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Abstract

Many software reliability growth models assume that the time to next failure may be infinite;
i.e., there is a chance that no failure will occur at all. For most software products this is too
good to be true even after the testing phase. Moreover, if a non-zero probability is assigned to an
infinite time to failure, metrics like the mean time to failure do not exist. In this paper, we try
to answer several questions: Under what condition does a model permit an infinite time to next
failure? Why do all finite failures non-homogeneous Poisson process (NHPP) models share this
property? And is there any transformation mending the time to failure distributions? Indeed,
such a transformation exists; it leads to a new family of NHPP models. We also show how the
distribution function of the time to first failure can be used for unifying finite failures and infinite
failures NHPP models.

Keywords: software reliability growth model, non-homogeneous Poisson process, defective
distribution, (mean) time to failure, model unification
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1 Introduction

Despite the advances made with respect to the development of techniques and tools supporting the
requirements analysis, the design and the implementation of software, the correctness of computer
programs cannot be guaranteed. It is always possible that a piece of software contains faults (e.g.,
buggy lines of code) leading to deviations of the actual software behavior from its specification.
Such observed deviations are referred to as failures.

Since the number of software faults, their location in the code and the sequence of user inputs
are not pre-determined, the times at which failures are experienced are random. Let the continuous
random variable Xi represent the time between the (i − 1)st and the ith failure occurrence, also
called the ith time to failure (TTF). For a program that has already been released, we hope
that all realizations of the TTFs are large values; i.e., the software should only fail rarely. This
means that due to the characteristics of the software and the execution profile each random
variable Xi should have a density function assigning a large fraction of the probability mass to
long inter-failure times. In an ideal scenario, in which the software does not even fail once, the
entire probability mass of the first TTF X1 is assigned to infinity. This may happen either if the
software is fault-free or if the existing faults are located in parts of the software that will never be
executed. If there is a certain chance that no fault is contained in those regions of the software
(eventually) used according to the operational profile, then a probability between zero and one is
attached to infinity. As long as the software may not fail at all, the distribution function of X1

does not reach the value one for x approaching infinity:

lim
x→∞FX1(x) < 1.

Distributions with this characteristic are called “improper” [13] or “defective” [25, p. 146].
While a defective TTF distribution is desirable in the operational phase, during the testing

phase of software development (from initial unit tests up to integration and system tests) it is not.
Many testing professionals and researchers follow Myers in considering testing to be “a destructive
process, even a sadistic process” [22, p. 5] and a test case finding a fault to be successful. For
increasing the efficiency of fault detection various systematic testing strategies have been proposed,
see for example Myers’ classical monograph cited above, or [12]. In contrast with these approaches
is the operational testing technique [18, 19], which aims at mimicking the user behavior in order
to uncover those faults that are most dangerous from a user perspective and to assess the current
operational reliability. But even within operational testing concepts like the testing compression
factor [20, pp. 233–234] are introduced in order to account for efforts to amplify the speed with
which the code and the faults contained in it are covered during testing. (For a more detailed
discussion of systematic and operational testing see [7, pp. 6–14].)

However, many existing software reliability growth models (SRGMs) used for modeling and
predicting failure occurrences during the integration and system test phase share the property that
all TTF distributions are defective - implying the possibility that no failure will occur at all. This
does not only seem to be in disagreement with the approaches to testing sketched above, it also
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entails problems for the application of the models. For an SRGM in which all TTF distributions
are defective, the moments of these distributions are infinite. Therefore, important metrics like
the mean time to failure E(Xi) or the variance V ar(Xi) do not exist for all values of i. Even
if the probability for an infinite TTF is very small, it drowns any useful information about the
distribution that these measures might convey.

This paper investigates why certain SRGMs imply defective TTF distributions. Its main
contribution is the derivation of a generic method for transforming non-homogeneous Poisson
process (NHPP) models of the finite failures category; in the resulting model class all TTF
distributions are proper. An additional result of our research is a mean value function unifying
all NHPP models.

The remaining parts are organized as follows: In section 2 we investigate the general class
of continuous-time Markov chain SRGMs. NHPP models in particular are studied in section 3.
Based on the insight gained, we are able to find an approach for transforming NHPP models of the
finite failures category such that all TTF distributions of the resulting models are non-defective;
this approach is explained in section 4. With respect to continuous-time Markov chain models
not belonging to the class of NHPP models section 5 identifies those sub-classes for which the
TTF distributions may be defective. In section 6 we apply our generic transformation to the
well-known Goel-Okumoto model. This leads us to a new SRGM which we call “truncated Goel-
Okumoto model”, and we use this model for fitting and predicting a real failure data set. Section
7 concludes this paper.

2 Defective TTF distributions in SRGMs - General condition

For many SRGMs the stochastic process counting the number of failure occurrences over time,
{M(t), t ≥ 0}, is a continuous-time Markov chain (CTMC).1 Its structure is shown in figure 1.

Assuming that only one failure can occur at a time and taking into account that a failure
occurrence cannot be undone, from each state i − 1 a transition is merely possible to the next
state i; the counting process is a pure birth process. The dashed transition out of state u0 indicates
that some models assume that the total number of failure occurrences is bounded by a certain
value u0. For these models state u0 is absorbing, and the CTMC terminates at that state.

 

u0-1 0 ...1 u0 

0( )r t 1( )r t
0 2( )ur t− 0 1( )ur t− 0

( )ur t

 

 

 
Figure 1: Counting process as a continuous-time Markov chain

1A more general model class containing additional SRGMs is the self-exciting point process (SEPP). The follow-

ing discussion of the relationships between the transitions rates, the program hazard rate and the failure intensity

function is based on the software reliability literature dealing with SEPPs, see [2, 4, 8, 15, 24].
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According to the Markov property, the only part of the history of the counting process that
may affect its future is the current state. In addition, the time t may have an influence. Since
the transition rate between state i − 1 and state i is in general both time-dependent and state-
dependent, we denote it by ri−1(t). If all transition rates are not time-dependent but only state-
dependent, then the SRGM is a homogeneous CTMC model such as the Jelinski-Moranda model
[11]; if they are all time-dependent but not state-dependent, then the SRGM belongs to the class
of NHPP models.

As long as the current state m(t) of the counting process is unknown, the program hazard
rate Z, representing the instantaneous danger of a failure occurrence, is a function of the random
variable M(t) as well as time:

Z(t,M(t)) = rM(t)(t).

Since its realization z(t,m(t)) is pieced together from the individual transition rates r0(t), r1(t),
..., the program hazard rate is also referred to as “concatenated hazard rate” (or “concatenated
failure rate function” [2]). Its expected value with respect to M(t) is a function of time [15], the
so-called failure intensity function,

λ(t) = E(Z(t,M(t))) =
∞∑

i=0

ri(t) · P (M(t) = i).

Integrating the failure intensity function from zero to t yields the mean value function µ(t),
representing the expected number of failure occurrences in the interval (0, t]:

µ(t) =
∫ t

0
λ(y) dy =

∞∑

i=0

i · P (M(t) = i) = E(M(t)).

Given that i− 1 failures have been experienced by time t, the reliability in the interval (t, t+x] is

R(x | t,M(t) = i− 1) = exp
(
−
∫ t+x

t
z(y, i− 1) dy

)
= exp

(
−
∫ t+x

t
ri−1(y) dy

)
.

Let the random variables T1, T2, ... denote the times of the first, second, ... failure occurrence.
We will use ti (i = 1, 2, ...) for referring to the realization of the ith failure time; t0 ≡ 0 is not a
failure time but the beginning of testing.

Given ti−1, the distribution function of Xi is

FXi(x) = 1−R(x | ti−1,M(ti−1) = i− 1) = 1− exp

(
−
∫ ti−1+x

ti−1

ri−1(y) dy

)
.

This distribution of Xi is defective if ri−1(t) converges to zero fast enough for

lim
x→∞

∫ ti−1+x

ti−1

ri−1(y) dy = c <∞, (1)

because in this case

lim
x→∞R(x | ti−1,M(ti−1) = i− 1) = exp (−c) > 0 and lim

x→∞FXi(x) = 1− exp (−c) < 1.

A possible explanation as to why ri−1(t) may decrease at all although no failure occurs (and
hence no fault is corrected) is a subjective one: The longer the software has been running without
showing a failure, the higher is the confidence that it will not fail in the future.
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3 Defective TTF distributions in NHPP models

3.1 General considerations

For non-homogeneous Poisson process (NHPP) models, all transition rates r0(t), r1(t), ... are
functions of time t, but they are independent of the number of previous failure occurrences M(t).
Therefore, they are the same function r(t). As a consequence, the program hazard rate Z(t,M(t))
is not a random variable, but a deterministic function z(t) of time, and it is identical to the function
r(t). Moreover, it is identical to the failure intensity λ(t). Hence,

λ(t) = z(t) = r(t) = r0(t) = r1(t) = . . . . (2)

The model assumptions imply that M(t) follows a Poisson distribution with expectation given
by the mean value function µ(t) connected to equation (2). Specifying either the failure intensity
function or the mean value function fully determines the NHPP model.

Given the observed value ti−1, the reliability of the software in the interval (ti−1, ti−1 + x] is

R(x | ti−1,M(ti−1) = i− 1) = exp

(
−
∫ ti−1+x

ti−1

λ(y) dy

)
= exp (−µ(ti−1 + x) + µ(ti−1)) , (3)

and the distribution function of Xi is

FXi(x) = 1− exp (−µ(ti−1 + x) + µ(ti−1)) . (4)

Whether the distribution of the time to the ith failure is defective or not depends on the behavior
of µ(ti−1 + x) as x approaches infinity.

3.2 Finite failures category NHPP models

Musa et al. [20, pp. 250–251] refer to SRGMs for which the expected number of failures experienced
in infinite time is finite as “finite failures category models”. We follow Kuo and Yang [14] in calling
NHPP models of this category “NHPP-I” models. The mean value function of these models has
the general form [20, p. 269] µ(t) = νG(t). (5)

Assuming perfect fault removal, ν represents the expected number of inherent software faults,
and the initial number of faults, N , follows a Poisson distribution with parameter ν [20, p. 268].
The continuous function G(t) can be interpreted as the distribution function of the time until a
specific fault causes a failure [20, p. 261], or as a coverage function [6, 23]. Since at the beginning
of testing no failure has occurred with probability one, G(0) = 0.

Moreover, it is usually assumed that G(t) is non-defective, implying that each fault will even-
tually lead to a failure. In the well-known Goel-Okumoto model [5], for example, G(t) is the
non-defective function G(t) = 1− exp(−φt). (6)

However, the coverage function does not have to be proper. In many SRGMs with a time-varying
testing-effort, e.g. the one with a Weibull testing-effort proposed by Yamada et al. [26, 27] and
the one with a logistic testing-effort by Huang et al. [9, 10], the coverage function G(t) is

G(t) = 1− exp(−φγW ∗(t)). (7)
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In this equation, φ > 0 represents the fault detection rate per fault and unit of testing-effort,
while γ > 0 stands for the total amount of testing-effort required by software testing. W ∗(t) is
a (non-defective) distribution function modeling the dispersion of testing-effort over time. Since
the total testing-effort is limited by γ,

lim
t→∞G(t) = 1− exp(−φγ) < 1,

which means that the coverage function (7) is defective.
In the following, we will assume that G(t) is a non-defective distribution function.
According to equation (2), for an NHPP-I model all transition rates are identical to the failure

intensity,
r0(t) = r1(t) = r2(t) = ... = λ(t) = νg(t), (8)

where g(t) is the first derivative of G(t) with respect to t. Therefore, the structure of the counting
process can be depicted as in figure 2.

Since the expected number of failures experienced during an infinite amount of testing is equal
to the expected number of inherent faults ν, the limit of the reliability in the interval (ti−1, ti−1+x]
for x approaching infinity is

lim
x→∞R(x | ti−1,M(ti−1) = i− 1) = exp (−ν + µ(ti−1)) = exp (−ν(1−G(ti−1))) > 0. (9)

Whatever the number of previous failures i − 1 may be, there is always a non-zero probability
that the software will not fail an ith time. Therefore, all TTF distributions FXi(x) connected to
NHPP-I models are defective.

An intuitive proposition is that the event of no further failure occurrence in the future is related
to the event that no additional fault is left in the software. In fact, the conditional probability
mass function of the initial number of faults N , given that i − 1 failures have been experienced
by time t, turns out to be

P (N = n |M(t) = i− 1) =
P (M(t) = i− 1 | N = n) · P (N = n)∑∞

k=i−1 P (M(t) = i− 1 | N = k) · P (N = k)
(10)

=

( n
i−1

)
G(t)i−1[1−G(t)]n−(i−1) · νnn! · exp(−ν)

∑∞
k=i−1

( k
i−1

)
G(t)i−1[1−G(t)]k−(i−1) · νkk! · exp(−ν)

=
[ν(1−G(t))]n−(i−1)

(n− (i− 1))!
exp(−ν(1−G(t))) for n ≥ i− 1.

 

u0-1 0 ...1 u0 

( )g tν

 

( )g tν ( )g tν ( )g tν ( )g tν

 

 
Figure 2: The counting process connected to an NHPP-I model
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Hence, the conditional distribution of the number of faults remaining N − M(t), given that
M(t) = i− 1, is Poisson with expected value ν(1−G(t)). If the (i− 1)st failure occurred at time
ti−1, then the conditional probability for the event that this failure was caused by the last of i−1
initial faults is

P (N = i− 1 |M(ti−1) = i− 1) = exp(−ν(1−G(ti−1))),

which is indeed identical to the limiting reliability in equation (9). This seems to corroborate our
assumption that the defectiveness of the TTF distributions in NHPP-I models is linked to the
possibility of no fault remaining in the software. In section 4 we will study how this insight can
be used for mending TTF distributions.

3.3 Infinite failures category NHPP models

Kuo and Yang [14] introduced the term “NHPP-II” for infinite failures category [20, pp. 250–
251] NHPP models. The models in this class share the property that µ(t) approaches infinity as
t → ∞. For these NHPP-II models Kuo and Yang showed that the mean value function can be
written as

µ(t) = − ln[1−H(t)], (11)

where H(t) is a non-defective distribution function. The failure times generated by such a model
are the record values of independent outcomes with identical density function h(t) = dH(t)/dt.

Since µ(t) approaches infinity as t→∞, all TTF distributions are non-defective:

lim
x→∞FXi(x) = 1− lim

x→∞ exp (−µ(ti−1 + x) + µ(ti−1)) = 1.

However, this does not necessarily mean that the expected values E(Xi) are finite. A prominent
example for this phenomenon is the Musa-Okumoto model [21], whose mean value function and
failure intensity are given by

µ(t) =
1
θ

ln(λ0θt+ 1) (12)

and
λ(t) =

λ0

λ0θt+ 1
, (13)

respectively. In this model, only for 0 < θ < 1 the mean time to the ith failure is finite:2

E(Xi) =
∫ ∞

0
R(x | ti−1,M(ti−1) = i− 1) dx =

∫ ∞
0

(
λ0θti−1 + 1

λ0θ(ti−1 + x) + 1

)1/θ

dx

= (λ0θti−1 + 1)1/θ ·
[

(λ0θ(ti−1 + x) + 1)1−1/θ

λ0(θ − 1)

]∞

0

0<θ<1=
λ0θti−1 + 1
λ0(1− θ) . (14)

While Kuo and Yang used the generic mean value function (11) only for the unification of NHPP-
II models, we find that taking defective distribution functions into account allows us to include
NHPP-I models as well. According to equation (3) the relationship

R(t | 0,M(0) = 0) = exp (−µ(t))
2Musa et al. [20, p. 291] correctly point out that the mean time to failure only exists for θ < 1. However, their

equation for calculating it in this case does not seem to be correct.
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holds for all NHPP models. Consequently, H(t) in equation (11) is nothing but the distribution
function of the time to first failure:

H(t) = 1−R(t | 0,M(0) = 0) = FX1(t).

This result shows that both NHPP-II models and NHPP-I models can be unified via the mean
value function

µ(t) = − ln[1− FX1(t)]. (15)

If a non-defective TTF distribution FX1(t) is plugged into this equation, then an NHPP-II model
is obtained. A defective distribution FX1(t), on the other hand, leads to an NHPP-I model.

4 Truncating Poisson distributions

4.1 Truncating the distribution of the number of inherent faults

From equation (9) we see that for an NHPP-I model at the beginning of testing the probability
that even infinite testing will never lead to a failure is given by

lim
x→∞R(x | 0,M(0) = 0) = exp (−ν) . (16)

According to equation (10) the conditional probability for no inherent software fault given that
no failure has occurred at the beginning of testing is

P (N = 0 |M(0) = 0) =
ν0

0!
exp(−ν) = exp(−ν). (17)

This is identical to the unconditional probability P (N = 0), since M(0) = 0 with probability one.
The equality of (16) and (17) suggests that the defectiveness of the distribution of the time to

first failure can be healed by removing the possibility that the number of inherent software faults
is zero.

In a different context, Trivedi [25, p. 261] proposes to do this by left-truncating the distribution
of N . The probability mass function of the zero-truncated Poisson distribution is

P (N = n) =
νn

n!
exp(−ν)

1− exp(−ν)
=
νn

n!
1

exp(ν)− 1
for n = 1, 2, ..., (18)

and its expected value is given by

E(N) =
∞∑

n=1

n · ν
n

n!
exp(−ν)

1− exp(−ν)
=

ν

1− exp(−ν)
> ν. (19)

Adopting this idea to our problem leads to the following reliability of the software in the interval
(0, x], bearing in mind that M(0) = 0:

R(x | 0,M(0) = 0) =
∞∑

n=1

[1−G(x)]n · ν
n

n!
exp(−ν)

1− exp(−ν)
(20)

=
exp(−ν)

1− exp(−ν)
· {exp [ν(1−G(x))]− 1}

=
exp [ν(1−G(x))]− 1

exp (ν)− 1
.
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Since this reliability expression approaches zero as x → ∞, the defectiveness of the distribution
of the time to first failure has indeed been mended.

Truncating the distribution of the number of inherent faults implicitly replaces the original
transition rate from state 0 to state 1 given by (8) with the following one connected to the
reliability function (20):

r0(t) =
−dR(t | 0,M(0) = 0)/dt

R(t | 0,M(0) = 0)
=

νg(t)
1− exp [−ν(1−G(t))]

.

The transition rates between the other states of the counting process {M(t) | t ≥ 0} remain
unchanged, however. This can be seen by studying the reliability of the software after the failure
number i−1 ≥ 1 has occurred at time ti−1. The reliability in the interval (ti−1, ti−1 +x] is derived
as

R(x | ti−1,M(ti−1) = i− 1)

= P (M(ti−1 + x)−M(ti−1) = 0 |M(ti−1) = i− 1)

=
P (M(ti−1 + x)−M(ti−1) = 0 and M(ti−1) = i− 1)

P (M(ti−1) = i− 1)

=

∑∞
n=i−1

(
1−G(ti−1+x)

1−G(ti−1)

)n−(i−1) · ( ni−1

)
G(ti−1)i−1[1−G(ti−1)]n−(i−1) · νnn! · exp(−ν)

1−exp(−ν)
∑∞
n=i−1

( n
i−1

)
G(ti−1)i−1[1−G(ti−1)]n−(i−1) · νnn! · exp(−ν)

1−exp(−ν)

=
exp(ν(1−G(ti−1 + x)))

exp(ν(1−G(ti−1)))
= exp(−νG(ti−1 + x) + νG(ti−1))

= exp(−µ(ti−1 + x) + µ(ti−1)) for i− 1 ≥ 1. (21)

This result is identical to equation (3), the reliability in the original NHPP model. Therefore, the
transition rates r1(t), r2(t), ... connected to equation (21) are the same as in (8),

ri−1(t) =
−dR(t− ti−1 | ti−1,M(ti−1) = i− 1)/dt

R(t− ti−1 | ti−1,M(ti−1) = i− 1)
=
νg(t) exp(−νG(t) + νG(ti−1))

exp(−νG(t) + νG(ti−1))
= νg(t) for i− 1 ≥ 1.

Adapting the generic NHPP-I model with mean value function (5) by zero-truncating the dis-
tribution of N leads to a new family of SRGMs, which we will refer to as “first-stage truncated
models”. The counting processes connected to these models feature the common structure shown
in figure 3.

 

u0-1 0 ...1 u0 

( )
1 exp[ (1 ( ))]

g t

G t− − −
ν

ν

 

( )g tν ( )g tν ( )g tν ( )g tν

 

 
Figure 3: The counting process connected to a first-stage truncated model
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Since r0(t) differs from all the other transition rates, the model family does not belong to the
class of NHPP models, and M(t) does not follow a Poisson distribution. Rather, the probability
for M(t) = 0 is given by

P (M(t) = 0) = R(t | 0,M(0) = 0) =
exp [ν(1−G(t))]− 1

exp (ν)− 1
,

while the probabilities for M(t) taking values greater than zero are

P (M(t) = m) =
∞∑
n=m

(
n

m

)
G(t)m[1−G(t)]n−m · ν

n

n!
exp(−ν)

1− exp(−ν)

=
(νG(t))m

m!
· exp(−νG(t))

1− exp(−ν)
for m ≥ 1.

From this probability mass function, we derive the generic mean value function of the first-stage
truncated models as

µ(t) =
∞∑

m=0

m · P (M(t) = m) =
∞∑

m=1

m · (νG(t))m

m!
· exp(−νG(t))

1− exp(−ν)
=

νG(t)
1− exp(−ν)

.

Obviously, truncating the distribution of the number of inherent faults scales the original mean
value function (5) by the factor (1− exp(−ν))−1 > 1 for each value of t. Specifically, the expected
number of failure occurrences after an infinite amount of testing is

lim
t→∞µ(t) =

ν

1− exp(−ν)
,

which is exactly the same as the expected number of inherent faults (19) connected to the zero-
truncated Poisson distribution.

Since the transition rates and reliability functions attached to the states 1, 2, ... of the
counting process are not affected by the truncation, the distribution of the time to second, third,
... failure is still defective. In the following section, we investigate how the defectiveness of all
TTF distributions can be mended.

4.2 Truncating the conditional distributions of the number of faults remaining

From section 4.1 we can see that the defectiveness of the distribution of the time to first failure in
NHPP-I models is caused by the fact that as long as no failure has occurred - i.e., as long as the
counting process resides in state 0 - it is possible that the software does not contain any fault at
all. Truncating the Poisson distribution of N , the number of inherent faults, fixes this problem.

More generally, equation (10) tells us that the conditional distribution of N −M(t) |M(t) =
i − 1 is Poisson. The meaning of this is as follows: The number of faults currently remaining in
the software, calculated as the difference between the number of initial faults and the number of
previous failure occurrences (the actual state of the counting process), follows a Poisson distribu-
tion. Since the Poisson distribution always assigns a non-zero probability to the value 0, after the
correction of the (i− 1)st fault there is a chance that the software is fault-free.
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Left-truncating all the conditional distributions of N | M(t) = i − 1 therefore seems to be a
natural extension to the approach employed in the last section. The zero-truncated conditional
distributions have the probability mass functions

P (N = n |M(t) = i− 1) =
[ν(1−G(t))]n−(i−1)

(n− (i− 1))!
· exp(−ν(1−G(t)))

1− exp(−ν(1−G(t)))
(22)

=
[ν(1−G(t))]n−(i−1)

(n− (i− 1))!
· 1

exp(ν(1−G(t)))− 1
for i− 1 ≥ 0, n ≥ i.

For i − 1 = 0 and t = 0, equation (22) specializes to the probability mass function of the zero-
truncated (unconditional) distribution of N , equation (18). For i− 1 > 0, as soon as the (i− 1)st

failure has been experienced the truncated conditional probability mass function (22) rules out
the possibility that the number of inherent faults was merely i− 1.

The reliability in the interval (ti−1, ti−1 + x] is then given by

R(x | ti−1,M(ti−1) = i− 1)

=
∞∑

n=i

P (M(ti−1 + x)−M(ti−1) = 0 | N = n,M(ti−1) = i− 1) · P (N = n |M(ti−1) = i− 1)

=
∞∑

n=i

(
1−G(ti−1 + x)

1−G(ti−1)

)n−(i−1)

· [ν(1−G(ti−1))]n−(i−1)

(n− (i− 1))!
· 1

exp(ν(1−G(ti−1)))− 1

=
exp(ν(1−G(ti−1 + x)))− 1

exp(ν(1−G(ti−1)))− 1
for i− 1 ≥ 0. (23)

Regardless the previous number of failures i − 1, reliability function (23) approaches zero for
x → ∞. Therefore, all distributions FX1(x), FX2(x), ... are non-defective. Unlike the truncation
of only the unconditional distribution of N , truncating each conditional distribution mends all
TTF distributions. Moreover, since the truncation is carried out at each state of the counting
process, the transition rates r0(t), r1(t), ... connected to equation (23) are all identical:

ri−1(t) =
−dR(t− ti−1 | ti−1,M(ti−1) = i− 1)/dt

R(t− ti−1 | ti−1,M(ti−1) = i− 1)

=
νg(t)

1− exp(−ν(1−G(t))
for i− 1 ≥ 0. (24)

The structure of the counting process related to the family of “all-stages truncated models” is
shown in figure 4.
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Figure 4: The counting process connected to an all-stages truncated model

11



This model family belongs to the class of NHPP models, because all transition rates are identical.
The number of failure occurrences at time t, M(t), follows a Poisson distribution with expected
value

µ(t) = − ln(R(t | 0,M(0) = 0)) = ln
[

exp(ν)− 1
exp[ν(1−G(t))]− 1

]
. (25)

Since µ(t)→∞ for t→∞, the models are NHPP-II models. This result is not unexpected. The
zero-truncated conditional probability mass functions (22) ensure that regardless the previous
number of failure occurrences there is always at least one undiscovered fault remaining in the
software. Due to the non-defectiveness of G(t) each fault will eventually lead to a failure. Con-
sequently, there is no upper bound for the expected number of failures to be experienced during
infinite testing.

From the unifying mean value function (15) we can derive the family of all-stages truncated
models by plugging in the generic non-defective distribution function of the time to first failure

FX1(t) =
1− exp(−νG(t))

1− exp(−ν)
.

The structure of this distribution is similar to the one of the coverage function in the software
reliability models with a time-varying testing-effort, cf. equation (7). However, while the latter
one is defective, our time to first failure distribution is non-defective because of the normalizing
denominator.

5 Defective TTF distributions in other models

In section 2 we have seen that the distribution of the time to the ith failure is defective if equation
(1) holds, i.e. if the area below the transition rate ri−1(t) is finite. Focusing on NHPP models,
our investigations in section 3 have shown that due to the identity of all transition rates and the
failure intensity the defectiveness of the TTF distributions is linked to the asymptotic behavior
of the mean value function: All TTF distributions are defective for NHPP-I models, while they
are all proper for NHPP-II models. In this section we will briefly discuss in which other sub-
classes of CTMC models defective TTF distributions may occur. Our classification criteria are
the time-dependence and/or state-dependence of the transition rates on the one hand and the
fact whether a model belongs to the finite-failures category or the infinite-failures category on
the other hand. (Models in which the transition rates are neither time- nor state-dependent are
too simplistic to model software reliability growth, and we therefore omit them.) In figure 5
sub-classes containing models with at least one (non-trivially) defective distribution are shaded
in gray. Moreover, examples of models are listed in italics. The class of NHPP models, covered
in sections 3 and 4, is shown on the left-hand side of the figure.

Let us proceed with those models for which the transition rates are not merely time-dependent
(like for the NHPP models), but also state-dependent. Here the asymptotic behavior of the mean
value function does not determine the defectiveness of the TTF distributions.
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Figure 5: Classification of CTMC software reliability growth models

First of all, while some TTF distributions of finite failures category models belonging to this class
may be defective, this is not necessarily true for all TTF distributions. An example for such
models is the family of first-stage truncated models derived in section 4.1.

Moreover, it is even possible that all TTF distributions of a finite failures category model are
proper, as the example of the Littlewood model [16] shows. This model proposes that the software
initially contains u0 faults, where u0 is a fixed but unknown integer value. All of these faults have
time-independent hazard rates that are independently sampled from the same Gamma(α, β)
distribution. These assumptions entail the time- and state-dependent transition rates

ri−1(t) = (u0 − (i− 1)) · α

β + t
for 0 ≤ i− 1 ≤ u0 − 1.

For these transition rates equation (1) is not satisfied, and therefore the distributions of X1, X2,
..., Xu0 are proper. The transition rate ru0(t) is constant at zero, which means that the entire
probability mass of the distribution of Xu0+1 is attached to infinity. However this defectiveness is
trivial and can already be seen from the structure of the counting process: The Littlewood model
is one of those models for which the CTMC representing the counting process terminates at the
absorbing state u0, see figure 1.

Time- and state-dependent CTMC models belonging to the infinite failures category are not
very common. However, it is not difficult to construct examples in order to prove that such
models may or may not feature defective distributions, just like those models of the finite failures
category.

“Inverting” the structure of the first-stage truncated models in figure 3 by setting the transition
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rate out of state 0 to
r0(t) = νg(t)

and all other transition rates to

r1(t) = r2(t) = ... =
νg(t)

1− exp[−ν(1−G(t))]
,

where G(t) is again a non-defective distribution function and g(t) is its derivative, results in a
model in which both the failure intensity

λ(t) = νg(t) · P (M(t) = 0) +
νg(t)

1− exp[−ν(1−G(t))]
· P (M(t) > 0)

= νg(t) exp(−νG(t)) +
νg(t)[1− exp(−νG(t))]
1− exp[−ν(1−G(t))]

=
νg(t)(1− exp(−ν))

1− exp[−ν(1−G(t))]

and mean value function

µ(t) =
∫ t

0
λ(y) dy = (1− exp(−ν)) · ln

[
exp(ν)− 1

exp[ν(1−G(t))]− 1

]

are scaled versions of the respective functions attached to the family of all-stages truncated models.
Obviously, µ(t) approaches infinity for t→∞. Moreover, our previous analyses have shown that
the TTF distribution related to the transition rate r0(t) is defective, while this is not the case for
all other TTF distributions. Therefore, this generic “all-but-first-stage truncated model” belongs
to the infinite failures category and contains exactly one defective distribution.

An infinite failures category model in which all TTF distributions are proper can be derived
from the Musa-Okumoto model by setting

r0(t) =
λ0θ

λ0θt+ 1
.

The reliability in the interval (0, x] implied by this transition rate,

R(x | 0,M(0) = 0) = exp
(
−
∫ x

0

λ0θ

λ0θy + 1
dy

)
=

1
λ0θx+ 1

,

approaches zero for x→∞ . Therefore, the distribution of the time to first failure is not defective.
All other transition rates are kept identical to the failure intensity (13) of the original model. Since
the Musa-Okumoto model is an NHPP-II model, the TTF distributions related to these transition
rates are proper as well. For the modified model the failure intensity becomes

λ(t) =
λ0θ

λ0θt+ 1
· P (M(t) = 0) +

λ0

λ0θt+ 1
· P (M(t) > 0)

=
λ0θ

(λ0θt+ 1)2
+

λ2
0θt

(λ0θt+ 1)2
=
λ0θ + λ2

0θt

(λ0θt+ 1)2
,

which leads to the mean value function

µ(t) =
1
θ

ln(λ0θt+ 1) +
λ0θt− λ0t

λ0θt+ 1
.
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As expected, this modified Musa-Okumoto model is indeed of the infinite failures category.
The last class of CTMC models to be discussed contains those models for which the transition

rates are merely state-dependent. Examples include both finite failures category models like the
well-known Jelinski-Moranda model [11] and infinite failures category models like Moranda’s geo-
metric model [17]. Due to the time-homogeneity all these models share the common property that
all transition rates are constant over time. As a consequence, for each failure that can occur at all
equation (1) does not hold, and the TTF distribution is non-defective. The italicized qualification
in the last sentence is required in order to allow for the fact that homogeneous CTMC models
of the finite failures category necessarily feature an absorbing state at which the Markov chain
terminates. As seen in the discussion of the Littlewood model, for the time out of this state the
entire probability mass is allocated to infinity.

6 A specific all-stages truncated model and its application

The derivation of the all-stages truncated models in section 4.2 is valid for any (non-defective)
coverage function G(t). Therefore, G(t) and consequently the initial NHPP-I model have not
been specified so far. In this section, we apply our approach to the well-known Goel-Okumoto
model [5] and show how to estimate the parameters of the resulting all-stages truncated model.
We then employ this model for fitting and predicting a classic failure data set, and we compare
its performance to the one of the original Goel-Okumoto model and the Musa-Okumoto model.

6.1 The truncated Goel-Okumoto model

The mean value function and the failure intensity of the NHPP-I model introduced by Goel and
Okumoto [5] are

µ(t) = ν(1− exp(−φt)) (26)

and
λ(t) = νφ exp(−φt), (27)

respectively, implying the non-defective coverage function (6). Plugging equation (6) into equation
(25), we obtain the mean value function of the all-stages truncated Goel-Okumoto model (in the
following referred to as the “truncated Goel-Okumoto model”):

µ(t) = ln
[

exp(ν)− 1
exp[ν exp(−φt)]− 1

]
. (28)

Its derivative with respect to time, the failure intensity, is

λ(t) =
νφ exp(−φt)

1− exp[−ν exp(−φt)] . (29)

From (3) and (28), the reliability in the interval (ti−1, ti−1 + x] is derived as

R(x | ti−1,M(ti−1) = i− 1) = exp (−µ(ti−1 + x) + µ(ti−1)) (30)

=
exp(ν exp(−φ(ti−1 + x)))− 1

exp(ν exp(−φti−1))− 1
,
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which approaches zero for x → ∞. Thus, all TTF distributions are non-defective. Moreover, it
can be shown that all mean times to failure are finite: The mean time to the ith failure implied
by the truncated Goel-Okumoto model is

E(Xi) =
∫ ∞

0
R(x | ti−1,M(ti−1) = i− 1)dx =

∫ ∞
0

exp(ν exp(−φ(ti + x)))− 1
exp(ν exp(−φti))− 1

dx

=
∫ exp(−φti−1)

0

exp(νz)− 1
exp(ν exp(−φti−1))− 1

· dz
φz

=
1

φ[exp(ν exp(−φti−1))− 1]

∫ exp(−φti−1)

0

1
z

∞∑

j=1

(νz)j

j!
dz

=
1

φ[exp(ν exp(−φti−1))− 1]

∞∑

j=1

(ν exp(−φti−1))j

j · j! ∀ i. (31)

The transition to line two is done via the substitution z := exp(−φ(ti−1 + x)). The sum in the
last line of the equation converges to a finite value, as can be seen by comparing it to the Taylor
series expansion of the exponential function. This means that for each failure i = 1, 2, ... the mean
time to failure is finite. Since the summands vanish rather quickly, the mean time to failure can
easily be calculated based on equation (31). However, it is interesting to note that by a two-fold
approximation we find:

E(Xi) =
1

φ[exp(ν exp(−φti−1))− 1]

∞∑

j=1

(ν exp(−φti−1))j

j · j!

≈ 1
νφ exp(−φti−1)[exp(ν exp(−φti−1))− 1]

∞∑

j=1

(ν exp(−φti−1))j+1

(j + 1)!

≈ 1
νφ exp(−φti−1)

∀ i. (32)

The mean time to the ith failure is roughly the reciprocal of the hazard rate (or, equivalently, the
failure intensity) of the original Goel-Okumoto model, equation (27), evaluated at the time of the
(i− 1)st failure occurrence.

Maximum likelihood estimation (MLE) can be employed for calculating point estimates of
the two model parameters ν and φ. Based on the me failure times t1, t2, ..., tme collected while
testing the software from time 0 to te (where te may be identical to or larger than tme), for NHPP
models the log-likelihood function to be maximized with respect to the parameter vector δ takes
the general form [20, p. 324]

lnL(δ; t1, ..., tme , te) =
me∑

i=1

ln(λ(ti))− µ(te). (33)

With equations (28) and (29) the log-likelihood of the truncated Goel-Okumoto model becomes

lnL(ν, φ; t1, ..., tme , te) = me ln(νφ)− φ
me∑

i=1

ti −
me∑

i=1

ln [1− exp(−ν exp(−φti))]

+ ln[exp(ν exp(−φte))− 1]− ln[exp(ν)− 1].
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Its maximization entails the simultaneous solution of the equations

∂ lnL
∂ν

=
me

ν
−

me∑

i=1

exp(−φti)
exp(ν exp(−φti))− 1

+
exp(−φte)

1− exp(−ν exp(−φte)) −
1

1− exp(−ν)
= 0 and

∂ lnL
∂φ

=
me

φ
−

me∑

i=1

ti +
me∑

i=1

νti exp(−φti)
exp(ν exp(−φti))− 1

− νte exp(−φte)
1− exp(−ν exp(−φte)) = 0.

6.2 Numerical example

For illustrating the application of the truncated Goel-Okumoto model we use the “System 40”
data set collected by Musa in the mid 1970s and available at the web site of the Data & Analysis
Center for Software [3]. The data set consists of the wall-clock times of 101 failures experienced
during the system test phase of a military application containing about 180,000 delivered object
code instructions.

Estimation of the parameters of the truncated Goel-Okumoto model is carried out according
to the procedure described in the last section. We also employ MLE for fitting the Goel-Okumoto
model and the Musa-Okumoto model to the data set. This is done by maximizing the log-
likelihood derived from combining equations (26), (27), (33) and (12), (13), (33), respectively.
Figure 6 shows the development of the cumulative number of failure occurrences over time for
System 40 as well as the mean value functions of the three models, with parameters estimated
based on the complete data set. Obviously, the truncated Goel-Okumoto model does the best job
in fitting the actual data. This is corroborated by the log-likelihood values attained by the three
models, which are listed in table 1.

The maximum log-likelihood value achieved by a model during MLE can be viewed as a
measure for the possibility that the data were generated by the respective model. Since adding
parameters to a model cannot worsen its fit, selecting the “best” model based on the log-likelihood
value would in general favor overtly complex models. Indeed, Akaike’s [1] information criterion
derived from the Kullback-Leibler distance essentially adjusts the log-likelihood value by penaliz-
ing for the number of model parameters. However, since all three models considered here contain
two parameters, we can simply compare the log-likelihood values. The model ranking implied
by table 1 coincides with the visual impression given by figure 6: The truncated Goel-Okumoto
model attains the largest log-likelihood value and is therefore most capable in explaining the col-
lected failure data; it is followed by the Musa-Okumoto model and the original Goel-Okumoto
model.

Table 1: Log-likelihood values of the fitted models
Model log-likelihood value

Goel-Okumoto model -1282.362

Musa-Okumoto model -1251.290

truncated Goel-Okumoto model -1239.508
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Figure 6: Cumulative number of failure occurrences and mean value functions of the fitted models

As shown in the last section, in the truncated Goel-Okumoto model all mean times to failure are
finite. For this data set this is also the case for the Musa-Okumoto model, because the estimate
of the parameter θ is smaller than one. We can therefore contrast the predicted mean times to
failure according to both models with the failure data. For each model, we start out with the
first five data points, estimate the model parameters and predict the time to the sixth failure
based on the parameter estimates and the fifth failure time, using equations (14) and (31). This
procedure is repeated, each time adding one data point, until the end of the data set is reached.
The predicted mean times to next failure and the actual times to failure are depicted in figure 7.

The development in the predicted E(Xi) values is quite similar for the two models. While
the mean time to failure predictions of the truncated Goel-Okumoto model are slightly more
optimistic, they seem to be less volatile than the ones of the Musa-Okumoto model. Moreover,
the former model does not only respond to the long inter-failure times experienced by increasing
the mean times to failure predictions (as the Musa-Okumoto model does), but it already predicts
this increasing trend before the first TTF exceeding 100 hours is observed.
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Figure 7: Observed times to failure and predicted mean times to failure

7 Conclusions

Defective time to failure distributions are often unrealistic, and they entail infinite mean times
to failure, making this metric useless. In the course of our investigations, we have been able to
answer the questions listed in the abstract: The ith time to failure distribution is defective if the
transition rate into state i decreases so quickly in time that the area below it is finite. While
this can never happen for homogeneous CTMC models, it is possible for non-homogeneous ones.
NHPP models are a special case of the latter, and due to the identity between all transition
rates and the failure intensity the areas below the transition rates are related to the mean value
function. If this function is bounded as t approaches infinity, i.e. for NHPP-I models, all time to
failures distributions are defective. However, there is a generic approach with which an NHPP-I
model can be transformed into an NHPP-II model. Its application to the Goel-Okumoto model
has turned out to be both feasible and worthwhile, since it led us to a new SRGM with desirable
properties, including all mean times to failure being finite.
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