UrnB

»¥ Diposit digital
D &, de documents
Universitat Autdnoma 1) delaUAB

de Barcelona

This is the accepted version of the book part:

Espinosa, Antonio; Margalef, Tomas; Luque, Emilio. « Automatic performance
evaluation of parallel programs». A: Proceedings of the Sixth Euromicro Work-
shop on Parallel and Distributed Processing - PDP ’98. 1998, p. 43-49.
Institute of Electrical and Electronics Engineers (IEEE). DOI 10.1109/EM-
PDP.1998.647178

This version is available at https://ddd.uab.cat/record /288088

IN
under the terms of the COPYRIGHT license

https://ddd.uab.cat/record/288088

Automatic Performance Evaluation of Parallel Programs

Antonio Espinosa, Tomas Margalef and Emilio Luque
Computer Science Department
Universitat Autonoma de Barcelona
08193 - Bellaterra (Barcelona). SPAIN
{a.espinosa, t.margalef, iinfd} @cc.uab.es
Phone: + 34 3581 19 90

Abstract

Traditiond parallel programming forces the programmner, apat from designing the apgication,
to andyse the performance of this recently built apgication. This difficult task of testing the
behaviour of the program can be avoided with the use of an auomatic performance andysis
tod. Users are released from having to understand the enormous amournt of performance
information obtained from the execution of a program.

The automatic andysis bases its work on the use of a pre-defined list of logical rules of
production d performance problems. These rules form the “ knowledge base” of the tod. When
the tod andyses an appication, it looks for the occurrence of an element in the list of
performance problems recorded in the “ knowledge base” . When ore of the problemsis found(a
“match” in the list), the tod andyses the cause of the performance problem and bulds a
recommendation to the user to direct the possible modifications the code of the application.

1.- Introduction.

Performance analysis of parallel programs has traditionally been addressed as the last of the steps
to design an application. Programmers of appli cations, with the help of performance visuali sation
tods like Paragraph [Heah 91] and Pablo [Reed 93, have to understand the behaviour of the
applications running on the target machines.

Thaose kind d tods present the performance of an applicaion as a wlledion d graphicd views.
The views simmarise the behaviour of certain aspeds of the program during an exeaution
interval. Users must look for sensitive views of the exeaution, redefining them until the
behaviour of the goplication is completely understood. The disadvantages of these todls remain
in the difficulty of understanding the enormous amourt of performance data generated for an
applicaion and the difficulty of relating the performance views with the crrespondng part of
the application.

Other approaches have mnsidered the analysis of the gplicdions from a cetain peralél
progranming model [Crovella 94] [Meira 95. The analysis consists of building an abstrad
expresson d the goplicaion acording to the general model. From that point on, this expresson
represents the behavioural charaderistics of the gplicaion. The analysis predicts certain aspeds
of the program future behaviour when considering the analysis of the astrad expresson. The
main problem of this approad is that the astrad representation o the program may hide
relevant aspeds of the program performance, which are not considered in the programming
model.

When parallél application pogrammers want to improve the performance of their applicaions,
the usual procedure is, after generating a tracefile from the exeaution d the gplicdion, e a
visualization tod to seach for exeaution problems. With some experience in understanding the
performance views, programmers are &le to locae the most important problems ocurred at the
exeaition d the gplicdion. After locaing the problems in the views, the next step is to
understand the causes of those performance problems found.

After studying some parallel programming models and the performance of programs under those
models, we have developed alist of performance problems that can be foundat the exeaution o
an application. With the help o this list, problems can be analysed to derive mnclusions abou
their causes and possible changes in the code of the application to solve them.

In this paper, we describe an automatic performance analysis tod which, using a monitorization
scheme, pretends to release users from anaysing the overwhelming quantity of performance
information generated for the exeaution d an application. The tod automaticdly seleds from the
available information d the program (tracefil e, applicaion code,...) whatever it finds relevant to
analyse and improve the behaviour of the application.

The aitomatic tod analyses the inefficiency intervals foundin the tracefiles. These inefficiency
intervals represent time periods when the gplicaion is not using al the caabilities of the
paralel system. If the gplicaion could extrad al the potentia of the macdine during the
exeaution time it surely will be @mmpleted in a shorter time, setting its performance to the
maximum expression.

The tool divides this work of analysing the execution of the application in some phases:

- A general analysis phase, when the tod tries to locae general behavioural problems in the
exeaution. The tod scans the tracefil es classfying the exeaution d the gplication depending on
the efficiency of the system during the execution time.

- If the generd efficiency of the system does not med the requirements of the design (for
example, exeaution is too slow) the tod starts looking for the most important performance
problems of the gplicaion. These problems will be stored in a list ordered by exeaution
importance.

- The most important performance problems are seleded to be analysed in detail. The tod
focuses its work in finding the caises of these problems, using an internal list of causes of
performance problems (the “knowledge base” of the todl). This analysis process consists of
finding which causes “match” with a specific problem.

When al causes of a problem are found, the tod builds a report of suggestions on hav to
overcome the problems found and presents it to the user/programmer of applications.
There ae other automatic performance anaysers, like Paradyn [Waheed 96, that analyse the
performance d exeaution time, therefore they must focus its work in minimising the overheal of
introducing monitoring control of the system. For that reason, Paradyn passbly misses problems
which fall out from the current instrumentation bounds.

In sedion 2,we describe the list of performance problems (“knowledge base” of the todl) to be
used as a reference pattern at the analysis of the gplicaion. In sedion 3, we introduce the
implementation d the analysistod. Finaly, in sedion 4,we describe the future work to be dore
on the tool development.

2.- Classification of the performance problems.

The list of general problems foundat the analysis of parallel programming models, added to the
experimentation on PVYM paralel programs, has derived in a spedficaion d performance
problems and their causes.

The analysis of the inefficiency intervals, defined at the introduction, makes an initia
differentiation between two problems:

» During the inefficiency interval there ae idle procesors and there ae not tasks ready
to exeaute, neither time-sharing exeauting tasks at one of those processors. The
analysis must find ou the reasons of thislack of ready tasks. The am of the analysisis
to fill those ineficiency intervals. To do so, it must find which changes $oud be
applied to the program to activate some tasks in those intervals.

* Mappng poblem: there ae idle processors during the ineficiency interval and, at the
same time, there ae realy tasks in ather procesors. The analysis must consider the
states of the exeaution trying to modify the airrent task-procesor mapping. This
process invalves the mnsideration d changes in the owmmunicaion delays when a
task is mapped on a different processor.

From these two initial situations the analysis must try to make adeeper analysis of which are the
adual causes of thistwo performance problems, providing some suggestions to the programmer.
However, these two situations are not mutually exclusive, i.e. , it is possble to find a poa
performance interval with some realy tasks in ather procesors and, when trying to determine
which task shoud be mapped in the idle processor, the analysis concludes that it is not possble
to move ay task because of the mommunicdion constraints. Then, aher branches of the analysis
should be considered.

In figure 1, we dassfy the performance problems and its causes. These problems and its causes
are going to be explained in detail in the following points.

Inefficiency patterns

N

Lack of ready tasks Mapping problems
CAUSES

/ \

communication other

SN

lack of parallelism slow comm. blocked sender master/slaver barrier problems
Figure 1: classification of performance problems detected by the analysis and its causes.

2.1 Lack of ready tasks

When the analysis finds that there ae no ready tasks in the system to be exeauted on some
avail able procesors it must find which tasks could be adivated to fill that void. The first tasks
analysed are those which start exeauting just after the ineficiency intervals. The analysis focuses
on finding why those tasks do nd exeaute previously and what shoud be modified in order to
activate them before.

This process of finding the reasons of what prevents the involved tasks to exeaute ealier is
equivaent to explain the causes that provoke the ineficiency interval. The analysis uses a list of
possble causes of ineficiency intervals, the “knowledge base” derived from the analysis of
problems of the parallel programs, to analyse why a task does not execute before.

The most common cause of an ineficiency interval is that a task is blocked involved in a
communicaion (and there ae no aher ready tasks in the same procesr). In ou case the
blockings are produced in the receve message operations. From here, we have divided the list of
ineficiency causes in two sections related or not with communications.

1.- The first part of the list is composed by communication-related causes:
a) Lack of parallelism
The ineficiency interval is produced by the blocking of some tasks which must wait for a
message from ancther task. This task must generate data for al the rest, deriving a
seridisation d the computation. Whil e this task exeautes in a cetain processor the other
tasks wait for the message, leaving their processors idle.
b) Slow communicatian
Task is blocked waiting for waiting for the recegtion d a message which has aready been
sent. The caise of this dow movement of the message wuld be the (long) size of the
message itself or a contention in the network between the processors.
c) Blocked Sender
The blocking of the cmmmunicaionsis produced by the sender task. The communicaion
is blocked because the sender, insteal of sending the required message, is itself recaving
a messge from other tasks. In this case, it is necessary to anayse the gplicaion to
determine if there eits a data dependence between all communicaion partners. That isto
say, the analysis must test the independence of the tasks in communicaion. If they are
tested independent, it shoud be passble to modify the order of the sentences to avoid this
overlap.
d) Multiple output problem
A task is blocked waiting for a message and the sender has nat started the transmisson
yet because it is sending other messages to other tasks.
2.- Moreover, there ae other causes, na diredly involving communication, which also provoke
ineficiency intervals:

e) Problems at a barrier

When there is a barrier in the gplicaion and the tasks read it with too dfferent times,
the first task which reaches the barrier remains blocked until the last one arrives.
f) Problematic Master/Slave relationships

Under this coll aboration scheme the master tasks may need a minimum number of slaves
to assure a good performance behaviour

In the following points, the caises of a ladk of ready tasks problem are analysed in detalil,
describing he kind of solutions that the analysis is likely to suggest for each cause.

2.1.1 Lack of parallelism.

A lack of realy tasks problem may be caused by anot scdable gplicaion design which, duing
an exeaution interval, has nat enough ready-to-exeaute tasks for all processors of the system.
When analysing the tasks which exeaute dter the ineficiency interval, we find that they cannat
exeaute previously (and therefore, fill the ineficiency interval) becaise of their dependencies on
the currently executing tasks in the program (see figure 2, last task on cpul).

In these situations, the main recommendation is to redesign the gplicaion in order to dstribute
the cdculations performed during the ineficiency interval among all processors. In this way, we
pretend to increase the scalability of the program.

cpu i

cpu 2

cpu 3

Lack of paralellism

Figure 2: Lack of parallelism in the second level of the design.
2.1.2. Slow communications

An interval of ineficiency may be caised when the ommunicaion between two tasks becomes
so slow that the execution of the application is serialised.

In the experimentations, the analyses were caried ou on applicaions under PVM programming
model. A task which wants to receve amessage makes a cdl to the receve message primitive

and starts waiti ng for the message to come. This blocking of the recever tasks is one of the most
common sources of ineficiency intervals.

When analysing those intervals, it rebuilds the ommunicaion history of the tasks involved. This
problem of slow communicaions will be deteded when the ineficiency interval equals to the
time that the message has spent moving along the interconnection network of the machine.
Suggestions for this problem consider the state of the network (mainly the occupation grade) and
the size of the messages transmitted, this information must be found ou from the tracefiles
adualy used. To be &le to analyse this problem it would be necessary to define new
monitorization processesto reamver thiskind d information d the system. Solutions contemplate
the remapping of the cmmunicaion partner to a neaer procesor and, if the target madine
allows it, redirect the message through less loaded parts of the network.

2.1.3. Blocked sender.

In this case, the ineficiency interval is, again, an interval of blocked communication. This time,
when analysing the history of the transference we discover that the sender of the message is itself
waiting for a messge from a third task. At least we have three tasks involved, so this
relationship must be studied in detalil.

This three (or more) way relationship can be acoincidence in time, and then the tasks exeaution
order can be modified to avoid this overlap. On the wntrary, the relationship could also represent
a data dependence between agroup d tasks, which could be dfeding negatively the performance
of the gplicaion. From this point on, the independence of the tasks invaved in the
communications must be tested.

v

cpul

cpu2

cpul

Figure 3: Task 3 needs some data from task 2, while task 2 waits for the reception of some data from task 1.

In the goplicaion represented by the graph d figure 3, we deted a aommunication relationship of
threetasks. The analysis must diff erentiate between ared dependence or a wincidencein time of
the communicaions of the tasks. A data dependence will be found when task 3 Hocks for
reception d a data item sent from task 2. At the same time, task 2 is blocked to recave a
message from task 1. If these two messages are related somehow (for example, orne messageis a
part of the other) the analysis will natify this stuation and suggest how to dstribute the datain a
better way.

To consider all data movements between tasks in a group, the analysis builds a table of
transferences attending the sender, the recaver and the timing of ead transference Thistableis
built for al communicaions in the exceaution. The table is completed with the data-structure
related with the transferred messages which must be foundat the mde of the gplication. Once

the table of transferences is built, the analysis addresses the following questions, bulding an
answer for each:

- Which data transference generates the problem? (task which blocks longer)

- Is there any owner task of the data?

- Does this data dependence gpea other times in the exeaution d the gplicaion? (with the
same tasks)

- Are there any other dependencies of other processes with the same data item?

In this way all dependencies of three or more tasks are @wnsidered, trying to bring to the light
possibly unadvertised relationships between them.

2.1.4. Multiple output problem.
Another kind d communicaion Hocking is produced when a processhas a list of son tasks. If,
as swown in figure 4, al of them block to recave amessage from the father, we may be in front

of a serious blocking problem. Figure 4 represents a typica multi ple output construction. As long
as S task sends all messages to the recevers in paralel, the structure will not represent a

AR REPN)

Figure 4: Potentially problematic communication scheme when considering blocking receive primitives.

But, if al sontasks dart the blocking recetion d a message & the same time, and they receve
the messages one by one, these messages will undock the recavers in a serial manner as the
messages arrive. The last task to receive a message is the task which waits longest.
Everytime that a problematic blocking of atask waiting for a ommunicaion is deteded and, at
the same time, the sender task is ®nding messages to aher tasks in the gplicaion, we will have
the same problem. We will call it multiple output problem.

When the analysis verifies the eistence of a multiple output problem, it will suggest the
passhility of using a broadcast of the messages or, if the data messages are different for eat son
task, use a scatter operation to distribute the disjoint messages.

2.1.5. Problems at a barrier.

Barrier primitive may be cdled from any task within a group d tasks which coll aborate to solve
aproblem. The barrier primitive blocks all tasks which cdl it until afixed number of tasks reat

the barrier. When a task arrives at the barrier primitive cdl considerably later than the other

tasks, all of them must wait for the last, therefore blocking the execution of the application.

The analysis focuses its work onfinding the caise of the last arrivals at the barrier. Thaose tasks

which arrive latest are analyzed in detail to find any blockings (or unbalanced computation)

along the execution. These blockings are explained to the user as causes of the barrier problem.

2.1.6. Problematic master/slave relationships.

When considering the analysis of the gplicdion, i.e. finding the causes of performance problems
produwced in the exeaution, aspedal fedureisthe aility to look for the exeaution d master-slave
collaboration schemes in the tracefil es. In these schemes, a master task generates a data item and
sendsit to aslave task to processthe data. Immediately after the master sends the data item to the
dlave, it starts computing a new data item to send. From this operational rules, it is clea that if
the master task generates data items frequently, the number of the slaves shoud be high enough
to cope those necessties. From here, the anaysis tries to find ou how many slaves does the
master nead, suggesting the aedion d new saves or the partition d the arrently exeauting
slaves to create more simpler slaves.

To deted the neals of the master, the analysis locates the master (or masters) and the slaves.
Then, it considers:

- The blocking times of the master tasks. If it istoo high, it will recommend the aedion d new
slaves. The less the master has to wait, the faster the application.

-The waiting for a message (which is aready in transmisson) times of the slave tasks. If the
messages move too slowly (slaves wait for an important amourt of time while the message
moves along the network), the reammendation may be to change the mapping to kring the
slaves nea to the master. And also, suggest a reduction in the number of the slaves to avoid the
contention of the messages in the net (output messages queue in master tasks).

2.2. Mapping problems

When, considering an ineficiency interval, there ae some realy tasks in some busy processors
the analysis tries to reassign those ready tasks in order to fill the ineficiency intervals.
Firstly, all tasks which are suitable to be reasssgned are cnsidered. Sewmndy, al these
relationships are analysed to generate alist of task candidates to be assgned to another procesor.
And thirdly, all the new task-processor tuples are analysed concerning the improvement of the
application behaviour when the mapping change is produced.

The purpose of the analysis, when solving this problem, is to redistribute the ready tasks in the
ineficiency intervals. For the danges in the task-procesor mapping which improve the
performance of the application, a suggestion to the programmer of the application is built.
In figure 5, CPU1 and CPU3 are idle waiting for a message from task p6, whil e tasks p3, p4,p5
and p6are waiting for CPU2 to be exeauted. These ready tasks could be reasdgned to CPU1
and/or CPUS3 in order to complete p6 as soon as possible.

The analysis must also consider the posshility of remapping the same task several times along
the exeaution. In this case, the dynamic mapping is considered as a paosshility to maximize
performance.

CPU 3

CPU2 | p3 | p4 p5 | p6

CPU 1

"Irzigufé 5: Mappihg pfbblefh.

However, it is not always possble to modify the task-procesoor assgnment due to
communicaion constraints (if a task is changed to ancther processor, its distances to its
communicaing partners may have grown). In this case, the analysi is not able to provide ay
suggestion on this branch of the research tree and must try other branches (lack of ready tasks).

3.- Automatic Performance Analysis Tool implementation.

Our automatic performance analysis tod currently anayses applicaions under the PVM
progranming model. The tod analyses the trace files obtained by the use of Tape/PVM
monitoring libraries [Maillet 95].

The most important work of the tod is, ornce aperformance problem is found important, to
analyse the causes that have provoked the problem. For that matter, the tod has a rule-based list
of causes of performance problems. These rules are “matched” with the problem spedfication,
obtaining a list of possble caises of the analysed problem. Currently, the list of causes is
compaosed by some problems found duing the experimentation with PVM paralel programs.
The list spedfication is open to include new refinements of the problems and aher paralle
programming models.

The main operations of the tod are programmed with Perl. This language provides fadlti es to
ded with large tracefiles and also is cgpable to read appli cation sources written in any language.
These two facilities are quite important when generating reports of suggestions to the user.

4.- Conclusions and futurework.

The analysis deps are completely transparent for the users/programmers of applicaions, users

bring its PVM applicaion to the tod and receve alist of recommendations to apply to the
applicaion code. In this way, users are freefrom the tedious analysis of figures and statistica

data which represent the behaviour of the program.

Nonetheless when a problem is found and analysed, aher new problems could appea when
applying the suggested changes to the mde. Programmers must be avare that focusing on solving

the problem does nat imply an automatic improve in the behaviour of the mde. All changes in

the code produce side effects on the behaviour of the rest of the application.

The list of suggestions shoud be understoodalist of hints on undrstanding some apeds of the
program. Their meaning is to guide the user in changing the appropriate parts of the application.

Future work onthe automatic tod will refine the causes of performance problems and extend the
tool usage to other parallel programming models.

Other important feaures of the tod to be improved are the information seaches. The tod must
cary out two kind d examinations. the seach for ineficiency intervals and the “matching”
between the causes of problems and the problems found. These examinations must be optimised
to deal with very large trace files, the usual case in analysing parallel program executions.

5.- References

[Crovella 94]: Mark E. Crovella and Thomas J. LeBlanc. “The seach for Lost Cycles: A New
approach to paralel performance evaluation”. TR479. The University of Rochester, Computer
Science Department, Rochester, New York, December 1994.

[Heah 91]: Michad T. Heah, Jenniffer A. Etheridge: "Visualizing the performance of paralle
programs”. IEEE Computer, November 1995, vol. 28, p. 21-28 .

[Maillet 95: Maillet, Eric. "TAPE/PVM an efficient performance monitor for PVM
applications-user guide”, LMC-IMAG Grenoble, France. June 1995.

[Meira 95]: Wagner Meira Jr. “Modelli ng performance of parallel programs’. TR859. Computer
Science Department, University of Rochester, June 1995.

[Read 93: D. A. Redl, R. A. Aydt, R. J. Noe, P. C. Roth, K. A. Shields, B. W. Schwartz and L.
F .Tavera "Scdable Performance Analysis. The Pablo Performance Anaysis Environment".
Proceedings of Scalable Parallel Libraries Conference. IEEE Computer Society, 1993.

[Waheed 96: Abdu Waheal, Diane T. Rover, Jeffrey Holli ngsworth. “Modeling, evaluation
and testing of paradyn instrumentation system” Proceadings of the Supercomputing Conference
1996.

1C

