
Grid Programming for Distributed Remote Robot Control

Fabrice Sabatier
SUPELEC

2 rue Edouard Belin
57070 Metz, France

sabatierfab@metz.supelec.fr

Amelia De Vivo
Universit́a di Salerno

Via S. Allende
84081 Baronissi (SA), Italy

amedev@unisa.it

St́ephane Vialle
SUPELEC

2 rue Edouard Belin
57070 Metz, France

Stephane.Vialle@supelec.fr

Abstract

A computational Grid can be an interesting solution for
distributed remote robot control. It can provide computa-
tional resources when the usual ones are too loaded or not
powerful enough. It can support fault tolerance allowing
redundant computations. It can make possible the robotic
system sharing with remote partners.

We designed a Grid architecture across Internet, includ-
ing resources from two laboratories, one in Italy and one
in France. It is based on the DIET GridRPC environment
and supports distributed remote redundant control of an au-
tonomous robot.

This paper focuses on high-level Grid services and on
a specific GridRPC library we designed for improving the
robotic application development.

1. Introduction

Remote control of autonomous robots is more complex
than just sending commands to a robot. An autonomous
robot does not simply executes commands. It has to be able
to decide about a lot of questions, and, generally, needs
more processing power than available on its onboard pro-
cessor. With this kind of robot it can make sense to dis-
tribute computation among local and remote machines. In
the following we illustrate typical situations needing dis-
tributed remote computing:

• Some, but not the most, robotic applications are very
computation demanding and need powerful expensive
computers. It is not convenient to devote a parallel ma-
chine or a cluster to the robotic system. Just when
needed, we can look for a suitable machine on our
LAN or in a remote laboratory.

• Some robotic applications consist of embarrassingly
parallel modules working on the same input data. The

whole processing can slow down the robot, so we can
split it in different tasks and distribute them on differ-
ent machines.

• Using a single machine is not fault tolerant. For being
sure the robot mission will not fail, we can run mul-
tiple copies of the application on different machines.
If a failure happens on the fastest one, the robot slows
down but its mission can continue.

• We do not use devoted resources, so performance de-
pends on the load status. Dynamically switching be-
tween different machines can be a solution for avoid-
ing degradation.

• We can share our robotic system with remote partners,
but we cannot give them our computational resources.
Then, they must run their robotic applications on their
own machines, controlling our robots from their labo-
ratories.

Although studies exist about the effects of factors like un-
certain time delay, data loss and security problems [6, 5]
about robot control through the Internet, our applications
have further issues that can give trouble. They must inter-
act frequently with robot sensors and motors and must deal
with synchronization because each robot has several devices
working in parallel.

Anyway our previous work showed that we can use re-
mote distributed control with a reasonable delay. Computa-
tional Grids could be an interesting solution for our purpose
because they can hide heterogeneity and complexity of dis-
tributed systems [2, 4]. Collaboration with remote partners
is well suitable to Grid philosophy and our first tests with
Grid and robots achieved encouraging results.

Moreover complex robotic applications can be built us-
ing basic modules. Some of them are frequently used and
it can be very comfortable to have a repository of such op-
timized building blocks. We re-designed some basic mod-
ules of a robotic application, turning them into Grid services
to be used by application developers. Finally we designed

Serial link
driver

TCP sockets

Buffered client-server
mechanism

Robot server

robot

Redundant GridRPC calls

High-level robot commands on the Grid

DIET (Grid) middleware
(based on Corba bus)

VPN middleware
(based on IPSEC)

Ethernet
protocol

Internet
protocol

DIET API (GridRPC)

Serial-link robot commands

Simple robot commands

Compounded robot commands

Buffered client-server
mechanism

TCP sockets

Robotic application on the Grid

High-level
Grid services

Low-level
services

Grid
middleware

services

Grid applications

Figure 1. Grid software layers.

an easy-to-use API for avoiding robotic researchers to deal
with raw Grid programming.

2. Grid overview

The physical resources deployed on our Grid are a robot,
some PCs in France (Supelec) and a PC in Italy (Salerno
University). Our robot, an autonomous navigatingKoala,
has several onboard controllers driving its different devices.
It is connected to an external devoted server through a se-
rial link. This is a simple PC controlling basic robot be-
haviours. A robotic application is always a client of this
server. An IPSEC-based VPN links all machines and sup-
ports the DIET Grid environment. On top of DIET we built
our Grid architecture and services and an API library for
robotic application developers.

2.1. Testbed application

The testbed application consists of three very frequently
used basic modules: self-localization, navigation and light-
ness detection. Our robot navigates in dynamic environ-
ments, where no complete pre-determined map can be used.
Anyway artificial landmarks are installed at known coor-
dinates. When switched on, the robot makes a panoramic
scan with its camera, detects landmarks and self-localizes
[8]. Based on its position, it can compute a theoretical
trajectory to go somewhere. For error compensation, new
self-localizations happen at intermediate positions. During
navigation the robot checks the environment lightning and,
eventually, signals problems. For this purpose it moves its
camera and catches images for average lightness compu-
tation. TheKoala Serveralways sends its clients JPEG-
compressed images. The three pilot modules were re-

designed and turned into Grid services for robotic applica-
tion development.

2.2. DIET environment

For our research we chose the DIET [1] (Distributed In-
teractive Engineering Toolbox) Grid environment. It sup-
ports both synchronous and asynchronous Grid-RPC calls
[7], and can be considered a Grid Problem Solving Envi-
ronment, based on a Client/Agent/Server scheme. A Client
is an application that submits a problem to the Grid through
an Agent hierarchy. This avoids the single Agent bottle-
neck. Agents have a list of the Grid Servers and choose the
most suitable for the Client request, according to some per-
formance forecasting software. Generally this kind of soft-
ware monitors Grid resources and gives information about
workload, bandwidth, etc.

DIET communication between Grid components is
Corba-based, but our institute security policies do not al-
low this kind of communication. In order not to relax the
security level of our respective organizations, we createdan
IPSEC-based VPN [3] linking our machines. This just re-
quires the 500/udp port opened on the destination gateway.

2.3. Grid architecture

Figure 1 shows the software layers of our Grid architec-
ture. At the top layer, theGrid applicationis almost like a
classical application. It can give the robot high-level com-
mands, requiring the Grid services ”Localization”, ”Navi-
gation” and ”Lightness”. These services can be concurrent,
but the user has to explicitly coordinate robot devices.

High-level Grid services are implemented through
GridRPC calls, requesting low-level services. A syn-

User PC

Client pgm

Computing server PC

- locConnect service
- locDisconnect service
- localization service
- locFlush service

DIET server A

Robot server:
multithreaded &
buffered server

Robot
server
PC

serial link

serial
link

driver

Computing server PC

DIET server B

PC on the Grid

DIET Local AgentDIET Master Agent

VPN1 - VPN-Corba-DIET

2 - VPN
Corba
DIET

2 - VPN-Corba-DIET

3 - VPN-TCP
ItalyFrance

- navConnect service
- navDisconnect service
- navigation service
- navFlush service

Computing server PC

- locConnect service
- locDisconnect service
- localization service
- locFlush service

DIET server C

Figure 2. Deployment of the Grid architecture.

chronous call is for a single robot function, an asynchronous
call is for a robot function running in parallel to others, sev-
eral concurrent asynchronous calls are for redundant com-
putations. When a high-level service runs a redundant com-
putation, it waits only for the first GridRPC call to finish,
ignoring or cancelling the others. All these Grid program-
ming details are hidden to the user that can focus on robotic
problems.

The low-level robot services are organized like a three-
layers command stack, on top of abuffered client-server
mechanism. This mechanism allows concurrent accesses
to theKoala serverthroughTCP socketsand to theKoala
robot through aserial link driver running on the Koala
server machine (see figure 1). TheKoala Serveris a mul-
tithreaded and buffered server. It supports concurrent re-
quests to different services, to simultaneously control dif-
ferent robot devices. It also accepts concurrent requests to
the same service, allowing redundant computations for fault
tolerance. In any case the robot accomplishes each needed
action just once, buffering all previous commands and re-
sults. Low-level robot services are called from high-level
Grid services distributed across the Grid. A high-level Grid
service can be called by another one or by application pro-
cesses, through the Grid middleware.

The Grid middleware consists of the DIET Grid environ-
ment [1] on an IPSEC-based VPN [3]. Practically a user
program (client application) makes GridRPC calls to high-
level Grid services that, in turn, make other GridRPC calls
(see figure 2). They contact the DIET agents, running some-

where on the Grid, to know the addresses of the most suit-
able computing servers. Then the user program contacts
directly these servers to get Grid services. This communi-
cation happens on the VPN using the DIET protocol on a
Corba bus.

Then, each computing server establishes a direct com-
munication with theKoala Server. This communication
happens on the VPN again, but bypasses the Corba-based
DIET protocol and goes directly on TCP sockets. This way
the robot server can send large camera images to the re-
questing Grid servers avoiding Corba slow down. After
processing, Grid servers use the Corba bus just for returning
small results (such as a computed localization) to the client
machine.

3. High-level Grid interface

3.1. Grid service mechanism

Figure 3 shows how the higher layer of our Grid archi-
tecture encapsulates complex low-level details.

As a programming interface, we designed a high-level
library. It is based on GridRPC functions, and it makes
easy to call high-level Grid services. For example, a sim-
ple API function can concurrently request several instances
of a high-level Grid service and wait for the first that fin-
ishes. The programmer does not need to deal with complex
synchronization mechanisms.

An example of application program is illustrated on fig-

(ex: localization,
 navigation,

 lightness, ...)

High-level Grid services High-level
DIET interface

DIET API (GridRPC)Low-level services

Robotic application on the Grid
Grid

applications

RobGrid
API library

Figure 3. Details of the high-level Grid architecture.

ure 4: the robot gets images and measures lightness during
its navigation toward a point, where then it self-localizes.

Our API syntax is C++-like. First, we create a session
handle to manage communication between the application
and the requested Grid services. Then, we create a client ob-
ject for each Grid service we need. The constructor parame-
ter allows to specify the number of concurrent instances for
the required service. In this example we use two instances
of critical services (navigation and localization). Each client
object totally encapsulates the DIET mechanism to commu-
nicate with its corresponding Grid service. The next step is
the DIET session start, that starts communication between
the application and the Grid services.

Each client object requests a connection between the re-
quired Grid service and theKoala server. This establishes
a TCP communication with the robot server, initializes the
related robot devices and resets the associated buffers. Dif-
ferent Grid services can be simultaneously connected to the
Koala server.

Each service can be called through its connected client in
a synchronous (light->Call()) or asynchronous way
(nav->AsyncCall()). All redundant Grid services are
called concurrently. An API function allows to check if an
asynchronous operation has finished (nav->Probe()).
Redundant calls are considered finished as soon as one of
the Grid service instances finishes. The winner Grid service
is identified, while the others are cancelled or ignored. The
client of a redundant service gets results from the winner
Grid service (loc->GetResult()).

Finally, client objects and DIET session are deleted:
each Grid service is contacted to flush the corresponding
event buffers on theKoala serverand disconnection takes
place.

3.2. High-level Grid service programming

End users write robot applications calling high-level
Grid services, but sometimes they need to write new high-
level Grid services. For example, to implement new im-
age processing, to call new low-level robot services after a
robotic system upgrade, or to compose other Grid services.
Our programming interface offers a generic skeleton, so that
it is easy to develop a new high-level service.

Each high-level Grid service is a set of sub-services:

• Connection to the relatedKoala serverservice. This
is based on a low-level routine, identified by a unique
number, that sends command to a robot device and
gets related output. Such a service can be shared with
other redundant high-level service instances (same
low-level routine identification number and same tar-
get resource).

• Disconnection from theKoala server

• Buffer reset. Depending on the low-level service, this
operation can be done before running a robot control
operation, or after the last redundant call has finished.

• Execution of the related robotic operation, likenaviga-
tion(x,y,theta). It consists of a set of basic robot control
commands (likemovestraightforward(x,y)). Each ba-
sic command is sent to theKoala serveracross TCP
sockets as a set of very low-level robot commands (se-
rial link commands), to be relayed by the serial link
driver and finally executed on the robot.

Sub-services for connection/disconnection to/from the
robot server are automatically called from constructors
and destructors of high-level client objects. Other sub-
services have to be called explicitly from the user applica-
tion through high-level client objects.

// Create a session handle to control the

// communications between the application

// and the Grid services.

Session *session = new Session();

// High level Grid services allocation

// (pointing out the number of redundant

// calls to run). Initialization of the

// DIET communication mechanisms.

LocClient *loc = new LocClient(2)

NavClient *nav = new NavClient(2);

LightClient *light = new LightClient(1);

// Start the communication between the

// client application and the services

// specified previously.

session->Start();

// TCP conection between the GRID services

// and the robot server, initializion of

// robot server resources and buffers.

loc->Connect();

nav->Connect();

lihght->Connect();

// Move the robot and measure the

// lightness in parallel

nav->AsyncCall(x,y,theta);

while (!nav->Probe()) {

 light->Call();

 ...

}

...

// Localization based on panoramic scan

// and landmark detection

loc->Call();

Res = loc->GetResult();

...

// Disconnect Grid services from robot

// server, reset some robot server buffers

delete loc;

delete nav;

delete light;

// Close the communication session between

// the application and the Grid services

delete session;

Figure 4. Source code of a Grid application example

4. Development test

4.1. Fault tolerance achievement

In order to test our Grid programming environment, we
developed a long application using redundant calls to lo-
calization and navigation services. Robot moves from one
position to another, making a panoramic scan and a self-
localization at each point. This first test exhibited fault tol-
erance across Internet.

The robot camera was simultaneously controlled by two
DIET servers (one in France and the other in Italy). Be-
cause of Internet communication overhead, the local DIET
server (in France) was always the first to control the robot,
while the other one just got the previous results. We killed
the local DIET server and the robot camera continued to ex-
ecute its panoramic scans, slower, controlled by the remote
DIET server in Italy. When we re-run the DIET server on
the local part of the Grid, the client application successfully
called it again, and the robot camera control automatically
speeded-up.

4.2. Development modularity

To improve our application we decided to make a light-
ness measure during long robot trajectories.

For this purpose we implemented a new module as a new
high-level Grid service. It moves the robot camera to a
pointed out position, catches an image and measures the av-
erage lightness. This high-level service requires theKoala
serverfor camera motor control and image acquisition.

All development and tests were done in less than two
days. The new service was immediately fully compatible
with the rest of the Grid environment.

5. Performance measurement

We run several tests on our Grid, to check if it could
efficiently support robot control:

• Localization time on the local Grid (same LAN as the
robot) was the same as on a devoted no Grid PC (ap-
proximately8.5s). Grid software overhead has no im-
pact.

• When the local LAN was loaded, local redundant com-
putation showed again an execution time around8.5s.
Simultaneous usage of several servers allows to run
each step at the speed of the fastest one (depending
on servers and network load).

• Measured on 24 hours, when the localization service
run in Italy, its average execution time elapsed from
15.5s during the night up to100s during the day. In

both cases remote localization succeeded and during
the night the slow down was limited to a2 factor.

• We measured the whole application slow down in the
fault tolerance test during the day. Localization was
simultaneously run at Metz and Salerno. Then we
stopped and further restarted it at Metz. Even if the
localization module slow down was significant, it has
a reasonable impact on the whole application. This
is because the application bottleneck is the navigation
module. It takes longer than localization because of
robot mechanical constraint. Finally, the whole appli-
cation slow down was limited to a2.5 factor during the
day (252s instead of102s).

These tests show that robot control across our France-
Italy Grid can lead to successful fault tolerance thanks to re-
dundant computations. Moreover the measured slow down
is quite limited and not too impacting on our application
performance.

6. Future perspectives

Our Grid API is currently a work in progress. We aim to
develop a more generic Grid environment for robot control,
with many high-level Grid services, easy to interface with
different robots and robot servers.

Moreover we are going to extend our Grid deployment to
other French, Italian and Rumanian laboratories. Our goal
is to test if our Grid architecture scales when using a larger
Grid spread.

7. Acknowledgements

Authors want to thank Region Lorraine and ACI-GRID
that have supported a part of this research.

References

[1] E. Caron, F. Desprez, F. Lombard, J.-M. Nicod, M. Quinson,
and F. Suter. A scalable approach to network enabled servers.
8th International EuroPar Conference, volume 2400 of Lec-
ture Notes in Computer Science, August 2002.

[2] I. Foster and C. Kesselman.The Grid : Blueprint for a
New Computing Infrastructure. Morgan Kaufmann publisher,
1998.

[3] I. Foster and C. Kesselman.N. Doraswamy and D. Harkins.
Ipsec: The New Security Standard for the Inter- net, Intranets,
and Virtual Private Networks. Prentice-Hall, 1999.

[4] I. Foster, C. Kesselman, and S. T. J. Nick. Grid services for
distributed system integration.Computer, 35(6), 2002.

[5] L. Frangu and C. Chiculita. A web based remote control labo-
ratory. 6th World Multiconference on Systemics, Cybernetics
and Informatics, July 2002. Orlando, Florida.

[6] R. Luo, K. Su, S. Shen, and K. Tsai. Networked intelli-
gent robots through the internet: Issues and opportunities.
Proceedings of IEEE Special Issue on Networked Intelligent
Robots Through the Internet, 91(3), March 2003.

[7] K. Seymour, H. Nakada, S. Matsuoka, J. Dongarra, C. Lee,
and H. Casanova. Overview of gridrpc: A remote procedure
call API for grid computing.Grid Computing - GRID 2002,
Third International Workshop Baltimore, Vol. 2536 of LNCS,
November 2002. Manish Parashar, editor, MD, USA.

[8] A. Siadat and S. Vialle. Robot localization, using p-similar
landmarks, optimized triangulation and parallel program-
ming. 2nd IEEE International Symposium on Signal Process-
ing and Information Technology, December 2002. Marrakesh,
Morocco.

