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Abstract— A novel compartmental model that includes
vaccination strategy, permanence in hospital wards and
tracing of infected individuals has been implemented to
forecast hospital overload caused by COVID-19 pandemics
in Italy. The model parameters were calibrated according to
available data on cases, hospital admissions, and number of
deaths in Italy during the second wave, and were validated
in the timeframe corresponding to the first successive wave
where vaccination campaign was fully operational. This model
allowed quantifying the decrease of hospital demand in Italy
associated with the vaccination campaign.

Clinical relevance This study provides evidence for the
ability of deterministic SIR-based models to accurately forecast
hospital demand dynamics, and support informed decisions
regarding dimensioning of hospital personnel and technologies
to respond to large-scale epidemics, even when vaccination
campaigns are available.

I. INTRODUCTION

Large-scale epidemics are generally characterised by slow
onsets and exponential growths, with long-lasting effects [1].
The generally observed gradual increase in the number of
cases allows governments to gradually implement mitigation
strategies to counter the oncoming wave, but the continued
spread of the disease and the possibility of a delayed recovery
of patients can easily lead hospital wards (HW) and Intensive
Care Units (ICU) to overload. The COVID-19 pandemic, in
particular, has put such facilities to the test, both in terms of
involved personnel and technology [2].

In the virtual absence of effective treatments, non-
pharmaceutical interventions (NPIs, which may include lim-
iting gatherings at a maximum specified number, mandating
personal protective equipment use, defining minimum inter-
personal physical distances, and enforcing lockdowns) aimed
to reduce the transmission between hosts, while research into
the development and production of effective vaccines was
sped up, based on the assumption that the availability of an
effective vaccine can control the spread of the virus in the
population. With regard to the recent pandemics, vaccination
campaigns started in a few countries about a year after the
epidemics outbreak [3], and nearly all countries have now
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implemented mass vaccination campaigns, with an overall
coverage of around 60% of the entire world population [4].

Both NPIs and vaccination campaigns contribute to reduce
hospital demand, easing support for patients with the infec-
tion, and lowering the likelihood of a less effective treatment
for patients accessing hospitals for other conditions.

From a scientific standpoint, epidemiology comes in help,
by providing mathematical models that can be used to study
the epidemic and predict its evolution over time [5]. Com-
partmental models provide the community with simulations
of various strategies that policymakers can use to optimise
interventions and allocate resources [6]. Calibrating these
models based on actual data makes it possible to determine
optimal values for some parameters of interest regarding
the evolution of an epidemics, such as the infection rate,
infectious period, case fatality rate. From this optimisation,
the evolution over time of the reproduction number can be
estimated to monitor and forecast the trend of the transmis-
sion of such diseases [7] .

Since the outbreak of COVID-19 epidemics, a vast number
of compartmental models have been appearing to study the
ongoing infectious disease [8], and they have been proven
capable of suggesting which interventions are most likely to
effectively reduce the number of cases [9]: most of them
stemmed from the traditional SIR model, where population
is divided into three stocks or compartments (susceptible -
S, infected - I, and recovered - R), and transitions from one
compartment to another are regulated based on parameters
that take into account specific temporal rates.

Elaborations of such models were introduced to account
for incubation periods (thus introducing the additional ex-
posed - E compartment), as well as the possible lethality
associated with the disease (thus introducing the additional
deceased - D sink compartment). In an effort to simulate
the pathway of infected individuals across different stages
of the disease, additional compartments were introduced to
mimic the admission to different hospital departments, usu-
ally distinguishing between regular HWs, and ICUs [10]. In
some cases, models diverged from the traditional determin-
istic transition process introducing statistical variations that
would account for uncertainties associated with the disease
dynamics [11]. The presence of interventions within the
evolution of the pandemics led to the introduction of dynamic
variations over time of the main parameters of transmission
[12], based on the assumption that a static model is not able
to accurately follow variations of the dynamics associated
with the enforcement of such interventions.

In the present contribution, we will present a modified SIR
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deterministic model that includes a few factors reflecting the
in-field observations of the management of pandemics at the
national level: 1) the presence of compartments associated
with different stages of hospitalisations, 2) the introduction
of vaccination during the evolution of pandemics, and 3) the
presence of a non-ideal ability to identify new cases.

We will focus on the modelling of COVID-19 evolution
and prediction of the associated health system outcomes
(admissions to hospital and deaths) during the ongoing vacci-
nation campaign in Italy. The rest of the study is organised as
follows. The following section will contain the description of
the proposed SIR-V model, and the implemented procedure
for the parameter calibration. Procedure for the validation of
the model will be presented in the ensuing section. Results
from the validation procedure will be given in section IV,
while discussion on the results and the limitations of the
study will be drawn in section V.

II. MODEL DESCRIPTION
A. Description of the compartmental architecture

The model was introduced to provide a description of
the epidemic, with a specific focus on the hospital demand
in terms of both ordinary HWs and ICUs. The model’s
backbone is a traditional SIR, with an additional number
of compartments fitted for the aims of the work. On top
of this, the model also accounted for those asymptomatic
infections that escaped testing, but played a significant role
in feeding the epidemic with new infections. Indeed, these
asymptomatic individuals, being undetected, might freely
proceed with their every-day lives, and are able to spread
the infection as long as they recover; in the meantime, they
will experience neither isolation nor hospitalisation. For this
reason, this contingency was included in the model.

All of the above considerations led to the introduction of
two distinct infection terms: one corresponding to the de-
tected infections and the other corresponding to the escaped
ones. Basically, infections are assumed to be either detected
or undetected. The former will cause individuals to be either
asymptomatic or symptomatic and, depending on the severity
of symptoms, they may be subject to home isolation or
hospitalisation. The latter remains active during the entire
period of infectivity. A critical point worth mentioning is that
isolated/hospitalised infected individuals are cut apart from
the infection chain, meaning that they no longer contribute to
spread the disease (assuming a perfect isolation both at home
and in the hospital), whereas the undetected asymptomatic
individuals still continue to spread the virus until they
naturally recover. For the sake of simplicity, we hypothesised
that susceptible individuals being infected are able to spread
the virus with no delay (i.e. no added Exposed compartment).

The overall structure of the different compartments with
the corresponding connections is shown in Fig. 1, where:

• S is the compartment for susceptible individuals;
• V is the compartment for vaccinated individuals;
• I is the compartment of infected individuals;
• U is a compartment collecting the undetected infected

individuals;

• J is the compartment of detected infected individuals in
isolation;

• ICU is the compartment of infected individuals admitted
to intensive care units;

• HW is the compartment of infected individuals admitted
to regular hospital wards;

• HWR is the compartment of individuals recovered after
ICU admission, and admitted to hospital wards;

• D is the compartment of the deceased individuals;
• R is the compartment of the recovered individuals.

Regarding connections between compartments, these are
regulated from the following parameters:

• Transmission rate, β

• Share of undetected infections, und
• Recovery rate of undetected asymptomatic individuals,

γ4 (days−1)
• Isolation rate, σ1 (days−1)
• Recovery rate from isolation, γ1 (days−1)
• Share of severe symptomatic individuals, p
• Hospitalisation rate, σ2 (days−1)
• Share of hospitalised individuals in ordinary ward, q
• Recovery rate from ordinary ward, γ2 (days−1)
• Death rate from ordinary ward, γ2d (days−1)
• Share of people recovering from ordinary ward, k
• Share of deceased from ICU, b
• Death rate, i (days−1)
• Recovery rate from ICU, σ3 (days−1)
• Recovery rate from the ward after ICU, γ3 (days−1)
• Vaccination rate, P
• Vaccine effectiveness, e f f
• Days before immunity, T

With reference to the components of the model architec-
ture, the compartment U may be considered as a virtual one,
since, while still populating the share of infected individuals,
no member of the compartment is moved towards other
compartments (such as hospitalisations and isolations) until
recovery. Regarding the I compartment, we opted for making
this compartment neglecting the incubation latency, as we
were not necessarily interested in the specific dynamics of
such transition, which would instead further complicate the
proposed model. Regarding the different isolation compart-
ments, we made the following assumptions: individuals are
detected all outside the hospital, and all of them remain in
isolation. A share of them is then admitted to the hospital
after some days. This time constant is common to both hos-
pitalisation admission (i.e. HW and ICU), and we assumed
that individuals in HW can either die or recover, but no
direct connection from HW to ICU was considered. People
in ICU, if recovering, will re-join the hospital ward for a few
days before leaving the hospital as recovered individuals. In
the model, deaths are assumed to come either from regular
wards or from ICUs, but not directly from the isolation
compartment, based on some evidence that, in the second
wave in Italy, the share of deaths at home or in nursing homes
not passing through the hospitals was a small minority.

Some of the assumptions made may be considered as not
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Fig. 1. Structure of the proposed model. Parameters for transitions between
compartments are defined in the main text.

reflecting reality in conditions of overload (such as those
observed during the first outbreak of COVID-19), but they
more probably adhere to the actual conditions when the
epidemic wave can be managed by the hospital network
system. Following the same reasoning, we assumed that the
transition to the deceased compartment can only originate
from hospitalised individuals.

B. Calibration of model parameters

A total number of 18 parameters were thus introduced
in the model. We decided to perform the calibration of the
model, by considering Italy government choices for a subset
of the parameters, and taking into account the observed
data in the timeframe August-December 2020 for a second
subset of them. In particular, regarding observed data, we
made reference to four monitored variables: detected cases,
hospital wards presences, intensive care units presences, and
deaths. These were made available online by the Italian Civil
Protection Department [13]. As it can be seen in Fig. 2, the
chosen timeframe allowed us to identify the onset of the
second wave. The first timeframe ended at December 2020,
in oder to avoid two confounding factors: 1) the initiation of
the vaccination campaign, and 2) the onset of a third sub-
wave. Both events can be approximately located in the first
two weeks of January 2021.

Observed data for the four variables were then analytically
fitted with a gaussian model, to reduce uncertainties associ-
ated with data collection. Out of 18 parameters, 3 of them

0

5000

10000

15000

20000

25000

30000

35000

40000

45000

03
 M

ar
03

 A
pr

03
 M

ay
03

 Ju
n

03
 Ju

l
03

 A
ug

03
 S

ep
03

 O
ct

03
 N

ov
03

 D
ec

03
 Ja

n
03

 F
eb

03
 M

ar
03

 A
pr

03
 M

ay
03

 Ju
n

03
 Ju

l
03

 A
ug

03
 S

ep
03

 O
ct

03
 N

ov
03

 D
ec

Daily cases

Vaccination phase

Calibration timeframe

Validation timeframe

New cases

2020 2021

Fig. 2. COVID-19 daily detected cases in Italy. Model calibration and
vaccination campaign timeframes are shaded with different grey levels.

(P, T , e f f ) were left apart because, referring to vaccination
strategy and efficacy characteristics, they were not available
at the time of the second wave. For the remaining 15
parameters, we fixed 10 of them, leaving the calibration
procedure to identify optimal values for 5 relevant parameters
of interest, which were: the transmission rate β , the share of
detected individuals requiring hospitalisation p, the share of
individuals admitted to hospital and not requiring intensive
care q, the share of patients in regular wards recovering from
the disease k, and the share of people in ICU which would
not recover b.

The remaining parameters were fixed based on data avail-
able from the literature [14, 15, 16]. Calibration was then
performed, by minimising an error function obtained by
combining two shape parameters for each of the monitored
variables (active infections, HW presences, ICU presences,
and cumulative deaths): the relative error in correspodence to
the maximum value, and the relative difference in temporal
duration in correspondence to half the maximum value.

TABLE I
VALUES OF THE MODEL PARAMETERS

Parameter Value
Fixed parameter values
und 0.500
σ1 0.200
σ2 0.250 days−1

σ3 0.071 days−1

γ1 0.333 days−1

γ2 0.055 days−1

γ2d 0.142 days−1

γ3 0.333 days−1

γ4 0.142 days−1

i 0.080
Calibrated parameter values

β 0.197 days−1

p 0.007
q 0.885
b 0.347
k 0.900
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III. MODEL VALIDATION
The procedure for model validation was performed again

on data for the timeframe July 15-October 13, 2021. Also in
this case, gaussian fitting was performed for all variables of
interest. Same values for the fixed parameters were used,
but in this case, parameters on vaccination strategy and
effectiveness were added to the model: a vaccination rate
P corresponding to a daily number of vaccinated individ-
uals fixed at 300.000, according to the average amount of
vaccinations that were performed in Italy during the general
population coverage phase; a vaccine effectiveness e f f in
terms of protection from infection set to 0.90, to reflect the
claimed values given before the onset of waning effect, and
an average latency from immunity T set to 14 days.

Two important assumptions were made for the vaccine:
the first was that the vaccine provided immunity against
the infection with effectiveness e f f without specific differ-
ences regarding the protection from infection, symptoms, or
hospitalisations, an assumption that, however, might not be
necessarily granted over time [17]; the second was that the
immunity coming from the vaccine was considered long-
lasting within the studied timeframe (three months), without
waning, even if this assumption may not hold true for longer
timeframes.

IV. VALIDATION PHASE RESULTS
Thus, the fitting model applied on the wave corresponding

to the period July-October 2021 yielded the calculated values
for the parameters reported in Table 2.

TABLE II
VALUES OF THE MODEL PARAMETERS (VALIDATION PHASE)

Parameter Value
und 0.600
β 0.326 days−1

p 0.004
q 0.882
b 0.700
k 0.940

In particular, most parameters showed values different
from those in the timeframe of the second wave, with the
exclusion of the relative shares of people in hospital who
were in either ordinary wards or intensive care units. On
the contrary, the transmission rate β almost doubled, the
share of detected people who needed hospitalisation was
relevantly lower, while the relative share of deaths coming
from ICUs resulted relatively higher in the second timeframe
as compared to the second wave. Also, it was necessary to
increase the share of undetected individuals to 0.6. With
the chosen parameters, the model fitted the observed data
accurately, with a negligible relative error at maximum value,
and a good accuracy in terms of time evolution for detected
cases and ordinary hospitalisations, despite a slightly larger
wave duration for both hospital wards and intensive care
units presences (see Fig. 3). Then, to assess the ability of
the vaccination strategy in reducing the burden on hospital

facilities and decreasing fatalities, two additional simulations
were run changing only the number of daily vaccinated
individuals (doubling and then halving the value of the actual
vaccination rate P, respectively). As it can be seen from
Fig. 4, even in presence of a small wave such as the one
experienced in the summer-early autumn 2021 in Italy, the
effect of a possible reduction of the vaccination rate at
150.000 vaccinations/day would have been not negligible,
with an approximate increase of 15% of hospital presences
for both HWs and ICUs, and a further predicted increase of
around 500 deaths.
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Fig. 3. Comparison of SIR-V model output with gaussian fit on observed
data in the timeframe July 15-December 15. The thin black line identifies
the time limit for gaussian fitting on observed data (October 15).

V. DISCUSSION AND CONCLUSIONS

The proposed SIR-V model was able to capture a share
of the modifications associated with the pandemics in the
two timeframes corresponding to September-December 2020
and July-October 2021. In particular, the model captured
the increased transmission rate observed in the latter wave,
probably due to the increased infectivity of the delta variant
[18], which was most prevalent at that time. The model was
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also able to display a higher resilience of the system to treat
the hospitalised subjects, with a modification of the shares
of patients needing intensive care, and a smaller share of
patients in ordinary wards who would have not recovered.
On top of this, the presence of the vaccination campaign was
proved to be effective, as can be noticed by the modifications
between the two timeframes (in terms of ratio between cases
and deaths). Considering that no major modifications were
made to most of the other dynamics parameters, this evidence
suggested that the reduced severity of cases displayed by the
model in the second timeframe was a further confirmation
of the vaccine effectiveness. The change of the undetected
share of asymptomatic individuals, increased at 0.6 from
0.5 passing from the first to the second timeframe, could
also be associated with the introduction of the vaccination
campaign and the immunity passport enforcement: if on one
side, escapes from detection might have been less frequent,
considering that unvaccinated individuals needed to be tested
for attending a variety of activities in that timeframe, on the
other side there were lower chances for a vaccinated indi-
vidual to be infected, since, at the central time of the second
timeframe, two thirds of the population were vaccinated.

A. Study limitations and conclusions

The deterministic model has a number of limitations that
need to be taken into account. First, the model parameters
were kept fixed in each evolution, while it is reasonable to
accept that a number of them may vary as the result of
possible containment strategies in response to an outbreak.
For example, we can consider the transmission rate which
decreases when lockdowns are enforced, or the undetected
share, which may substantially vary if the strategy and
quantity of testing is modified during the outbreak. Second,
the introduction of the vaccination effect could be elaborated
at will, by considering that its efficacy might be different
if considered as immunity from infection, or in terms of
protection from infectiousness, or as protection from symp-
toms. Third, vaccine could change (i.e. decrease) its efficacy
over time, allowing individuals which were removed from the
susceptible compartment to re-enter in the same compartment
while in the same outbreak. Finally, modifications of the viral

agent were not considered in this model, and, although they
were indirectly confirmed across different outbreaks, they
could not be verified within each outbreak. Despite all these
limitations the model was able to predict the actual hospital
demand variables and outcomes for the second timeframe,
and it indirectly confirmed the efficacy of vaccination cam-
paigns to reduce the hospital burden and make the outbreaks
more easily governed.
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