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Abstract

Class imbalance occurs in many real-world ap-
plications, including image classification, where
the number of images in each class differs sig-
nificantly. With imbalanced data, the genera-
tive adversarial networks (GANSs) leans to major-
ity class samples. The two recent methods, Bal-
ancing GAN (BAGAN) and improved BAGAN
(BAGAN-GP), are proposed as an augmentation
tool to handle this problem and restore the bal-
ance to the data. The former pre-trains the autoen-
coder weights in an unsupervised manner. How-
ever, it is unstable when the images from different
categories have similar features. The latter is im-
proved based on BAGAN by facilitating supervised
autoencoder training, but the pre-training is biased
towards the majority classes. In this work, we pro-
pose a novel Conditional Variational Autoencoder
with Balanced Pre-training for Generative Adver-
sarial Networks (CAPGAN)! as an augmentation
tool to generate realistic synthetic images. In par-
ticular, we utilize a conditional convolutional vari-
ational autoencoder with supervised and balanced
pre-training for the GAN initialization and train-
ing with gradient penalty. Our proposed method
presents a superior performance of other state-of-
the-art methods on the highly imbalanced version
of MNIST, Fashion-MNIST, CIFAR-10, and two
medical imaging datasets. Our method can syn-
thesize high-quality minority samples in terms of
Fréchet inception distance, structural similarity in-
dex measure and perceptual quality.

1 Introduction

Computer vision contains many supervised learning prob-
lems, including image classification, image segmentation,
and others[He er al., 2016]. Modern image classifiers are
generally deep learning models which need balanced imag-
ing datasets such as MNIST[LeCun et al., 2010], Fashion-
MNIST[Xiao et al., 2017], CIFAR-10[Krizhevsky ef al.,

2009], ImageNet[Deng er al., 2009], and others. However,
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class distribution in real-world datasets is often skewed, espe-
cially in the medical imaging domain, i.e. there are more nor-
mal images than cancerous images. The performance of the
image classification models based on deep learning degrade
significantly in the presence of class imbalance because these
models will be biased towards the majority class samples and
ignore the minority ones [Braytee et al., 2019].

Interestingly, the literature shows that augmenting the mi-
nority classes with sample generation such as Generative Ad-
versarial Networks (GANs) in image generation is a promis-
ing approach to deal with class imbalance [Rezaei er al.,
2020]. Briefly, GANs consist of a generator and a discrim-
inator that adopt an adversarial training schema to allow the
generator and discriminator to compete. GANs can generate
synthetic minority samples to help restore balance to the data.
However, GANs-based approaches have several limitations,
including mode collapse, sub-optimal initialization, and train-
ing instability, which lead to unstable results. Further, bias
can occur towards the majority class. Recent works combine
GANSs with other models, such as autoencoder, to borrow the
reconstruction ability to enhance the initialization and train-
ing of the GANs-based models for generating minority sam-
ples. A recent powerful methods BAGAN [Mariani et al.,
2018], and BAGAN-GP [Huang and Jafari, 2021] are exam-
ples that have shown promising results to handle class imbal-
ance on various benchmarks and datasets. Nevertheless, they
still suffer from the following limitations. The pre-training
in BAGAN-GP is created on imbalanced data which lead to
be biased towards the majority classes. Further, BAGAN-GP
used naive autoencoder model and objective function to ob-
tain the pre-trained weights, which can be further optimized
by more advanced architectures and objectives. Moreover,
BAGAN and BAGAN-GP are lack of comprehensive evalu-
ations, where they only evaluated the models under datasets
with a small imbalance rate and they haven’t evaluated on
highly and extreme imbalance rates. To this end, we propose
a new framework, namely, Conditional Variational Autoen-
coder with Balanced Pre-training for Generative Adversarial
Networks (CAPGAN). The general objective of our frame-
work is to synthesize high-quality samples for the majority
and minority classes to overcome the class imbalance prob-
lem.

The major contributions of CAPGAN can be summarized
as follows: (1) we facilitate a balanced pre-training stage to



GAN components; (2) we utilize conditional variational au-
toencoder model in the pre-training stage for GAN initializa-
tion; (3) we propose a novel sophisticated objective function
that encourages the model to capture the true distribution of
the samples and generate high-quality samples; (4) we inte-
grate the proposed balanced pre-training and the new objec-
tive function simultaneously to initialize and train the corre-
sponding GAN components to enhance the training stability
and generate more realistic and diverse samples.

2 Related Work

Generative Models on Class Imbalance. Autoencoder and
generative adversarial networks (GANs) are two representa-
tive generative models proposed to handle class imbalance
in imaging applications. Several studies suggest that acquir-
ing more samples (especially the minority classes) to restore
data balance is the most effective way to address the class
imbalance. Few studies use autoencoder variants to handle
class imbalance. For example, Taghanaki et al. (2020) state
that variational autoencoder (VAE) can improve the perfor-
mance on imbalanced data [Taghanaki er al., 2020]. How-
ever, Li et al. (2018) find that the samples generated by
VAE are not as diverse as the samples from GANs [Li et
al., 2018]. Hence, several studies finds GANs variants are
powerful to handle the imbalanced data. DCGAN [Shoohi
and Saud, 2020] is proposed to synthesize samples for the
minority classes. It leads to impressive results on various
tasks (e.g. plant disease). WGAN is also widely used for
data augmentation [Bhatia and Dahyot, 2019] and minority
oversampling for CT images[Wang et al., 2019]. CycleGAN
applies image-to-image translation on the imbalanced data,
which attempts to generate minority samples based on major-
ity samples[Zhu et al., 2017]. Many existing studies attempt
to facilitate semi-supervised GANs (or conditional GANs)
and unsupervised GANs together. For example, [Balasubra-
manian et al., 2020] uses an unconditional GAN for diabetes
image oversampling. Further, another study proposes a con-
ditional GAN (CovidGAN) [Waheed et al., 2020] to augment
the minority Covid-19 CXR images. Although the generative
models achieve impressive results for addressing the class im-
balance, they suffer from mode collapse, training instability,
and unstable results. Further, some studies argued that the
generated minority samples would bias towards the major-
ity classes and degrade the original performance for majority
samples [Sampath et al., 2021].

GAN-Autoencoder-based augmentation To overcome
the limitation of GANs augmentation methods to handle the
class imbalance, BAGAN combines the power of autoencoder
and GANs [Mariani et al., 2018]. It integrates an autoencoder
with GANSs to gain better reconstruction ability and produces
a stable starting point for training. Particularly, it initializes
the GAN model by integrating the pre-trained autoencoder
(given that the GANs and the autoencoder have the same
network architectures). BAGAN can only uses an unsuper-
vised autoencoder where it does not use the label information
during the pre-training. However, label information is crit-
ical for imposing class conditioning on pre-trained weights.
Recently, an improved version of BAGAN (i.e. BAGAN-

GP) [Huang and Jafari, 2021] states that BAGAN does not
perform well on medical data and the results are not sta-
ble. BAGAN-GP introduces a supervised autoencoder, which
utilizes the label information during pre-training. Besides,
BAGAN-GP applies conditional GANS in its structure to im-
prove the class-specific generative performance. The results
show that BAGAN-GP is superior over BAGAN-GP on vari-
ous datasets (MNIST, Fashion-MNIST, and CIFAR-10). Fur-
thermore, BAGAN-GP is proved to be more effective than
BAGAN on the medical imaging data. However, BAGAN-
GP facilitates simple network structures and basic objective
functions in its autoencoder. Also, although the pre-training
takes class information into account, the pre-training is biased
towards majority classes, leading to sub-optimal solutions.

3 Method

3.1 Supervised Initialization and Training

We initialize the discriminator and the generator in GAN with
the weights of a pre-trained conditional variational autoen-
coder (CVAE). When the GANs are trained under the ad-
versarial settings, the generator can produce class-specific
samples with better representative ability given by the pre-
training, especially for the minority classes. Also, the dis-
criminator can identify whether the image belongs to one of
the classes or is a fake sample. In this step, the discriminator
and generator are updated in GAN by following the min-max
adversarial settings[Goodfellow er al., 2014] in Equation 1
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where z denotes noise samples, and x is from data generat-
ing distribution. After we develop CVAE in the initialization
step, the weights of CVAE’s components are transferred to
GAN’s components. The generator and the decoder (with
the embedding component) are designed to have the same
network structures and topologies to allow the weights to be
transferred from the pre-trained decoder to the generator. The
discriminator is initialized to have the same network struc-
tures and topologies in the first few layers as the encoder, fol-
lowed by dense layers that match the dimension in the final
output. The weights of the final dense layers are randomly
initialized. The initialization of the generator and discrimina-
tor in GAN is illustrated in Figure 1(a).

Training the CAPGAN follows the standard adversarial
settings that the discriminator and the generator compete with
each other. The loss function of the discriminator and the
generator is inspired from DRAGAN [Kodali et al., 2017].
The discriminator consists of three losses for fake images,
real images, and wrong labels, while the generator has only
a fake image loss. Moreover, we impose the gradient penalty
term[Arjovsky ef al., 2017] in the discriminator loss, which
aims to help the convergence of the discriminator as shown in
Equation 2.

where £ = ax, + (1 — &)Xppise, & ~ U(0,1), x, is the real
input image, « is a normally distributed random number with
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Figure 1: Our proposed CAPGAN framework
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values in uniform distribution U(0,1), A denotes gradient
penalty weight and ||V,D(x)||, is the norm of gradients. Both
the discriminator and the generator attempt to minimize their
losses to obtain better performance.

3.2 Improved Conditional Variational
Autoencoder in CAPGAN

The simple autoencoder utilized by BAGAN-GP is replaced
with a more powerful Conditional Convolutional Variational
Autoencoder in CAPGAN. Variational autoencoder has an
advanced architecture compared to the autoencoder. Autoen-
coder may create some samples in the latent space with no
valid meaning or hard to interpret after decoding, leading to a
poor generative performance for the decoder in creating new
samples from the latent space. However, variational autoen-
coder overcomes latent space irregularity by encoding the in-
puts into mean and standard derivation (i.e. learns a distribu-
tion over the latent space). Hence, the latent space is contin-
uous, regularized, and enables easier sampling and interpo-
lation. Reparametrization is applied to integrate the learned
mean and standard derivation from the encoder in CVAE as
described in equation 3, 4, 5. Convolutional layers and trans-
posed convolutional layers are utilized in the encoder and
the decoder of CVAE. There is an embedding component (a
shallow sub-network) in our proposed CVAE that takes the
class labels of the input images and encodes them into class-
specific information (i.e. same size as the latent space). The
outputs from the encoder and the embedding component are
fed into the decoder together as the input, where the latent
output and the class-specific information are multiplied Equa-

tion 6
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where z is the reparameterized variable in the latent dimen-
sion with a mean u and standard derivation o, ¢ is a normally
distributed random number with values in uniform distribu-
tion U(0, 1), e and y denotes the embedding component and
class label respectively, O is the embedded output. In this
way, we manage to pass the class information into the CVAE
and train it in a supervised fashion. This is critical for the
GAN initialization as the training of the GAN is supervised.
Transferring weights from an unsupervised CVAE could mis-
lead the GAN and result in sub-optimal solutions. Therefore,
it is essential to facilitate the embedding component to make
CVAE training conditioned on the class labels. The illustra-
tion of the proposed CVAE architecture component in CAP-



GAN is shown in Figure 1b.

3.3 Improved Objective Function

The BAGAN-GP method applies L2 minimization to train au-
toencoder, but this may lead to two drawbacks: firstly, mean
absolute error (MAE) only enforces pixel-to-pixel similarity,
which fails to capture the class-wise distributions of the input
samples. Secondly, MAE is not suitable for training more ad-
vanced and sophisticated CVAE [Kingma and Welling, 2013].
The new objective function of our proposed CVAE model
is composed of three components: (1) the Kullback-Leibler
(KL) divergence; (2) the cross-entropy loss; (3) and the mean
squared error. KL-divergence measures the difference be-
tween two probability distributions which is considered crit-
ical for training the CVAE because it encourages the model
to learn a distribution in the latent space. By minimizing the
KL-divergence, the learned mean and standard derivation for
the target distribution of latent space are optimized, which
allows the decoder to sample and generate better results. Fur-
ther, the KL-divergence is denoted as the latent loss in the
objective function. The remaining two components are re-
lated to the reconstruction loss. Cross entropy loss is more
suitable for Bernoulli distribution as it expresses the negative
Bernoulli log-likelihood, while the mean squared error as-
sumes a Gaussian distribution. Incorporating these two com-
ponents is significant to optimize the model’s performance
on more complex distributions. By minimising both cross-
entropy loss and mean squared loss, the CVAE can learn bet-
ter reconstruction ability on more sophisticated distributions
and gain better generative performance. The objective func-
tion is presented in Equation 7 as follows

Ob jective =Dk, (p || q) +H(p,q) + MSE @)
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3.4 Random Oversampling Pre-Training Strategy

The discriminator and the generator in the GAN require
a good initialization point to synthesize balanced samples
towards all classes. The original autoencoder pre-training
strategy in the BAGAN-GP method is imbalanced towards
the majority classes, which introduces burdens for the GAN
training. In CAPGAN, we redesigned the pre-training strat-
egy to allow the pre-trained weights to be balanced for the
GAN initialization. Three different pre-training strategies are
explored as show in Figure 1c. Two strategies that are im-
plemented but not adopted called two-phase pre-training and
ensemble pre-training. The two-phase pre-training resembles
the ideas from two-phase learning, where the CVAE is first
trained on balanced data, then the CVAE is fine-tuned on the

original imbalanced dataset. However, this approach suffers
from overfitting and high cost on tuning. The ensemble strat-
egy attempts to fit multiple CVAEs with different subsets of
the majority classes and combines them with the entire mi-
nority samples. The final weights would be a weighted aver-
age of all weights from the CVAEs according to their training
loss. This method has drawbacks such as computationally
expensive and overfitting and it may be infeasible in practice.

In CAPGAN, we adopt random oversampling (ROS) for
pre-training strategy. ROS has been proved to be effective
in many applications for addressing class imbalance. The
simplicity and compatibility of the method make it a popu-
lar choice for many class imbalance applications. The im-
balanced data is randomly oversampled to make samples in
each class are balanced before they are fed into the CVAE.
Although there is a potential risk for overfitting the minority
samples as they are replicated multiple times, the ROS pre-
training shows an improved performance with minor compu-
tational costs. The reason is due to transferring the weights
from the CVAE to the GAN only during the initialization step.
These weights from the ROS pre-training strategy manage to
produce a balanced and good enough starting for the GAN to
achieve great results. Furthermore, ROS pre-training can be
easily scaled to large and complex datasets due to its simplic-
ity and computational efficiency.

4 Results and Discussion

4.1 Datasets

The experiments are conducted on general vision and medi-
cal imaging datasets. For general vision datasets, we consider
MNIST, Fashion-MNIST, and CIFAR-10. All samples in the
three datasets are resized into a uniform size, which is the
same as the original sample size in CIFAR-10 (i.e. 32 x 32).
For medical imaging datasets, we used small-scale blood cells
data (Cells [Huang and Jafari, 2021]) and a breast cancer cell
data (BreakHis [Spanhol et al., 2015]). We scaled down the
sample size in both datasets due to the computational and
time constraints. The samples in Cells and BreakHis datasets
are reshaped to 64 x 64 and 32 x 32, respectively. The sum-
mary of datasets is shown in Table 2.

4.2 Imbalance Rate

The general vision datasets are balanced initially. We im-
pose imbalance on MNIST, Fashion-MNIST, and CIFAR-10
by choosing one class as the majority class and treating the
other classes as minority classes and sampling subsets for
those classes. The imbalance rate is defined as the number
of samples between the largest majority class and the small-
est minority class. For general vision datasets, we construct
imbalanced datasets using the following imbalance rates: 5,
10, 20, 50, and 100. Cells and BreakHis are originally im-
balanced, we conduct the experiments on those datasets us-
ing the original imbalance rate, unless for BreakHis, we force
imbalance in addition to the original imbalance rate.

4.3 Evaluation Metrics and Compared methods

The Fréchet Inception Distance (FID) and Structural Similar-
ity Index Measure (SSIM) are the metrics used for the eval-



MNIST Fashion-MNIST CIFAR-10

avg(Minority) Majority avg(Minority) Majority avg(Minority) Majority

FID SSIM FID SSIM FID SSIM FID SSIM FID SSIM FID SSIM
Imbalance Model
Rate ode
DCGAN 251.33  2.57x 1071 207.93 296x107' 379.96 2.60x 107" 31661 2.79x107' 49527 5.67x1072 33543 9.30x10°2
5 BAGAN-GP 176.15 2.56x 107" 157.39 2.86x10~' 267.05 2.67x10~' 24021 2.82x10~" 46385 5.78x107%2 364.04 8.94x1072
CAP-GAN 16559 2.69x107' 15716 2.79x 107" 264.65 2.67x10°' 23247 288x10°! 366.06 6.00x10"2 28858 8.00x 1072
DCGAN 21339 2.58x 107! 52809 3.36x107' 47296 2.53x 107! 29346 2.96x107' 49527 5.67x1072 33543 9.30x1072
10 BAGAN-GP 187.44 2.62x10~" 16508 2.70x 107" 32819 2.66x10~" 25457 3.03x10°! 48636 5.76x10°% 354.85 9.06x 1072
CAP-GAN 17722 2.64x1071 160.12 2.90x 101 271.89 2.75x10°' 24199 294x 107" 399.18 6.00x10°2 29154 8.00x 102
DCGAN 278.80 2.68x 1071 21022 2.85x107' 509.82 2.67x 107! 46858 2.25x107' 65934 5.48x 1072 460.03 8.69x102
20 BAGAN-GP 19340 2.66x 10~ 17421 2.78x 107" 32561 2.69x10~1 28896 2.87x10~" 529.59 5.48x10"2 48033 7.40x1072
CAP-GAN 17359 270 x107' 149.04 2.86x10°1 260.61 2.64x 107" 23071 298x10°! 36846 6.00x102 271.10 8.00x 1072
DCGAN 479.63 2.55x 107" 72207 3.13x 107! 540.12 2.74x1071 51494 2.65x 1071 74254 571x1072 45333 832x10°2
50 BAGAN-GP 20470 2.58x 107! 14928 2.79x 107! 388.60 2.54x 107! 31747 2.81x107" 529.69 5.17x 1072 45516 7.23x 1072
CAP-GAN 17647 2.59x107' 16390 2.83x10°1 26831 2.70x 107! 22508 295x10°! 411.23 7.00x1072 34643 8.00x 102
DCGAN 51131 1.83x10°" 71149 1.68x107" 70326 2.78x10~' 811.17 2.69x10~" 701.54 526x1072 520.11 6.32x102
100  BAGAN-GP 228.19 254x1071 16774 279x107' 416.67 2.65x107" 31633 2.70x 107" 55470 4.72x 1072 456.06 6.33x 1072
CAP-GAN 168.00 2.66x10~' 160.88 2.81x10~' 28645 2.70x10~' 236.04 2.94x10°! 370.82 7.00x10% 33945 8.00x10°2
FID SSIM FID SSIM FID SSIM
p-value  CAP-GAN vs BAGAN-GP 1.3%x1073 7.1x107! 5.0x107° 8.0x 107! 5.0x 10710 3.3x1072
CAP-GAN vs DCGAN 2.8x 10712 24x107! 89x10°1 8.1x 107! 45x 1071 1.5%x 107!

Table 1: Averaged FID and SSIM for General Vision Benchmarks

[ Training Samples Per Class

‘ ‘ Resolution

Dataset Class || Min [ Median | Mean [ Max
MNIST 28 x 28 10 6000 6000 | 6,000 | 6000
Fashion-MNIST 28 x 28 10 6000 6000 6000 | 6000
CIFAR-10 32x32 10 5,000 | 5,000 | 5,000 | 5,000
BreakHis* 700 x 460 2 2,480 N/A N/A | 5,429
Cells 100 x 101 4 106 887 1,721 | 5,600

Table 2: Datasets characterstics. BreakHis only has two classes so
the median and mean are N/A’s.

uations. Lower FID or higher SSIM indicates better perfor-
mance. For each class in each dataset, the model under evalu-
ation generated 1,000 samples. Those generated samples are
compared with the test samples to compute the corresponding
FID and SSIM with the test set. Two baseline models are used
for comparison: Conditional Deep Convolutional Generative
Adversarial Networks (DCGAN)[Radford et al., 2015] and
the BAGAN-GP[Huang and Jafari, 2021].

4.4 Experiment Setting

The hyperparameter values during the training are summa-
rized in Table 3. The compared methods are evaluated under
the same experiment settings and implemented using Tensor-
Flow 2.0 framework. We utilize NVIDIA Tesla P100 to train
the models.

Hyperparameter Values

Learning Rate (CVAE) 0.0006, 0.0007, 0.0008, 0.001, 0.0005
CVAE Epoch 30, 40, 50

Adam betal (CVAE) 0.5,0.6,0.7,0.8

Learning Rate (Generator)
Learning Rate (Discriminator)

0.00005, 0.0001, 0.0002, 0.0005, 0.0008, 0.0013, 0.0015, 0.001, 0.002
0.00005, 0.0001, 0.0008, 0.0013, 0.0015, 0.0002, 0.002

Gradient Penalty Weight 5,10
Train Ratio 2,3,4,5,6,7,8,10
Batch Size 32,64, 128,256

Latent Dimension

64, 128, 256, 512

Table 3: Hyperparameter Optimization for CAP-GAN

4.5 Results for General Vision Datasets

We first conduct experiments on the low, moderate, high and
extreme imbalanced versions of MNIST, Fashion-MNIST,
and CIFAR-10 balanced datasets using different imbalance
rates. For each dataset, there is one majority class and nine
minority classes. The average values of FIDs and SSIMs
for the majority and the minority class are presented in Ta-
ble 1. It is clearly shown from the results that BAGAN-GP
and CAPGAN outperform the DCGAN consistently across
all datasets, suggesting that the countermeasures for class im-
balance are effective. It also indicates that generative models
which are proved to be successful on balanced datasets could
not handle class imbalance. We further observe that CAP-
GAN achieves superior results than BAGAN-GP in almost all
experiment settings, which indicates that CAPGAN is much
more powerful than BAGAN-GP as a generative model for
imbalanced data. We also note, as shown in Figures 2 and 3,
that the compared methods produce unstable results when the
imbalance rate increase. In particular, the FID of BAGAN-
GP and DCGAN increase significantly as the imbalance rate
becomes higher in all three datasets. In contrast, the FID
of CAPGAN remains at a steady level or increases much
lower as the imbalance rate increases. Therefore, CAPGAN
is proven as a powerful generative model that is able to main-
tain a low FID in the presence of high and extreme imbalance
rates (i.e., 50 and 100). As for SSIM, although the improve-
ments are not as evident as the FID, CAPGAN managed to
score higher SSIM scores under most experiment configura-
tions than DCGAN and BAGAN-GP. In terms of SSIM eval-
uation metric, although the improvements are not as evident
as the FID, CAPGAN is able to attain higher scores under
most experiment configurations compared to the state-of-the-
arts. We believe the CVAE initialization and the proposed
pre-training help CAPGAN to achieve such results. Further-
more, using the Student’s t-test, we investigate whether the
results that are produced by CAPGAN are significantly dif-
ferent to the state-of-the-art. The statistical results show that



MNIST Fashion-VINIST . CIFAR-10

Figure 2: Comparison of DCGAN and CAPGAN
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Figure 3: Comparison of BAGAN-GP and CAPGAN

the p-value in all tests for FID is less than 0.05, which rejects
the null hypothesis that CAPGAN and the compared methods
have equal performance.

We investigate the generated images from DCGAN,
BAGAN-GP, and CAPGAN, along with the original images
on CIFAR-10. As shown in Figure 4, the generated im-
ages are all from the minority classes. Both DCGAN and
BAGAN-GP produce very blurring images when the imbal-
ance rate is extreme (i.e. 100). Most of the generated samples
using these two models lose details and textures, and several
samples look like unrecognizable objects (i.e., noises). Fur-
ther, they are lack of diversity, which indicates that DCGAN
and BAGAN-GP suffers from mode collapse. On the con-
trary, CAPGAN generates more realistic samples that capture
the details and the textures of the objects. Each sample is
easily recognized regarding its original class. Furthermore,
CAPGAN produces samples of high diversity, which is cru-
cial for reducing the likelihood of overfitting when using the
CAPGAN for oversampling and achieving a better perfor-
mance at high and extreme imbalance rates.

4.6 Results for Medical Imaging Benchmarks

Medical imaging data are often imbalanced due to the high
cost of generating real images. The generative models play
an important role to produce synthetic images at medical ap-
plications. The results for medical imaging data are presented
in Table 4 and Table 5. Cells is a small-scaled medical dataset
with a high imbalance rate (i.e. 52.83). Similar to the re-
sults of general vision datasets. Firstly, we investigate the
impact of the class imbalance on the baseline DCGAN. We
find that BAGAN-GP and CAPGAN achieve better perfor-
mance than DCGAN on almost all metrics, especially FID. It

Cells

avg(Minority) Majority
FID SSIM FID SSIM
Imbalance Rate  Model

DCGAN 43848 375x10 1 26699 446x10 !
5283 BAGAN-GP 26079 351x 1070 24734 427x 107!
CAP-GAN 22876 348x 107" 160.00 435x10°!
CAP-GAN vs BAGAN-GP 12281 35317
q
Improvement on FID (%) czp. GAN vs DCGAN 47831 40071

Table 4: Averaged FID and SSIM for Cells

(a) Original Im-
age

(b)) DCGAN  (c) BAGAN-GP  (d) CAPGAN

Figure 4: Generated Images for CIFAR-10 with an Imbalanced Rate
of 100

BreakHis

Minority Majority
FID SSIM  FID SSI
Imbalance Rate  Model
DCGAN 45639 5.66x 1072 29423 6.34x 1072
2.19 BAGAN-GP 25100 6.76x 1072 23176 6.47x 1072
CAP-GAN 23747 591x107% 21601 6.06x 1072
DCGAN 565.67 525x107% 41673 5.86x 1072
10 BAGAN-GP 21128 8.95x 1072 21061 9.30x1072
CAP-GAN 203.60 5.94x 107> 181.82 595x 1072
, CAP-GAN vs BAGAN-GP 5.39 6.79
Tmprovement on FID (%) of 219 )b 'GAN ¢ AGAN 47.97T¢ 26.58TT
CAP-GAN vs BAGAN-GP 3.63 13.67
mprovement on FID (%) of 10 b GiaX vd DOGAN Gty 55971

Table 5: FID and SSIM for BreakHis

shows that the powerful generative architecture on traditional
and balanced datasets could not adapt to more challenging
and high imbalanced medical imaging data, especially for
the minority classes, which is considered as the class of in-
terest. Secondly, we test the performance of the proposed
CAPGAN against the-state-of-arts BAGAN-GP. CAPGAN
outperforms the BAGAN-GP in FID. The improvements on
FID are around 12.78% and 35.31% for minority and major-
ity classes, respectively. The boost on SSIM is not as sig-
nificant as FID, where CAPGAN and BAGAN-GP achieved
comparable results.

For BreakHis dataset, although the original imbalance rate
is lower than Cells, it is challenging in other aspects because
it contains images of different scales, such as the objects in
different images might be collected at a different magnifica-
tion rate. As presented in Table 5, BAGAN-GP and CAP-
GAN consistently outperform the DCGAN, especially under
a high imbalance rate. The results suggest the effectiveness
of class imbalance countermeasures. Furthermore, CAPGAN
achieves better FID than BAGAN-GP under both imbalance
rates. As for SSIM, all three models obtained very low SSIM,
so it would be pointless to analyze the statistics regarding the
SSIM. We believe that the variety of scales in the datasets
lead to unsatisfying performance for all three models since
they do not have any technique to deal with samples of differ-
ent scales.

We illustrate the generated images from DCGAN,
BAGAN-GP, and CAPGAN in the Cells. As shown in Fig-
ure 5, the generated samples from DCGAN and BAGAN-GP
are poor in their quality due to a lack of textures and details.
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Figure 5: Generated Images for Cells

Besides, we can observe many irregular dark or grey shapes
on those generated images, which cover a large portion of the
cell and make the cell unrecognizable. However, the gener-
ated images by CAPGAN are more realistic and diverse cell
images. The details and textures are clear with small noises
covering cell’s body. Furthermore, the cell images have richer
and more diverse colours than those generated by DCGAN
and BAGAN-GP, which are dark and have low contrast.

5 Conclusion

In this work, we propose a method to mitigate the problem
of class imbalance in the imaging domain by utilizing gen-
erative models. The proposed method CAPGAN facilitates
a conditional convolutional variational autoencoder (CVAE),
which has an embedding component to perform training in
a supervised fashion. A new objective function is applied
to the CVAE training to improve the generative and recon-
struction ability. Moreover, we present several pre-training
strategies which could lead to produce balanced weights for
the generative model. The generator and discriminator in
CAPGAN are initialized by the pre-trained components in the
CVAE and are trained in an adversarial setting. A gradient
penalty term is added to the loss function of the discrimina-
tor to help stabilize the GAN training. We demonstrate the
efficiency of CAPGAN on various datasets, including hand-
crafted imbalanced datasets from general vision datasets and
two imbalanced medical imaging datasets. We compare our
proposed model with DCGAN and BAGAN-GP. The results
show that CAPGAN outperforms these two methods by gen-
erating higher quality images given imbalanced datasets. Em-
pirical results indicate that CAPGAN can retain high perfor-
mance as the imbalance rate increases and can deliver accept-
able results even under extreme imbalanced situations.
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