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Abstract

Traditional parallel programming forces the programmer, apart from designing the application,
to analyse the performance of this recently built application. This diffi cult task of testing the
behaviour of the program can be avoided with the use of an automatic performance analysis
tool. Users are released from having to understand the enormous amount of performance
information obtained from the execution of a program.
The automatic analysis bases its work on the use of a pre-defined list of logical rules of
production of performance problems. These rules form the “ knowledge base” of the tool.  When
the tool analyses an application, it looks for the occurrence of an element in the list of
performance problems recorded in the “ knowledge base” . When one of the problems is found ( a
“ match” in the list), the tool analyses the cause of the performance problem and builds a
recommendation to the user to direct the possible modifications the code of the application.

1.- Introduction.

Performance analysis of parallel programs has traditionally been addressed as the last of the steps
to design an application. Programmers of applications, with the help of performance visualisation
tools li ke Paragraph [Heath 91] and Pablo [Reed 93], have to understand the behaviour of the
applications running on the target machines.

Those kind of tools present the performance of an application as a collection of graphical views.
The views summarise the behaviour of certain aspects of the program during an execution
interval. Users must look for sensitive views of the execution, redefining them until the
behaviour of the application is completely understood. The disadvantages of these tools remain
in the diff iculty of understanding the enormous amount of performance data generated for an
application and the diff iculty of relating the performance views with the corresponding part of
the application.

Other approaches have considered the analysis of the applications from a certain parallel
programming model [Crovella 94] [Meira 95]. The analysis consists of building an abstract
expression of the application according to the general model. From that point on, this expression
represents the behavioural characteristics of the application. The analysis predicts certain aspects
of the program future behaviour when considering the analysis of the abstract expression. The
main problem of this approach is that the abstract representation of the program may hide
relevant aspects of the program performance, which are not considered in the programming
model.
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When parallel application programmers want to improve the performance of their applications,
the usual procedure is, after generating a trace file from the execution of the application, use a
visualization tool to search for execution problems. With some experience in understanding the
performance views, programmers are able to locate the most important problems ocurred at the
execution of the application. After locating the problems in the views, the next step is to
understand the causes of those performance problems found.

After studying some parallel programming models and the performance of programs under those
models, we have developed a list of performance problems that can be found at the execution of
an application. With the help of this li st, problems can be analysed to derive conclusions about
their causes and possible changes in the code of the application to solve them.

In this paper, we describe an automatic performance analysis tool which, using a monitorization
scheme, pretends to release users from analysing the overwhelming quantity of performance
information generated for the execution of an application. The tool automatically selects from the
available information of the program (trace file, application code,...) whatever it finds relevant to
analyse and improve the behaviour of the application.
The automatic tool analyses the ineff iciency intervals found in the trace files. These ineff iciency
intervals represent time periods when the application is not using all the capabiliti es of the
parallel system. If the application could extract all the potential of the machine during the
execution time it surely will be completed in a shorter time, setting its performance to the
maximum expression.
The tool divides this work of analysing the execution of the application in some phases:
- A general analysis phase, when the tool tries to locate general behavioural problems in the
execution. The tool scans the trace files classifying the execution of the application depending on
the efficiency of the system during the execution time.
- If the general eff iciency of the system does not meet the requirements of the design (for
example, execution is too slow) the tool starts looking for the most important performance
problems of the application. These problems will be stored in a list ordered by execution
importance.
- The most important performance problems are selected to be analysed in detail . The tool
focuses its work in finding the causes of these problems, using an internal li st of causes of
performance problems ( the “knowledge base” of the tool). This analysis process consists of
finding which causes “match” with a specific problem.
When all causes of a problem are found, the tool builds a report of suggestions on how to
overcome the problems found and presents it to the user/programmer of applications.
There are other automatic performance analysers, li ke Paradyn [Waheed 96], that analyse the
performance at execution time, therefore they must focus its work in minimising the overhead of
introducing monitoring control of the system. For that reason, Paradyn possibly misses problems
which fall out from the current instrumentation bounds.

In section 2, we describe the list of performance problems (“knowledge base” of the tool) to be
used as a reference pattern at the analysis of the application. In section 3, we introduce the
implementation of the analysis tool. Finally, in section 4, we describe the future work to be done
on the tool development.
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2.- Classification of the performance problems.

The list of general problems found at the analysis of parallel programming models, added to the
experimentation on PVM parallel programs, has derived in a specification of performance
problems and their causes.

The analysis of the ineff iciency intervals, defined at the introduction, makes an initial
differentiation between two problems:

• During the ineff iciency interval there are idle processors and there are not tasks ready
to execute, neither time-sharing executing tasks at one of those processors. The
analysis must find out the reasons of this lack of ready tasks. The aim of the analysis is
to fill t hose ineficiency intervals. To do so, it must find which changes should be
applied to the program to activate some tasks in those intervals.

• Mapping problem: there are idle processors during the ineficiency interval and, at the
same time, there are ready tasks in other processors. The analysis must consider the
states of the execution trying to modify the current task-processor mapping. This
process involves the consideration of changes in the communication delays when a
task is mapped on a different processor.

From these two initial situations the analysis must try to make a deeper analysis of which are the
actual causes of this two performance problems, providing some suggestions to the programmer.
However, these two situations are not mutually exclusive, i.e. , it is possible to find a poor
performance interval with some ready tasks in other processors and, when trying to determine
which task should be mapped in the idle processor, the analysis concludes that it is not possible
to move any task because of the communication constraints. Then, other branches of the analysis
should be considered.
In figure 1, we classify the performance problems and its causes. These problems and its causes
are going to be explained in detail in the following points.

Figure 1: classification of performance problems detected by the analysis and its causes.
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2.1 Lack of ready tasks

When the analysis finds that there are no ready tasks in the system to be executed on some
available processors it must find which tasks could be activated to fill t hat void. The first tasks
analysed are those which start executing just after the ineficiency intervals. The analysis focuses
on finding why those tasks do not execute previously and what should be modified in order to
activate them before.
This process of f inding the reasons of what prevents the involved tasks to execute earlier is
equivalent to explain the causes that provoke the ineficiency interval. The analysis uses a list of
possible causes of  ineficiency intervals, the “knowledge base” derived from the analysis of
problems of the parallel programs, to analyse why a task does not execute before.
The most common cause of an ineficiency interval is that a task is blocked involved in a
communication (and there are no other ready tasks in the same processor). In our case the
blockings are produced in the receive message operations. From here, we have divided the list of
ineficiency causes in two sections related or not with communications.

1.- The first part of the list is composed by communication-related causes:
a) Lack of parallelism:
The ineficiency interval is produced by the blocking of some tasks which must wait for a
message from another task. This task must generate data for all the rest, deriving a
serialisation of the computation. While this task executes in a certain processor the other
tasks wait for the message, leaving their processors idle.
b) Slow communication:
Task is blocked waiting for waiting for the reception of a message which has already been
sent. The cause of this slow movement of the message could be the (long) size of the
message itself or a contention in the network between the processors.
c) Blocked Sender:
The blocking of the communications is produced by the sender task. The communication
is blocked because the sender, instead of sending the required message, is itself receiving
a message from other tasks. In this case, it is necessary to analyse the application to
determine if there exits a data dependence between all communication partners. That is to
say, the analysis must test the independence of the tasks in communication. If they are
tested independent, it should be possible to modify the order of the sentences to avoid this
overlap.
d) Multiple output problem:
A task is blocked waiting for a message and the sender has not started the transmission
yet because it is sending other messages to other tasks.

2.- Moreover, there are other causes, not directly involving communication, which also provoke
ineficiency intervals:

e) Problems at a barrier:
When there is a barrier in the application and the tasks reach it with too different times,
the first task which reaches the barrier remains blocked until the last one arrives.
f) Problematic Master/Slave relationships.
Under this collaboration scheme the master tasks may need a minimum number of slaves
to assure a good performance behaviour
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In the following points, the causes of a lack of ready tasks problem are analysed in detail ,
describing he kind of solutions that the analysis is likely to suggest for each cause.

2.1.1 Lack of parallelism.

A lack of ready tasks problem may be caused by a not scalable application design which, during
an execution interval, has not enough ready-to-execute tasks for all processors of the system.
When analysing the tasks which execute after the ineficiency interval, we find that they cannot
execute previously (and therefore, fill t he ineficiency interval) because of  their dependencies on
the currently executing tasks in the program (see figure 2, last task on cpu1).
In these situations, the main recommendation is to redesign the application in order to distribute
the calculations performed during the ineficiency interval among all processors. In this way, we
pretend to increase the scalability of the program.

Figure 2: Lack of parallelism in the second level of the design.

2.1.2. Slow communications

An interval of ineficiency may be caused when the communication between two tasks becomes
so slow that the execution of the application is serialised.
In the experimentations, the analyses were carried out on applications under PVM programming
model. A task which wants to receive a message makes a call to the receive message primitive
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and starts waiting for the message to come. This blocking of the receiver tasks is one of the most
common sources of ineficiency intervals.
When analysing those intervals, it rebuilds the communication history of the tasks involved. This
problem of slow communications will be detected when the ineficiency interval equals to the
time that the message has spent moving along the interconnection network of the machine.
Suggestions for this problem consider the state of the network (mainly the occupation grade) and
the size of the messages transmitted, this information must be found out from the trace files
actually used. To be able to analyse this problem it would be necessary to define new
monitorization processes to recover this kind of information of the system. Solutions contemplate
the remapping of the communication partner to a nearer processor and, if the target machine
allows it, redirect the message through less loaded parts of the network.

2.1.3. Blocked sender.

In this case, the ineficiency interval is, again, an interval of blocked communication. This time,
when analysing the history of the transference we discover that the sender of the message is itself
waiting for a message from a third task. At least we have three tasks involved, so this
relationship must be studied in detail.
This three (or more) way relationship can be a coincidence in time, and then the tasks execution
order can be modified to avoid this overlap. On the contrary, the relationship could also represent
a data dependence between a group of tasks, which could be affecting negatively the performance
of the application. From this point on, the independence of the tasks involved in the
communications must be tested.

             

Figure 3: Task 3 needs some data from task 2, while task 2 waits for the reception of some data from task 1.

In the application represented by the graph of f igure 3, we detect a communication relationship of
three tasks. The analysis must differentiate between a real dependence or a coincidence in time of
the communications of the tasks. A data dependence will be found when task 3 blocks for
reception of a data item sent from task 2. At the same time, task 2 is blocked to receive a
message from task 1. If these two messages are related somehow (for example, one message is a
part of the other) the analysis will notify this situation and suggest how to distribute the data in a
better way.
To consider all data movements between tasks in a group, the analysis builds a table of
transferences attending the sender, the receiver and the timing of each transference. This table is
built for all communications in the execution. The table is completed with the data-structure
related with the transferred messages which must be found at the code of the application. Once
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the table of transferences is built , the analysis addresses the following questions, building an
answer for each:
- Which data transference generates the problem? (task which blocks longer)
- Is there any owner task of the data?
- Does this data dependence appear other times in the execution of the application? (with the
same tasks)
- Are there any other dependencies of other processes with the same data item?
In this way all dependencies of three or more tasks are considered, trying to bring to the light
possibly unadvertised relationships between them.

2.1.4. Multiple output problem.

Another kind of communication blocking is produced when a process has a list of son tasks. If,
as shown in figure 4, all of them block to receive a message from the father, we may be in front
of a serious blocking problem. Figure 4 represents a typical multiple output construction. As long
as S task sends all messages to the receivers in parallel, the structure will not represent a
problem.

 

Figure 4: Potentially problematic communication scheme when considering blocking receive primitives.

But, if all son tasks start the blocking reception of a message at the same time, and they receive
the messages one by one, these messages will unblock the receivers in a serial manner as the
messages arrive. The last task to receive a message is the task which waits longest.
Everytime that a problematic blocking of a task waiting for a communication is detected and, at
the same time, the sender task is sending messages to other tasks in the application, we will have
the same problem. We will call it multiple output problem.
When the analysis verifies the existence of a multiple output problem, it will suggest the
possibilit y of using a broadcast of the messages or, if the data messages are different for each son
task, use a scatter operation to distribute the disjoint messages.



8

2.1.5.  Problems at a barrier.

Barrier primitive may be called from any task within a group of tasks which collaborate to solve
a problem. The barrier primitive blocks all tasks which call it until a fixed number of tasks reach
the barrier. When a task arrives at the barrier primitive call considerably later than the other
tasks, all of them must wait for the last, therefore blocking the execution of the application.
The analysis focuses its work on finding the cause of the last arrivals at the barrier. Those tasks
which arrive latest are analyzed in detail to find any blockings (or unbalanced computation)
along the execution. These blockings are explained to the user as causes of the barrier problem.

2.1.6.  Problematic master/slave relationships.

When considering the analysis of the application, i.e. finding the causes of performance problems
produced in the execution, a special feature is the abilit y to look for the execution of master-slave
collaboration schemes in the trace files. In these schemes, a master task generates a data item and
sends it to a slave task to process the data. Immediately after the master sends the data item to the
slave, it starts computing a new data item to send. From this operational rules, it is clear that if
the master task generates data items frequently, the number of the slaves should be high enough
to cope those necessities. From here, the analysis tries to find out how many slaves does the
master need, suggesting the creation of new slaves or the partition of the currently executing
slaves to create more simpler slaves.

To detect the needs of the master, the analysis locates the master (or masters) and the slaves.
Then, it considers:
- The blocking times of the master tasks. If it is too high, it will recommend the creation of new
slaves. The less the master has to wait, the faster the application.
-The waiting for a message (which is already in transmission) times of the slave tasks. If the
messages move too slowly (slaves wait for an important amount of time while the message
moves along the network), the recommendation may be to change the mapping to bring the
slaves near to the master. And also, suggest a reduction in the number of the slaves to avoid the
contention of the messages in the net (output messages queue in master tasks).

2.2. Mapping problems

When, considering an ineficiency interval, there are some ready tasks in some busy processors
the analysis tries to reassign those ready tasks in order to fill the ineficiency intervals.
Firstly, all tasks which are suitable to be reassigned are considered. Secondly, all these
relationships are analysed to generate a list of task candidates to be assigned to another processor.
And thirdly, all the new task-processor tuples are analysed concerning the improvement of the
application behaviour when the mapping change is produced.
The purpose of the analysis, when solving this problem, is to redistribute the ready tasks in the
ineficiency intervals. For the changes in the task-processor mapping which improve the
performance of the application, a suggestion to the programmer of the application is built.
In figure 5, CPU1 and CPU3 are idle waiting for a message from task p6, while tasks p3, p4, p5
and p6 are waiting for CPU2 to be executed. These ready tasks could be reassigned to CPU1
and/or CPU3 in order to complete p6 as soon as possible.
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The analysis must also consider the possibilit y of remapping the same task several times along
the execution. In this case, the dynamic mapping is considered as a possibilit y to maximize
performance.

Figure 5: Mapping problem.

However, it is not always possible to modify the task-processor assignment due to
communication constraints (if a task is changed to another processor, its distances to its
communicating partners may have grown). In this case, the analysi is not able to provide any
suggestion on this branch of the research tree and must try other branches (lack of ready tasks).

3.- Automatic Performance Analysis Tool implementation.

Our automatic performance analysis tool currently analyses applications under the PVM
programming model. The tool analyses the trace files obtained by the use of Tape/PVM
monitoring libraries [Maillet 95].
The most important work of the tool is, once a performance problem is found important, to
analyse the causes that have provoked the problem. For that matter, the tool has a rule-based list
of causes of performance problems. These rules are “matched” with the problem specification,
obtaining a list of possible causes of the analysed problem. Currently, the list of causes is
composed by some problems found during the experimentation with PVM parallel programs.
The list specification is open to include new refinements of the problems and other parallel
programming models.
The main operations of the tool are programmed with Perl. This language provides facilti es to
deal with large trace files and also is capable to read application sources written in any language.
These two facilities are quite important when generating reports of suggestions to the user.

4.- Conclusions and future work.

The analysis steps are completely transparent for the users/programmers of applications, users
bring its PVM application to the tool and receive a list of recommendations to apply to the
application code.  In this way, users are free from the tedious analysis of f igures and statistical
data which represent the behaviour of the program.
Nonetheless, when a problem is found and analysed, other new problems could appear when
applying the suggested changes to the code. Programmers must be aware that focusing on solving
the problem does not imply an automatic improve in the behaviour of the code. All changes in
the code produce side effects on the behaviour of the rest of the application.
The list of suggestions should be understood a list of hints on understanding some aspects of the
program. Their meaning is to guide the user in changing the appropriate parts of the application.
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Future work on the automatic tool will refine the causes of performance problems and extend the
tool usage to other parallel programming models.
Other important features of the tool to be improved are the information searches. The tool must
carry out two kind of examinations: the search for ineficiency intervals and the “matching”
between the causes of problems and the problems found. These examinations must be optimised
to deal with very large trace files, the usual case in analysing parallel program executions.
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