility targets.  Most notably, Sumimoto, et 
al [2, 3] have investigated the search for small bright 
orange vessels, such as life rafts, in the ocean.  
Methods such as morphological and high-pass filters 
were used to increase target signal-to-noise ratio (SNR) 
as well as contour matching to exploit shape 
information for distinguishing the target.  However, 
only limited use was made of the colour information.  
In [4], Toet investigated the maritime search problem 
by choosing to fuse the morphological top-hat 
information from two different IR spectral frequency 
bands to reduce the affects of noise in the image 
produced by the surface of the ocean while searching 
for approaching kayaks. 

Both of these investigations used images taken from 
static platforms looking out across the ocean, as from 
the bridge of a ship, searching for targets that are 
highly visible and largely above the surface of the 
water. 

In light of this prior work, this paper will examine 
the performance of various point detection front-ends 
along with a number of track-before-detect techniques 
in an effort to find the most effective configuration for 
the detection of humans in an aerial maritime search 
environment. 

This paper is organised in the following way: The 
next section contains a brief description of the problem 
and the constraints are outlined.  Section 3 presents an 
overview of the proposed system, and Section 4 
defines the colour transformations, Section 5 and 
Section 6 detail the point detection and tracking phase 
of the system, respectively.  The experiments 
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performed are described in Section 7 and the results 
reported in Section 8. 

 
2. Problem Definition 
 

This paper specifically addresses the detection of a 
single person in the water during a daytime aerial 
search in a scenario where the survivor is without a 
high contrast floatation or location device.  The images 
are taken from a downward looking camera and the 
ocean surface currents are no faster than 2m/s [5]. 

To maximise the effective search corridor of a 
single camera the proposed algorithm searches for 
persistent point-like targets.  This feature of the 
proposed search approach also has a bearing on the 
flight altitude that the system can be flown at, given the 
resolution and field of view (FOV) of the camera. 

Searching for a person in the water is difficult 
because the target may only occupy 1-3 pixels in a 
dynamic and constantly changing environment, and is 
therefore not easily distinguished from the background.  
Furthermore, the target has limited time within the 
field of view of the camera.  Depending on the speed 
of the aircraft, the target maybe in view for as little as 
3-5 seconds.  Hence, a decision on the target’s status 
must be made quickly to allow the operator to respond 
to the alarm. 
 
3. System Overview 
 

In point detection applications it is common to use 
techniques in the spatial domain such as spatial 
masking techniques [6] as opposed to methods such as 
Fourier transforms and the continuous wavelet 
transform that consider the entire image as a single 
entity. 

Various temporal tracking techniques can then be 
used to discriminate the true target from noise using 
the target’s properties such as size, shape, colour and 
temporal dynamics. 

Therefore, the proposed detection system comprises 
two main components: a point target detection phase 
(front-end) to identify candidate pixels, followed by a 
temporal tracking phase that uses a priori knowledge 
and historical data to discern true target behaviour of 
the candidates (see Figure 1).  We investigate four 
front-end image processing techniques and two 
temporal filtering approaches: Dynamic Programming 
(DP) and Hidden Markov Model (HMM) filtering. 
 
4. Colour Spaces 
 

Colour information can be useful for distinguishing 
foreground and background objects and when dealing  

 
Figure 1. System Block Diagram 

 
with small, pixel-sized targets all useful information 
should be exploited.  Therefore, alternative colour 
spaces are investigated to determine which spaces 
maximise the SNR before other filtering stages. 

The most likely part of the survivor’s body to be 
seen above the water is their head.  Hence, a 
provisional database of hair colours was compiled that 
were then modelled and combined to form target 
probability density functions (PDFs) to be used in the 
HMM.  The dynamic programming approach does not 
allow for this kind of a priori knowledge to be directly 
incorporated into its’ structure.  PDFs for the ocean 
colour (i.e. background) were also established. 

Based on the conventional Red–Green–Blue (RGB) 
colour space where the images were acquired, the 
target and background models lacked separation 
making it difficult for the HMM to consistently discern 
true targets.  Therefore, alternative colour spaces were 
explored in an effort to isolate, as much as possible, 
target colour models from that of the background. 

Using the inbuilt colour transformation functions in 
Matlab® the RGB images were transformed to 
equivalent Hue–Saturation–Value (HSV), Luma–Blue-
Chrominance–Red-Chrominance (YCbCr) and Luma–
In-Phase–Quadrature (YIQ) images, in an effort to 
exploit the useful properties of these alternate colour 
spaces. 

Shadows often cause significant changes in 
intensity but have minimal effect on chromaticity.  
Some colour spaces, such as RGB, are more 
susceptible to illumination changes, while others, like 
HSV, can reduce the influence of the illumination 
changes, reflections and shadows [7]. 
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5. Point Target Detection Phase 
 

Small targets are difficult to detect because they are 
not easily distinguishable from noise and/or clutter.  In 
the proposed system, the automated search would be 
conducted at an altitude that would result in an average 
human head [8] occupying only 1-3 pixels of the 
search camera’s FOV, eliminating any shape 
information.  For these reasons we investigate point 
detection techniques. 
 
5.1. Mathematical Morphology 
 

Morphology is based on using a structuring element 
to perform two fundamental operations, dilation and 
erosion, with combinations of these operations creating 
the open and close functions, described as follows: 
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Morphological filtering of images, either Electro-
Optic (EO) or Infra-Red (IR), has proven to be quite 
successful at discovering point-like objects in areas of 
aircraft collision avoidance [9] and multi-spectral IR 
target detection [4]. 

The particular morphological filtering 
implementation of the close-minus-open (CMO) 
technique presented in this paper is a consolidation of 
the filtering method employed by Casasent [10] and 
the filter application of Deshpande [11].  Four 1D slit-
shaped structuring elements (one vertical, one 
horizontal, one on the leading diagonal and one on the 
trailing diagonal) are applied at both the close and open 
steps.  This quad-filter approach allows only targets 
which are compact in all directions (i.e. point-like) to 
be enhanced.  Non-compact clutter, such as white caps 
and large floating debris, are attenuated. 

However, it was found that the basic CMO 
operations give rise to images that no longer correctly 
represent the zero mean nature of the image noise 
(which inturn degrades the effectiveness of the tracking 
phase) [9].  The following alteration to the CMO stage 
was made to preserve the sign of the CMO image 
output: 

Using the preserved sign method of CMO reduces 
false alarms by an average of 20% as opposed to the 
normal CMO process [9]. 
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5.2. Order Statistic Filters 
 

Another widely used approach for finding small 
targets is to apply order statistic filters similar to those 
presented by Deshpande [11].  The order statistic 
filters, such as the median filter, are extensively used in 
multi-dimensional signal processing and are able to 
remove impulse noise, preserve geometrical features as 
well as being computationally efficient.  For this study 
a mean-median filter was chosen and was implemented 
in a similar manner to that described in [11]. 

The mean-median filter is implemented in the 
following way: 

( ) [ ]
( ) ( ) ( )[ ]
( ) ( ) ( )[ ]

( )m,n
Ny

x
nNmxnmxnNmxmedian

NnmxnmxNnmxmedian
zzmeannmy

 is pixel focal  thewhere
12 size ofarray  dowMedian win  theofOutput 

Input     and
,,...,,,..,,z

,,...,,,..,,z where
)4(,,

2

1

21

+=
=

+−=
+−=

=

 

Finally, the adaptive median filter (AMF) is an 
extension of the basic median filter (BMF), where the 
size of its window/kernel depends on the statistical 
properties of the neighbouring pixels of the focal pixel.  
Using this type of filter achieves two objectives: 
firstly, it thoroughly removes impulse noise and 
secondly, it reduces the extent of distortion that is 
evident with a comparable median filter. 

As previously mentioned, these order statistic filters 
remove impulse noise; therefore the difference 
between the filtered image and the original produces an 
image of potential point-like targets which is then 
passed to the tracking phase. 
 
6. Temporal Tracking Phase 
 

Traditional temporal tracking algorithms often use 
thresholded measurements and attempt to associate 
track measurements over time – this method works 
well for high SNR scenarios, however becomes 
problematic once the target measurements are 
comparable to the noise and clutter.  In a low SNR 
environment, lowering the threshold would degrade 
system performance by increasing false alarms. 

Thresholding raw sensor measurements result in a 
loss of information. Keeping all measurement 
information allows for the potential to track low SNR 
targets in an unfavourable environment by integrating 
sensor responses over time to detect and track targets 
in high clutter and low SNR scenarios.  However, 
clutter is reduced with the addition of the front-end, 
thus enhancing the ability to effectively identify 
plausible point-like targets. 

Finally, a threshold is imposed as a final stage to the 
system to grant target status to those candidates that 
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have been tracked over a number of frames – this 
technique is commonly referred to as track-before-
detect (TBD), and is a common concept in radar 
technology. 

For the data considered in this study the search for 
targets between consecutive frames is restricted to 
within a 3x3 kernel as the target’s dynamics are limited 
within the maritime environment, as described below. 

Assume the use of a 1024x768 pixel camera 
operating at 15 frames per second (fps) at a nominal 
search height of 150m above sea-level and travelling at 
150km/h [1].  The highest documented surface current 
speeds (barring extreme environmental anomalies) are 
in the vicinity of 2m/s [5] which is approximately 
7km/h.  In addition to this surface current, the 
maximum swimming speed of a human is roughly 
8km/h [12].  Aggregating these two velocities still does 
not exceed the maximum velocity allowed by our 
target dynamics model. 

To see this, suppose the FOV of the camera in the 
direction of the aircraft x-axis is 60°, this makes each 
pixel equivalent to 0.226m (average human head 
diameter [8]).  Thus, for a target to move at least two 
pixels, relative to the ground, between consecutive 
frames it would have to be travelling at a minimum 
speed of approximately 25km/h – a speed that is highly 
improbable for the type of targets of interest.  As a 
result, for the problem of airborne maritime searches 
the slow-moving nature of the target allows the 
discrete velocity space to be limited to ±1 pixel in both 
the x- and y- directions. 
 
6.1. Dynamic Programming 
 

Dynamic Programming is a widely used TBD 
method initially developed by Bellman in the 1940s 
and 1950s as a method of solving multistage decision 
problems.  Gandi [13] and Carnie [9] applied DP to the 
image based target detection/tracking problem to 
optimise the target classification decisions at each 
frame (i.e. stage) of the process while using relatively 
simple constraints. 

In this paper the target velocity is assumed constant, 
although small accelerations/manoeuvres are tolerable 
along plausible target trajectories.  These target 
trajectories are modelled as state transitions and each 
transition is considered equally likely. 

Assuming constant velocity, it can be shown [14] 
that for each discrete target state (i,j,u,v) at frame k, 
there are four possible state transitions corresponding 
to frame k+1, where (i,j) denotes a discrete position in 
the 2D image space and (u,v) denotes one of the four 
2D velocity branches.  Possible transitions are 
discretised into combinations of up/down and left/right 
pixel movement sectors.  Consequently, only four 

velocity branches are required to sufficiently describe 
the possible target motion, illustrated below in Figure 
2. 

 
Figure 2. DP state transitions 

The dynamic programming algorithm used in this 
paper is divided into three stages – Initialisation, 
Recursion and Decision, and is based on the approach 
used by Gandhi. 

Initialisation: The image created at the completion 
of each iteration, for each velocity branch (u,v), is 
denoted by ( )kjiFuv ,, .  Initialisation of uvF  is: 

( ) )5(,,,00,, vujijiFuv ∀=  
Recursion: The following expression is used to 

produce the intermediate image ( )kjiFuv ,, . 
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Where f(i,j,k) is the image at frame k and the forgetting 
factor, 10 ≤≤ α , gives greater significance to past 
values as it is increased.  Using the kernels defined by 
(u,v), ( )( )1,,max

,
−kjiFuvvu

 is calculated with its focal 

pixel at (i,j), see Figure 2. 
By summing the frames the system is able to 

attenuate the affect of noise spikes that appear in the 
output of the CMO morphological filter within a few 
iterations.  Therefore, only slow-moving persistent 
targets are maintained while transient anomalies, such 
as noise, are mitigated. 

Decision: Immediately after the production of an 
intermediate image frame, ( )kjiFuv ,, , from each 
velocity branch a single output frame is created using 
the maximum value of all branches on a pixel-by-pixel 
basis. 

( ) ( )( ) )7(,,,,,max,,
,max vujikjiFkjiF uvvu

∀=

Finally, a binary form of the ( )kjiF ,,max  image is 
established using a single threshold that is empirically 
chosen to avoid the tracking image noise floor, with 
pixels exceeding the threshold classified as targets. 
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6.2. Hidden Markov Model 
 

The Hidden Markov Model is a powerful statistical 
tool involving stochastic processes that can be 
represented as an underlying discrete-value Markov 
chain state process that is partially observed through a 
sequence of measurements.  HMMs have found use in 
many areas, such as signal processing, in particular 
speech recognition and document character recognition 
applications. 

A HMM is characterised through the following: 
• The set of Markov chain states { }NsssS ,,, 11 …= , 

where N is the total number of valid states for the 
model; and 

• The HMM parameter set ( )BA,,πλ = , where: 
π  is the initial state distribution vector (also known 

as prior probabilities), e.g. π  is the probability of 
state i  at the arbitrary time 0=t . 

A is the state transition matrix (also known as 
transition probabilities), where ][ ijaA = , with ija  

being the probability of transition to state j  given 
current state i . 

B is the output distribution matrix (also known as 
emission probabilities), where ][ ikbB = , with ikb  
being the probability or likelihood of observing feature 
k given current state i. 

In our approach the number of states, N, used in the 
HMM is equal to the number of pixels of the input 
image (representing each of the possible locations of 
the target). 

After being initialised (8), The HMM filter 
essentially acts as a recursive algorithm which 
evaluates the probability of a target being in each 
location given all previous observations (9).  The 
output of this recursion algorithm is thresholded to 
determine if a target is present. 
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    The likelihood of a transition from one state, or 
pixel, to any of the surrounding eight states is defined 
by a discretised Gaussian surface with its peak located 

on the current state and its standard deviation equal to 
one third of its operational extent. 

In order to populate the emission probabilities 
matrix, B , the ratio of the target to background PDFs 
at each greyscale level was calculated.  The target 
PDFs were generated by sampling a variety of 
naturally coloured hair specimens (i.e. black, honey 
blonde, brown, red and white hair) while the 
background PDF was assembled by sampling image 
frames of the test data that did not contain valid targets 
and approximating this data using a Gaussian curve. 

Also incorporated into the emissions matrix is an 
augmented version of the information produced by the 
image processing front-end.  The greyscale readings 
given by the front-end are mapped to a cumulative 
normal curve to enhance the point-like interpretation of 
the front-end filter as dim point-like targets can be 
somewhat disadvantaged in the typical filtering 
process.  The parameters of the cumulative Gaussian 
curve are regulated by the statistical properties of and 
separation between the target and background PDFs. 

These two metrics, the ratios of hair colour PDFs to 
background PDF and the reinterpreted front-end 
readings, are then combined to form a single emissions 
matrix to be used in the HMM. 
 
7. Experiments 
 

Below we describe trials that were conducted on 
both simulation and real flight data to gauge the 
performance of various system configurations, and to 
determine the most effective approach. 
 
7.1. Simulations 
 

A simulated ocean scene was created using Blender, 
an open-source 3D animation application.  The scene 
was animated to generate image sequences similar to 
those that would be produced during an aerial search 
operation, and these were used to test the detection 
algorithms. 
 

      
Figure 3. Blender image samples 

 
Blender allowed us to vary wave height and speed, 

the colour of the ocean, the amount of white water as 
well as the reflections created by the sun.  Two 
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scenarios were used – calm water and wavy white 
water (left and right images in Figure 3, respectively). 

The scene was made to scale and the images shown 
in Figure 3 were created from a simulated camera 
height of 1000ft.  A human figure was also inserted 
into the scene with hair colour matching the data used 
to populate the emissions matrix in the HMM. 

Ten data sequences were generated from the two 
different sea states and five hair colours. 
 
7.2. Flight Data 
 

A flight test was conducted in a Cessna 172 over the 
beaches of the Gold Coast, Australia during June 2007.  
Images were captured from an altitude of 
approximately 500ft at 80 knots by a downwards-
pointing camera mounted to the wing strut.  A Point 
Grey Flea® camera fitted with a 185º FOV Fujinon 
YV2.2X1.4A-2 fisheye lens produced 1024x768 
images at 15Hz.  Camera pose (based on GPS and 
IMU) were also logged for each frame 

Although data was captured with a fish-eye lens, the 
region in the centre of the image has high spatial 
resolution without much distortion compared to the 
areas towards the periphery of the image.  The centre 
portion of the original 1024x768 image was cropped to 
produce a 267x200 image.  No further image 
rectification was performed. 

A sample image frame from the collected data is 
shown in Figure 4.  A target is visible near the top-left 
corner (a surfer in a red rash shirt/wetsuit).  This target 
remains within the cropped 267x200 image sequence 
for approximately 2-3 seconds, providing a suitable 
data set. 

 

    
Figure 4. Flight data image sample with target 

 
Note that for both the simulated and real data 
sequences, the images were post-processed to 
compensate for camera motion before being used by 
the detection algorithm. 
 
7.3. Performance Metrics 
 

A set of metrics were used to compare the 
performance levels of the system.  The performance of 
the system was quantified using the following metrics: 

FAR – False Alarm Rate is the average number of 
false alarms per image. 

MDR – Missed Detection Rate is the average 
number of missed detections of true targets per image 
sequence. 

FFTT – First Frame of True Target Detection (true 
target first appears in frame 22 in simulated data sets). 

FA length – False Alarm track length is the average 
number of consecutive frames that false alarms are 
considered targets. 

Signal-to-Noise ratio of the image is calculated 
according to the following: 
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8. Results 
 

Simulation-based tests were performed with 96 
different system configurations (four front-ends, two 
TBD and four colour spaces – three layers each) and 
255 threshold levels.  Representative subsets of the 
results are shown in Figures 5-7 and Tables 1-3 below. 
The best performing configurations were then tested on 
the real data (shown in Figure 8). 

 
8.1. Sea State 

 
Figure 5 illustrates that white waves on the surface 

of the water reduce the detectability of the target by 
introducing clutter that is of the same colour as 
potential targets.  On the peripheries of some of the 
wave crests the white water diffuses to form clutter 
similar to the size of the target, complicating the 
search. 
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Figure 5. Detection under different sea states 

The graph in Figure 6 shows that white colour 
targets are more difficult to find as they are mistakenly 
grouped with the white water clutter by the front-end. 
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Figure 6. Detection of different target colours 

 
8.2. System Component Evaluation 

 
The effect of the different colour spaces on the 

performance of the system is measured by the SNR 
after the point detection front-end, outlined in Table 1.  
The HSV colour space is the clear choice with more 
than 10dB greater performance than alternative colour 
spaces. 

The SNR of the front-end (SNR-PNT) is used to 
evaluate to what extent the front-end can reduce clutter 
and enhance the target.  Table 2 reveals that the most 
effective point detection method assessed is CMO, 
with a strong improvement over other techniques. 

 
Table 1. Top performing colour space layers 

Colour Layer SNR-CS (dB) 
HSV1 39.0149 
YIQ2 27.8894 
HSV2 27.4568 
YCC3 26.8417 
RGB1 26.5925 

Table 2. Front-end SNR 
Front-End SNR-PNT (dB) 

CMO 26.6827 
AMF 24.1242 
MnM 22.1189 
BMF 19.6493 

Table 3. Tracking phase performance 
Tracker SNR-TRK FA Length FFTT 

DP 20.5936 2.5704 24.6594 
HMM 31.6800 1.8255 26.7432 

 
The tracking phase SNR (SNR-TRK) reveals that 

the HMM is far more effective at distinguishing targets 
in this environment.  This is also supported by HMMs 
lower FA length.  However, DP is able to detect and 
classify the true target approximately 2 frames (0.13 
seconds) earlier than HMM, see Table 3. 

 

8.4. Overall System Configuration 
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Figure 7. System configuration performance 

There are 96 system configurations; some of the top 
performers are shown in Figure 7.  The first term of the 
curve identifier is the colour space and layer used, the 
second term is the front-end and the third term is the 
tracking method.  These results agree with the 
performance assessment of each of the individual 
phases, however the effectiveness of BMF is 
unexpected based on the results in Table 2. 

These five configurations were then applied to the 
real data to produce the subsequent graph, Figure 8. 

10
-1

10
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

FAR (dB)

M
D

R
 (

dB
)

HSV1-BMF-HMM

YIQ2-BMF-HMM
YCC3-CMO-HMM
HSV1-CMO-HMM

YCC3-BMF-HMM

 
Figure 8. Detection performance of real data 

This shows that the HSV1-CMO-HMM 
configuration produced the best performance, 
supporting the findings described in Table 1 and Table 
2.  Note however, that the background PDF used for 
the real data was different to that of the simulated data, 
as the colour distribution of the ocean between the 
sequences are not identical. 

These tests have shown that the colour distribution 
input of the ocean sequence has a significant bearing 
on the performance of the system.  As there is no 
single configuration that consistently outperforms the 
rest, we propose that perhaps fusing the output of a 
variety of colour transformations may make more 
effective use of the information, improving overall 
system performance. 
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9. Conclusions 
 

We have evaluated and compared a number of 
vision-based techniques to aid in the detection of 
human survivors in maritime environments. Our 
investigation included evaluating four different colour 
spaces, four different point target detection techniques, 
and two different temporal tracking techniques.  All 
possible combinations of the above were tested on 
synthetic image sequences. 

This evaluation showed that the colour space layers 
most suited to the maritime scenario are HSV1, YCC3 
and YIQ2.  Of the point target detection techniques 
tested, CMO and BMF were shown to be most 
effective at reducing the effect of ocean clutter and 
improving target signal.  Additionally, our study 
suggested that Hidden Markov Model based temporal 
feature tracking outperformed Dynamic Programming 
as it was best able to exploit a priori knowledge of the 
environment.  We also propose that combining the 
output of a number of image colour transformations 
may produce the best overall system performance. 

Although the system performance of the currently 
proposed approach is not suitable for real search 
operations (approximately one false alarm per frame 
for an acceptable MDR), this study was successful in 
assessing the preliminary performance of different 
system configurations.  The best performing of these 
worthy of more thorough investigation. 

The results illustrate that machine vision is a viable 
technology in the maritime human search application.  
It has the potential to play an important role in manned 
aircraft searches by drawing attention to possible areas 
of interest. 
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