1906.08895v1 [cs.SE] 20 Jun 2019

arxXiv

Plan-Driven Approaches Are Alive and Kicking in
Agile Global Software Development

Marcelo Marinho®?, John Noll®?, Tta Richardson®, Sarah Beecham®
@ Federal Rural University of Pernambuco (UFRPE) Department of Computer Science (DC) Recife, PE, Brazil
Email: marcelo.marinho @ufrpe.br
¢ University of East London University Way, London, E16 2RD, UK
Email: j.noll@uel.ac.uk
b Lero, the Irish Software Research Centre University of Limerick, Ireland
Email: ita.richardson,sarah.beecham @lero.ie

Abstract—
Background: Agile methods are no longer restricted to small
projects and co-located teams. The last decade has seen the
spread of agile into large scale, distributed and regulated do-
mains. Many case studies show successful agile adoption in GSD,
however, taken as a whole, it remains unclear how widespread
this trend is, and what form the agile adoption takes in a global
software development (GSD) setting.
Aims: Our objective is to gain a deeper understanding of how
organisations adopt agile development methods in distributed
settings. Specifically we aim to plot the current development
process landscape in GSD.
Method: We analyse industrial survey data from 33 different
countries collected as part of the HELENA project that explored
the wider use of hybrid development approaches in software
development. We extract and analyse the results of 263 sur-
veys completed by participants involved in globally distributed
projects.
Results: In our sample, 72% of globally distributed projects
implement a mix of both agile and traditional approaches (termed
‘hybrid’). 25% of GSD organisations are predominantly agile,
with only very few (5%) opting for traditional approaches. GSD
projects that used only agile methods tended to be very large.
Conclusions: Globally Distributed Software Development (and
project size) is not a barrier to adopting agile practices. Yet, to
facilitate project coordination and general project management,
many adopt traditional approaches, resulting in a hybrid ap-
proach that follows defined rules.

Index Terms—Global Software Development; Agile software
development; software process; hybrid development approaches;
GSD.

I. INTRODUCTION

Agile methods have become common in software develop-
ment organizations around the world. Initially, the methods
were used for the development of small, co-located projects.
However, in recent years many large organizations have
made the transition from traditional, plan-driven waterfall-
type methods towards agile methods [1l]. According to the
largest reoccurring survey on agile adoption, the State of
Agile Survey [2], 86% of respondents had at least some
distributed teams adopting agile practices. While this survey
is not scientific, it indicates that a significant number of large
global organizations are adopting agile methods.

VersionOne [3] identified two reasons as to why companies
use agile methods: some believe in the values and principles of
the manifesto, and others see agile as best practice. However,
Boehm and Turner [1] suggest that projects should find a
‘sweet spot’ combining a mixture of traditional and agile meth-
ods. According to their certainty/ambiguity puzzle, business
management still demands accurate and complete long-term
estimates of projects and tasks, whereas development teams
have to deal with uncertainty during the project [4]. Previous
research on development methods advise that methods need to
be adapted to the work context [l |6]. Hence, software devel-
opment has to balance the need for planning and controlling
and, at the same time, for flexibility and speed [7Z, [8].

The many development approaches adopt different philoso-
phies (e.g. agile, traditional) and specific features (e.g. plan-
driven, iterative-incremental). Such approaches comprise ei-
ther practices or comprehensive process frameworks. Fur-
thermore, software development has become vital in every
industry sector and must adhere to domain-specific standards,
norms, and regulations. In this regard, practitioners have begun
developing so-called hybrid development approaches.

Acknowledged as one of the trends of the 21st century,
globalization significantly changed many industries, including
and, in particular, software development. Many companies
foster global software development (GSD) to benefit from
cheaper, faster, and better software development [9]. However,
GSD has traditionally followed a plan-driven approach, where
tasks are allocated according to where they appear in the
software development lifecycle [10, [11]. The belief that agile
methods, which were mainly used for small projects and
co-located teams, cannot be used in GSD no longer stands
[12,[13]]. Agile methods tend to rely on informal processes and
regular face-to-face communication to facilitate coordination,
whereas distributed software development relies on formal
mechanisms [12].

In this paper, we aim to highlight the extent to which GSD
projects are adopting hybrid approaches. We take a deeper look
at those few organizations that do not avail of plan driven
approaches to manage their software development. We also
uncover what drives organizations to change, adapt or merge

This is the author’s version of the work. It is posted here by permission of ACM/IEEE for your personal use.
Not for redistribution. The definitive version was published in the ACM/IEEE International Symposium on
Empirical Software Engineering and Measurement (ESEM)

agile practices. This study seeks to determine whether it is
possible to adopt agility in GSD projects without the support
of traditional plan-driven approaches. The paper is based on
the HELENA Survey [14], an international study on the use
of hybrid development approaches in software development
around the world.

This paper is organized as follows: in Section Section
we introduce the background to the problem and define our
research questions. Section Section [[II| describes the method
used. In Sections Section and Section [V] we present the
results and discuss their implications and limitations. Section
Section presents conclusions and future research direc-
tions.

II. BACKGROUND
A. Global Software Development

Global software development (GSD) promises cost effec-
tiveness, access to large multi-skilled workforces, reduced time
to market, and the opportunity to follow critical-path tasks
around the clock [15]. These deciding factors, among others,
have made GSD a daily reality in today’s IT organizations,
even though development environments are more complex and
exhibit several challenges: physical distance, multiple time
zones, the loss of ‘teamness,” culture differences, strategic
issues, process differences, knowledge management and tech-
nical challenges [16, [17].

In particular, GSD is normally characterized by stakeholders
from different national and organizational cultures, located in
separate geographic locations and time zones, using different
information and communication technologies to collaborate.
Such conditions usually result in major problems in relation
to team communication, coordination and collaboration [18]].
Furthermore, key project-specific, team-specific, and distance-
specific contextual factors may also impact team effectiveness.
These include, for example, the nature of the contract, the
application domain, the volatility of requirements, project
personnel, site distribution, team experience, and temporal,
geographical, and socio-cultural distance between partners and
sites [19].

Traditionally, GSD follows a plan-driven, structured, wa-
terfall approach, where tasks are allocated according to where
they appear in the software development lifecycle [10} [L1]. By
contrast, agile practices are considered capable of mitigating
the challenges faced by GSD, as reported by several studies
[12, 113} 20-22]]. However, Akbar and Safdar [6] find that the
complexity of GSD and need for agility meant that organiza-
tions transitioning from co-located to distributed development
were more inclined to adopt and tailor agile methods.

B. Agile and Traditional Development Approaches

Agile software development refers to a set of iterative
and incremental software engineering methods that advocate
an ‘agile philosophy’ captured in the Agile Manifesto [23]].
While mostly repackaging and re-branding previously well-
known and appreciated software development practices, the

agile movement can be considered an alternative to tradi-
tional software development methods [24]. Agile development
methods were believed to best suit small, co-located teams,
and their success with small teams has inspired their use
in large-scale software development [12] as reflected by the
many scaled agile frameworks that have emerged over recent
years [25]. However, fundamental assumptions regarding agile
development are challenged when applying the methods at a
large scale [26].

Agile methods were designed to accept and efficiently man-
age change [27]. It has been shown that agile methods have
improved the satisfaction of both customers and developers.
However, there is evidence that agile methods may not be
a good fit for large undertakings [28], as they require more
coordination and heavier methodologies than smaller projects
[29].

Nerur et al. [30] describe the fundamental premise behind
traditional methods as software that is wholly specifiable and
should be developed with precise and comprehensive planning.
Agile methods, on the other hand, consider that software can
be built through on-going planning, improvement, and testing,
based on fast feedback and change. Learning and adaptation
should be embraced [24]. Adapting the approach to the context
will require balance in some areas [3, [6].

In plan-driven development, the architecture is defined
before implementation and testing, whereas the architectural
design appears as a result of on-going clarification in purist
agile development. Traditionally, to construct a large software
system developed by many teams, it is pivotal for the archi-
tecture to be agreed upon and communicated, adding to the
bureaucracy and overhead associated with traditional methods.
Indeed, GSD calls for different practices when it comes to
architectural design, even when applying agile methods [31]].

C. Hybrid Development Approaches

Kuhrmann et. al. [7] proposed the following definition: ‘A
hybrid software development approach is any combination of
agile and traditional (plan-driven or rich) approaches that as
organizational unit adopts and customizes to its own context
needs (e.g., application domain, culture, process, project,
organizational structure, techniques, technologies, etc.)’

Some researchers argue that combining a mixture of tra-
ditional and agile practices is the best way to manage a
project [1]. Boehm and Turner [32] mention that a changing
world needs agile and plan-driven development methods. They
characterize ‘house plots’, where approaches are most likely to
succeed, and they identify five critical dimensions, one being
that a balanced strategy should be established to achieve a
successful combination of agile and planned approaches.

Diebold and Zehler [33]] examine the process of combining
agile and traditional software development methods. They dis-
tinguish between revolutionary and evolutionary approaches,
which differ in the methods order of occurrence. The authors
defend the coexistence of both methods in software develop-
ment projects.

This is the author’s version of the work. It is posted here by permission of ACM/IEEE for your personal use.
Not for redistribution. The definitive version was published in the ACM/IEEE International Symposium on
Empirical Software Engineering and Measurement (ESEM)

Dingsoyr et al. [34] summarize 12 pieces of advice they
collected from 12 Scrum teams, stating that methods need
to be adapted to needs during the program lifecycle. They
argue that, while there is much good advice in frameworks
such as the Scaled Agile Framework and Large-Scale Scrum,
frameworks eventually limit organizations. It is thus preferable
to combine agile and traditional approaches in global projects.

West et al. [8] coined the term ‘Water-Scrum-Fall’ and
hypothesized that hybrid development methods would be-
come standard. They also provided evidence that development
approaches are indeed used in combination (e.g. agile and
traditional). Previous research on the use of development
methods suggests that methods need to adapt to the work
context [35].

III. METHOD

The present study is part of a series of inquiries that have
been conducted on data from a large international study on
the use of hybrid development approaches, called HELENA:
‘(H)ybrid d(E)ve(L)opm(EN)t (A)pproaches in software sys-
tems development. The overall research project employs a
mixed research method, with elements of both quantitative and
qualitative research [36]. The project aims to provide a strong,
empirically based assessment of the current state-of-practice
in software and systems development [7].

HELENA was designed as an international research en-
deavour. The first stage prepared the data collection and
tested the survey instruments. The second stage involved mass
data collection conducted by an international consortium that
comprised more than 60 partners from over 30 countries. More
details can be found on the official website] The results of the
second stage were published at the 3rd HELENA Workshop.
Further, all the authors of this article are involved in the
stages of the study. The second stage results will fuel the third
stage of the project by focusing follow-up in-depth research
pertaining to outcomes of the second stage.

In this paper we use a subset of this data. The HELENA
survey asked questions on how software organizations develop
their software and what processes are used [7]]. All published
studies [37-43] share the same general theme and use the same
data sample, although they have different scope, variables, and
designs. Our study is concerned with hybrid approaches in
the context of GSD. A section of the survey was designed
to shed light on current approaches to GSD in two different
situations: what development approaches to GSD projects are
used in practice, and which different development approaches
are combined in practice.

Within the dataset of 691 completed responsesE] [14], there
were 263 companies that answered either option 3 or option 4
to the question: ‘Is the project or product your answer refers to
carried out in a (globally) distributed manner?’ with options:

e 1 = No;

'THELENA Survey: https://helenastudy.wordpress.com/
’In total, the survey yielded 1,467 answers of which 691 participants
completed the questionnaire [14].

TABLE I
RESEARCH QUESTIONS OVERVIEW

Research Questions

RQ1 ‘What development approaches do GSD projects use?
RQ2 How do GSD projects combine development approaches (if at all)?
RQ3 Do combined (‘hybrid’) development approaches tend toward agile

or traditional development?

e 2 = Yes, nationally (same country);
o 3 = Yes, regionally (same continent);
e 4 = Yes, globally

A. Research Questions

In this paper we focus solely on those 263 globally dis-
tributed organizations, and we defined the research questions
listed in Table [

B. Survey Instrument

HELENA used an online survey [44, 45] to collect data
from practitioners about the development approaches they use
in their projects.

1) Instrument Development: The HELENA research team
used a multi-stage approach to develop the survey instrument.
Initially, three researchers developed the questionnaire and
tested it with 15 German practitioners to evaluate the agree-
ment. Based on the feedback, a team of eleven researchers
from across Europe revised the survey and translated it to
English. A first revised questionnaire public test (referred to as
“Stage 1) that included 25 questions was conducted in 2016
in Europe. This public test yielded 69 data points, which were
analysed and used to initiate the next stage of the study.

In Stage 2, the research team was expanded to 75 re-
searchers from around the world. Also, the questionnaire
was revised to improve structure, scope, relevance, question
accuracy, value ranges for variables, and significance of the
topics included. The revised questionnaire was translated and
made available in English, German, Spanish, and Portuguese.
Further details of the instrument are presented in [14])

2) Instrument Structure: The final survey consisted of 38
questions divided into five parts: Demographics (10 questions),
Process Use (13 questions), Process Use and Standards (5
questions), Experiences (2 questions) and Closing (8 ques-
tions). However, because some questions may not be relevant
depending on answers to previous questions, the survey re-
sponses do not always contain 38 answers [14].

C. Data Collection Procedure

The survey was promoted through personal contacts of
the participating researchers, through posters at conferences,
and through posts to mailing lists, social media channels
[46]. The target population was members of IT clusters and
networks, and we used LinkedIn, Twitter, Facebook, Xing,
and ResearchGate to promote the survey within the relevant
communities. A web survey with different kinds of scale
questionnaires and demographic information collection was
distributed to the target population.

This is the author’s version of the work. It is posted here by permission of ACM/IEEE for your personal use.
Not for redistribution. The definitive version was published in the ACM/IEEE International Symposium on
Empirical Software Engineering and Measurement (ESEM)

TABLE II
HELENA QUESTIONNAIRE LIST (CONDITIONAL QUESTIONS FOR THE DIFFERENT PATHS ARE OMITTED IN THE TABLE)

No. Group' Question Scale opt
1. M What is your company’s size in equivalent full-time employees (FTEs)? SC 5
2. M Do you participate in globally software project? SC 4
3. M In which country are you personally located? FT
4. M What is the major role you have in this project? SC 9
5. M What is the size of the project? SC 5
6. M How many years of experience do you have in software and systems development? SC 5
7. PU Do you combine different development approaches? YN

For the following standard activities in the project or product development, please indicate
8. PU . . AN - . LI

to which degree you carry out project activities in a more traditional or more agile manner.
9 PU How were the combinations of development approaches in your company developed? MC 3
10 PU How was your project-specific development approach defined? MC 6
11 PU Which of the following frameworks and methods do you use? RT 7
12 PU What are the overall goals that you aim to address with your selection and combination of development approaches? MC 2
13 PU To what degree did the combination of approaches help you to achieve your goals? RT 10

lLegend for groups: M=metadata, PU=process use, E=experience.
2Legend for scales: YN=yes/no, SC=single choice, MC=multiple choice/select, LI=5-item Likert scale, RT= Rating: 7 point scale.

Potential biasing factors in the results include those that
are common to self-selected written surveys with convenience
sampling: response bias (i.e. people who responded may have
different characteristics from those who did not), coverage
errors (i.e. the representation of participants may not be
balanced across different sub-communities), and item bias
(i.e. some questions may have been skipped intentionally or
unintentionally).

D. Data Analysis Procedure

We utilised several methods to provide answers to the
research questions. For all research questions, we used de-
scriptive statistics, to provide tables and charts for process use
and selection.

To provide a context we analysed the types of companies
involved (size, how many sites, what countries are represented,
and roles of respondents). We also analysed (a) what types
of development are used in GSD and (b) how the different
development approaches are combined.

To further analyze the result set, we used the three cate-
gories: traditional, agile, and generic, based on the definitions
provided by Kurhman and colleagues [7]. We classified the
following approaches as agile: Scrum, Safe, Lean, LESS,
Nexus, XP, Kanban, DevOps, ScrumBam, Crystal, DSDM
and Feature-driven development (FDD). Similarly, we classi-
fied the following approaches as traditional: Waterfall, Spi-
ral Model, V-Model, RUP, PRINCE2 and SSADM. Other
approaches — Iterative development, Domain-Drive Design
(DDD), Model Driven Architecture (MDA), Team Software
Process (TSP), Personal Software Process (PSP) — were clas-
sified as generic, since the approach does not fit into either
the agile or traditional category. While Iterative development
is a key feature of agile development approaches [47], some
traditional approaches (RUP and the Spiral Model, for exam-
ple) also incorporate iterations [47]; consequently, we followed
Kuhrmann et al. [7] and classified Iterative development in the
generic category.

Many projects used combinations of methods in different
categories. In light of this, we assigned such projects to a

TABLE III
NUMBER OF PROJECTS BY CATEGORY.

Class Num %
Agile 65 25.0
Traditional 5 2.0
Hybrid 189 72.0
Other 4 1.0
Total 263 100

category according to the following rules:
o Agile + Generic = Agile;
o Traditional + Generic = Traditional;
o Agile + Traditional = Hybrid.

These rules are based on the observation that “generic”
processes could be either agile or traditional depending on
context, which in this case is determined by the other methods
used, which are either agile or traditional. Each organization
was categorised based on the approaches they stated they used
when answering the survey.

The thirteen questions from the HELENA survey which we
analysed are listed in Table[[I] If a company stated that it com-
bined different development approaches (question 7), we then
looked at questions 8, 10 and 12 to confirm whether this was
indeed the case. Of the 263 global companies, 204 selected
’Yes’ to question 7. In checking the other answers from these
204 respondents, we were able to establish that companies
used Hybrid approaches (Traditional + Agile) in 189 projects
that were detailed in the survey (see Table [IIl). Additionally,
through undertaking this exercise, we verified that the answer
given to question 7 is due to how the respondents interpreted
‘combination’. Many respondents indicated the use of multiple
agile or traditional methods; it is possible that respondents
interpret this as ‘combining’ methods, even when they are in
the same category.

IV. RESULTS

In this section, we summarize the results of our inves-
tigation. We first show descriptive statistics describing the

This is the author’s version of the work. It is posted here by permission of ACM/IEEE for your personal use.
Not for redistribution. The definitive version was published in the ACM/IEEE International Symposium on
Empirical Software Engineering and Measurement (ESEM)

TABLE IV
PROJECT LOCATION (n=263, FROM 33 COUNTRIES)

Continent/Country ~ Number

Africa (2)

Algeria 1
Uganda 1
America (85)

Argentina 2
Brazil 6
Canada 4
Chile 2
Colombia 1
Costa Rica 25
United States 18
Uruguay

Asia (24)

Armenia 1

China 4

Christmas Island 1

India 9

Japan 1

Pakistan 4

Saudi Arabia 1

Turkey 3

Europe (141)

Austria 10
Denmark 17
Estonia 4

Finland 4

Germany 49
Ireland 10
Ttaly

Poland

Portugal

o Not used = we do not know or we do not know if we

use it or we never use it;

o Moderate = we rarely use it or we sometimes use it;

« Extensive = we often use it or we always use it;

The participants state that, among agile approaches, the
most frequently used framework is Scrum, followed by Kan-
ban. Iterative development was the most used by the GSD
projects that responded to this study. However, a waterfall
approach was the most commonly used traditional framework.

Spain

Sweden
Switzerland
United Kingdom

1
1
4
Russia 3
1
8
1
3

Oceania (11)
New Zealand 11

demographics of the participants. We then proceed to data
analysis related to our research questions ().

A. Study Population

The survey yielded 263 valid and complete responses related
to GSD projects, from 33 different countries, covering 5
continents, as shown in Table [IV] These projects were situated
in 18 micro-sized, 29 small, 55 medium, 61 large, and 100 very
large companies.

The size of the projects were characterized as small (7),
medium (21), large (37), and very large (198). The respondents
had a range of experience in the area of software and systems
development, ranging from < 1 year (8), through 1-2 years
(12), 3-5 years (35), 6-10 years (49), to >10 years (159).
Twenty-three percent of respondents were Developers, 22%
Project/Team Managers, 11% Product Manager/Owners, 10%
Architects, 8% Quality Managers 6% Scrum Master/Agile
Coaches, 6% C-level Management (e.g. CIO, CTO), 3%
Testers, 3% Analyst/Requirements Engineers, 1% Trainers and
8% other role.

B. Development Approaches used in GSD

Fig. [T presents the frameworks researched and the degree of
utilization by the global projects. We collapsed the responses
to simplify the representation of the framework usage:

Scrum 14% 20% 65%
Tterative 19% 29% 52%
Kabam 36% 35% 30%
DevOps 38% 34% 28%
Waterfall 40% 38% 21%
Lean 55% 27% 18%
FDD 56% 27% 17%
Phase gate 78% 8% 14%
V-Model 68% 18% 18%
ScrumBam 69% 18% 13%
DDD 67% 22% 1%
XP 51% 38% 11%
LESS 69% 21% 11%
MDA 71% 19% 10%
SAFe 73% 17% 10%
TSP 89% 6% 5%
PSP 87% 8% 5%
Spiral 83% 13% a%
RUP 85% 12% 3%
SSADM 88% 9% 3%
NEXUS 92% 4% 3%
PRINCE2 90% 7% 2%
DSDM 92% 6% 2%
Crystal 97% 28%

0% 20% 40% 60% 80% 100%

Notused =Moderate = Extensive

Fig. 1. Frameworks and methods used by GSD projects (n=263).

C. Combination of Development Approaches

Respondents were asked how framework combinations and
practices in the participants’ organization were developed.
83% reported that they evolved from past projects over time,
and 43% reported that they were planned as part of a process-
improvement program (Table [V).

TABLE V
HOW WERE THE COMBINATIONS OF DEVELOPMENT FRAMEWORKS AND
METHODS IN YOUR COMPANY DEVELOPED? ((Of the 189 participants, 154
answered these affirmations)

Option # %
Planned as part of a process improvement program 69 43.0
Evolved as learning from past projects over time 128 83.0

Participants were asked to define their project-specific de-
velopment approach (see Table [VI|for results). 25% of projects
reported project-specific process selection and tailoring fol-
lowed defined rules, while 24% of projects selected specific
practices and methods according to customer demands.

This is the author’s version of the work. It is posted here by permission of ACM/IEEE for your personal use.
Not for redistribution. The definitive version was published in the ACM/IEEE International Symposium on
Empirical Software Engineering and Measurement (ESEM)

TABLE VI
OVERVIEW OF THE ACTUAL PROCESS SELECTION AND TAILORING IN
PARTICULAR PROJECTS. (n=189).

Option # %
Project specific process selection and tailoring follows defined rules 48 25
Specific practices and methods are selected according to customer demands 45 24
A project manager tailors the process in the beginning of a project 30 16
Specific practices and methods are selected in the project on demand 30 16
Project specific process selection and tailoring is supported by tools 13 7
The process is not tailored at all 10 5
Other 13 7
TABLE VII
OVERALL GOALS WHEN SELECTING AND COMBINING APPROACHES
(n=189).

Goal: Improved... %

Productivity 67.0

Planning and estimation 65.0

External product quality 64.0

Frequency of delivery to customers 64.0

Adaptability and flexibility of the process to react to change 58.0

Time to market 58.0

Project monitoring and controlling 53.0

Client involvement 49.0

Internal artifact quality 48.0

Employee satisfaction 43.0

Knowledge transfer and learning 41.0

Risk management 39.0

Return-on-investment cycles 38.0

Reuse for project artifacts 35.0

Maturity of the company 31.0

Ability of the company to develop critical systems 28.0

Tool support 28.0

Staff education and development 26.0

Participants were asked to list the overall goals that drive
their selection of development approaches. The main objec-
tives reported were: improved productivity, improved plan-
ning and estimation, improved external product quality and
improved frequency of delivery to customers. Table shows
that global hybrid project delivery is merely a combination of
selected approaches working together in order to increase per-
formance beyond what any single methodology can achieve.
The precise combination of techniques varies from one project
to another.

The majority of participants answered that a hybrid devel-
opment approach appropriately supports business projects (e.g.
concerning internal or customer goals). Further, this approach
helps to achieve good product quality. Participants said that
their current development approach adequately addressed the
external requirements (e.g. standards). The approach supported
the work and helped to hasten its time to market. However,
the majority of participants noted that they would change or
improve their current development approach. We believe this is
an example of continuing quality improvement through hybrid
designs.

On the other hand, 43% of the participants stated that the
combination of methods and frameworks improves the satis-
faction of the team. According to [48], using agile methods
and practices exclusively does not necessarily lead to a more
competent development team. Rather, doing so can undermine

the quality and productivity of software, as well as social
factors such as team motivation and performance. Thus, we
believe that, in addition to combining methods for better
product results, it is necessary to structure a philosophy for
hybrid teams which can improve team satisfaction.

Fig. 2] shows a classification of the different approaches
where we present data from the 263 companies who are
involved in GSD. For instance, a project might adopt Scrum
at all times, but use some plan-driven practices. Thus, in the
sequence, global projects adopt more scrum, iterative develop-
ment, and kanban-based approaches. Among the frameworks
that were created to scale agility, the use of LESS and Safe
was followed by Nexus.

Scrum 86%

Iterative 81%

Kabam 64%

DevOps 62%

Waterfall 60%

x° 9%

Lean 45%

FDD 44%

DDD 33%

V-Model 32%
LESS 31%

ScrumBam 31%
MDA 29%
SAFe I 27%

Phasegae 2%
spiral 17%
RUP 15%
PSP 13%
SSADM 12%
TSP 11%

PRINCE2 10%
DSDM e 8%
NEXUS mmmmmmm 8%

Crystal W 3%

Fig. 2. Framework usage frequency (n=263). colors: agile: blue, traditional:
orange, generic: grey.

We performed a comparison of how frequently traditional
and agile methods are combined in GSD projects (Table [VIII);
the rows show agile-specific approaches and the columns
show the frequency (extensive or moderate) of each traditional
approach adopted in the GSD projects. For example, 89% of
GSD projects always adopt Scrum. Combinations are adopted
when Scrum is used, and the frequency of adoption of wa-
terfall approach was 18% ‘extensive’ and 41% ‘moderate’.
This comparison indicates that GSD projects using an agile
approach also use traditional approaches during execution.

We found that, in the combination of approaches in an
‘extensive’ way, the Waterfall approach is the most combined
with agile (22%), followed by Stage-Gate model and V-model
(15% each). Further information regarding GSD projects can
be derived from this table: when Scrum is used, Prince2 is
the least-used approach; the most combined approaches with
Crystal were RUP and the V-model; when DSDM is used, it
is most often combined with the Waterfall, RUP, V-model and
Stage Gate traditional approaches.

Table [IX] shows that combining agile and traditional meth-

This is the author’s version of the work. It is posted here by permission of ACM/IEEE for your personal use.
Not for redistribution. The definitive version was published in the ACM/IEEE International Symposium on
Empirical Software Engineering and Measurement (ESEM)

TABLE VIII
FREQUENCY WITH WHICH TRADITIONAL METHODS ARE PERFORMED WHEN AGILE PRACTICES ARE AT LEAST rarely PERFORMED BY GSD PROJECTS.

PRINCE2 (252) 10%

RUP (40) 15%

Spiral (45) 17%

Waterfall (157) 60%

Stage Gate (59) 22%

SSADM (32) 12%

V-model (85) 32%

Neither trad.

Agile practice extensive moderate extensive moderate extensive moderate extensive moderate extensive moderate extensive moderate extensive moderate nor waterfall
Scrum (225) 86% (6) 3% (18) 8% (8) 4% (29) 13% (8) 4% (32) 14% (41) 18% (93) 41% (34) 15% (18) 8% (5) 2% (23) 10% (31) 14% (43) 19% (56) 25%
Kanban (169) 64% (5) 3% (12) 7% (5) 3% (22) 13% (5) 3% @1) 12% (32) 19% (67) 40% (29) 17% (15) 9% 4) 2% (13) 8% (28) 17% (34) 20% (40) 24%
DevOps (162) 62% (5) 3% (15) 9% (6) 4% (18) 11% 2) 1% (23) 14% (29) 18% (62) 38% (26) 16% (14) 9% M) 1% (16) 10% (15) 9% (31) 19% (43) 27%
XP (130) 49% 3) 2% (11) 8% (8) 6% (23) 18% 3) 2% (27) 21% (22) 17% (60) 46% (13) 10% (13) 10% (2) 2% (14) 11% (12) 9% (32) 25% (27) 21%
Lean (118) 45% (5) 4% (11) 9% (7) 6% (18) 15% (7) 6% (21) 18% (20) 17% (53) 45% (24) 20% (14) 12% (6) 5% (12) 10% (24) 20% (26) 22% (22) 19%
FDD (116) 44% (3) 3% (12) 10% “) 3% (16) 14% ®) 7% (18) 16% (26) 22% (50) 43% (22) 19% (13) 11% “) 3% (15) 13% (23) 20% 24) 21% (20) 17%
LESS (82) 31% (3) 4% (8) 10% (6) 1% (15) 18% (3) 4% (14) 17% (15) 18% (39) 48% (15) 18% (10) 12% “) 5%) 11% (11) 13% (21) 26% (12) 15%
Scrumban (81) 31% (3) 4% (8) 10% (5) 6% 14) 17% (3) 4% (15) 19% (18) 22% (33) 41% (12) 15% (10) 12% (3) 4% (13) 16% (12) 15% (23) 28% 14) 17%
SAFe (72) 27% (3) 4% (11) 15% (7) 10% (16) 22% “4) 6% (15) 21% (16) 22% (37) 51% (18) 25% 9) 13% (3) 4% (13) 18% (13) 18% (18) 25% (7) 10%
DSDM (20) 8% 1) 5% 4) 20%) 20% (6) 30% 3) 15% (6) 30% 4) 20% (11) 55% 4) 20% (2) 10% 4) 20% (5) 25% (2) 10% (6) 30% 3) 15%
Nexus (20) 8% (2) 10% (6) 30% (2) 10% (8) 40% 1) 5% (6) 30% 3) 15% (8) 40% 3) 15% 3) 15% 1) 5% (8) 40% (2) 10% 9) 45% (0) 0%
Crystal (7) 3% (1) 14% (3) 43% (2) 29% (3) 43% (1) 14% (3) 43% (1) 14% (3) 43% (1) 14% (3) 43% (1) 14% (2) 29% (2) 29% (3) 43% (0) 0%
Agile: (254) 96% (6) 2% (19) 7% ©9) 4% (31) 12% (11) 4% (34) 13% (56) 22% (101) 40% (38) 15% 21) 8%) 4% (23) 9% (37) 15% (48) 19% (66) 26%
I The 'moderate’ column indicates the method was used rarely or sometimes, while the ’extensive’ column means a method was used often or always.
The number given in parentheses indicates the number of respondents using the approach.
TABLE IX Fully Traditional Fully Agile
COMPARISON OF HOW FREQUENT TRADITIONAL AND AGILE METHODS 1.0 20 30 40 50
ARE COMBINED. .
Project Managemet r
Traditional
Agile | never rarely sometimes often always | TOTAL Qll al ity Mana geme ot _,‘\:‘
never “4) 44% (0) 0% (0) 0% (3) 33% (2) 22%) 3% |
rarely (1) 14% (0) 0% (1) 14% (2) 29% (3) 43% (7) 3%
sometimes (6) 19% (2) 6% (8) 25% (7) 22% 9) 28% (32) 12%]
often (17) 16% (22) 21% (23) 21% (36) 34% ©9) 8% (107) 41% Rlsk Managelnent
always (41) 38% (19) 18% (19) 18% (13) 12% (16) 15% (108) 41% =
TOTAL ‘ (69) 26% (43) 16% (51) 19% (61) 23% (39) 15% ‘ (263) 100%
1 The TOTAL column indicates the total frequency with which projects perform agile methods at the level shown; the atl \
TOTAL row indicates the total frequency with which project perform traditional methods a the level shown Conﬁgm ation Management
. . Change Management ¥
ods is common. For example, looking at the columns and S 5 /
rows (rarely, sometimes, often and always), we see that the)
combination of methods occurs in 72% of the projects, as Requirements 1
shown in Table [} Our results strongly indicate that it is [
easier to find hybrid GSD projects than purely agile ones. It is Architecture ¢ 1
., . \
understood that opportunities to adapt and customize each of \
\
these approaches must meet the specific needs of the current . . | Ny
X . R o Implementation/Coding ‘
situation to allow organizations the flexibility to develop a ‘
project and use the best methods in a particular aspect of the I . 4T \
ntegration and Test s
work. <
D. Agility of Hybrid Approaches Transition and Operation ¢ q
In the survey, participants were asked, “For the following \
standard activities in the project or product development, Maintenance and Evolution \ \
please indicate to which degree you carry out activities in a
more traditional or more agile manner”; participants rated their —+—Small —m—Medum Large Very Large

approach to performing each of the disciplines on a five point
scale comprising “Fully Traditional” (1), “Mainly Traditional”
(2), “Balanced between Traditional and Agile” (3), “Mainly
Agile” (4) and “Fully Agile” (5). Fig. [f] summarizes responses
using the average rating among small, medium, large, and very
large companies.

In general, the responses indicate that activities are imple-
mented in a balanced way between agile and traditional meth-
ods. However, management activities such as Risk Manage-
ment and Quality Management are more traditionally oriented,
whereas development activities, such as Implementation/Cod-
ing and Integration/Testing, tend to be conducted in a more
agile manner. Also, Fig. [3] shows that small companies tend
to use traditional methods more than medium, large and very
large companies, that tend to be more agile.

Fig. 3. Activities implementation in GSD projects (l1=fully traditional to
S5=fully agile; Average rating of n=189 hybrid projects.

V. DISCUSSION

Agile adoption is commonplace, and as shown in the GSD
literature, operating in a distributed setting is not a barrier to
adopting agile methods [49]. In this study, however, we found
that, in practice, hybrid approaches are adopted in the majority
(72%) of GSD projects, while 25% only use agile methods,
and 5% use only traditional methods.

Our study consisted of responses from 263 participants in
GSD projects, of whom 198 participated in very large global
projects and 61% had more than 10 years’ experience. Regard-

This is the author’s version of the work. It is posted here by permission of ACM/IEEE for your personal use.
Not for redistribution. The definitive version was published in the ACM/IEEE International Symposium on
Empirical Software Engineering and Measurement (ESEM)

ing research question RQ1 (Fig. [2), participants reported the
most adopted approaches are, from highest to lowest: Scrum,
Iterative Development, Kanban, DevOps and Waterfall. When
combining approaches (RQ2 Table [VIII) at different times
in the project, the responses indicate that projects often use
Scrum and Waterfall; and out of 263 GSD projects, 189 used
hybrid software development approaches.

Most of the GSD projects represented in the survey results
are neither predominantly planned or agile in their approach.
Rather, the approaches appear to be adjusted to reflect the
challenges and opportunities of each initiative (Table [VI). For
example, Fig.[2] shows that 86% of GSD projects adopt Scrum,
and Table shows that, when adopting Scrum, there is a
requirement to combine it with traditional approaches. This
result agrees with the conclusion of Lous et al. [S0] who
performed a systematic review of the Scrum literature with
GSD and came to the conclusion that all Scrum adopters
need to (extensively) adjust the core assets of Scrum to a
GSD context. Likewise, Fitzgerald and Stol [S1] affirm that
GSD requires some tailoring of agile methods that were not
intended for such settings. While agile methods have moved
well beyond this, with frequent use of agile methods in projects
within globally distributed teams, many challenges remain,
such as those pertaining to cultural differences, breakdowns
in communication, and optimum practices for distributing de-
velopment work across sites. Individual successes rely heavily
on the particular organizational context, which is increasingly
recognized as an essential factor [52].

Bass [53] argued that several agile artefacts, such as user
stories and sprint backlogs, are used in global projects. Further,
teams adopt elements of an agile culture. However, to deal with
release plans, test plans, and product architecture implementa-
tion, the methodology adopted follows a plan-driven approach.
Bass [53]] states that teams skilfully blend agile artefacts
with traditional plan-based artefacts because of the need for
coordination, and that this combination is reflected in the
quality. Finally, Richter et al. [54] analysed agile GSD in an
organization and identified several issues. They concluded that
there is no single solution or universal software development
approach. Teams and organizations use different strategies to
address the manifold of challenges in software development
projects. As a consequence, it appears that there is a need for
agile practices, which were originally designed for collocated
teams, to be modified to work in distributed environments.
Jalali and Wohlin [55]] also found this to be necessary.

Diebold et al. [56] showed that it is common to use a
textbook method, but one that adapts to specific contexts (the
project’s or the company’s). This was reflected in GSD projects
in the results of Table which shows an overview of the
actual process selection and tailoring in particular projects.

An agile structure requires engagement based on the inter-
action of all teams, whereas traditional models determine the
specific phases in which team activities occur [8]. In large
and distributed projects, the main focus should be to keep
the organizational structure small. The hierarchical structure
should be as flat as possible, with more teams and fewer

levels of management. Teams can be real or virtual, but the
main difference in similar groups formed when following
traditional methods of project management is that teams must
have cross-links. One member of each team must attend the
major meetings of the other teams. Having interconnected,
self-organized teams and a flat organizational structure allows
for agile teams [57].

Table presents combinations of the use of traditional
approaches. Of the surveyed projects that used scaling agile
frameworks, such as LESS, SAFe and Nexus, the majority
used traditional methods moderately or extensively. In scaled
projects, the existence of an architecture team is significant, as
it guides all teams on the proper implementation of the require-
ments, reducing development costs by proactively analysing
alternatives and finding solutions that best meet the needs,
adaptability, and future use [58]. As shown by [59], several
case studies show that moving to SAFe feels like moving
back to plan-driven methods (such as Waterfall and RUP)
which include fixed increments, centralized planning, a loss
of incremental and iterative development, and too much detail.
Although LESS applies agile practices, we also investigated
agile/plan-driven. Likewise, [S7]] suggests a way of combining
plan-driven with agile. However, proponents of agility are
unlikely to sanction such a mix.

To maintain control of large and distributed projects, the
natural inclination is to introduce layers of management, im-
proved policies, new processes, and checkpoints based on the
project competencies of managers. For this reason, many of the
practices and tools identified for distributed agile projects are
the same as those followed in projects using traditional project
management approaches. Examples include the need for an
architecture team that positively influences both traditional
and agile methodologies, along with quality assurance and
integration teams that have similarly scaled functions for large,
distributed teams [31]].

A. Threats to Validity

1) Internal Validity: Each data transcript from the survey
was faithfully represented in answers or comments in the
study. Sampling of the participants was conducted with maxi-
mum variation, following a revised and approved questionnaire
and synthesis tools, such as SPSS and Microsoft Excel, in
order to increase the internal validity.

2) External Validity: In this study, independent researchers
were consistently involved. Furthermore, results were com-
pared with previous studies to find a reference for data
interpretation. However, in order to generalise the results,
further research in more regions is necessary. Also, the survey
did not include the distribution of the teams (we do not know
the geographic distance, temporal distance, cultural distance
nor team size). Our results are based on responses taken from
projects that are geographically distributed (across continents
and countries).

VI. CONCLUSIONS

Problems related to the complexity of software development
and increased focus on coordination, communication, and

This is the author’s version of the work. It is posted here by permission of ACM/IEEE for your personal use.
Not for redistribution. The definitive version was published in the ACM/IEEE International Symposium on
Empirical Software Engineering and Measurement (ESEM)

collaboration are the main reasons for the interest in applying
agile methods to GSD [20]]. GSD uses asynchronous commu-
nication and computer-mediated activities, but the applicability
of these coordination mechanisms is generally insufficient
[18]. Our survey illustrates that most companies surveyed
applied a combination of traditional and agile methods in their
distributed projects. Although the agile approach has many ad-
vantages, our results suggest that it is not a universal solution.
Consequently, we often see companies using a combination of
agile and traditional methods. These hybrid approaches seem
to be products of a trade-off between reaping the benefits of an
iterative, flexible, and collaborative approach with maintaining
some level of planning and structure.

In this study, using the publicly available HELENA Survey
[14] , we aimed to highlight how GSD projects are adopting
hybrid approaches. We looked at which frameworks are being
used, and examine how GSD projects still use traditional plan-
driven approaches. We analysed 189 responses from projects
in which traditional and agile approaches were combined.
Our results led us to the conclusion that most global soft-
ware projects are neither purely agile or purely traditional in
their approach to software development, but rather combine
agile and traditional methods. The most used and combined
approaches in the responses were Scrum and Waterfall. In
particular, we found that projects which adopted agile scaling
frameworks such as SAFe or LESS, also employed plan-
driven methods. In summary, our study supports the findings of
Aitken & Ilango [29], that “there is nothing really incompatible
with applying all the principles and values of agile software
development, along with most (if not all) of the practices, to
traditional software engineering”.

A. Limitations

Based on our data collection, we note four limitations.
First, the data does not represent all agile, plan-driven, and
GSD specific approaches. Second, there is relatively low
representation of United States-based projects in the sample
population, the first user community to publicise the agile
movement, and the most experienced and most populous
among agile user communities globally. In this study, although
the United States is the leading country, with a representation
of 7% of projects, it can still be considered underrepresented,
since according to Agile Allianceﬂ 35% of all agile user
groups (29 of 83) are based in the United States. Further,
their website claims that more than 58% of Agile Alliance
users are from the United States. However, we do have 35
different countries represented in our dataset. Third, our data
does not include information on team size, the extent of
the distribution, nor the specific countries involved in the
distributed project. All of these may have an impact on why
a certain development approach is taken. Finally, the sample
size is small, considering the large population of the agile
and GSD community. More respondents could provide more

3https://www.agilealliance.org/

robust and accurate statistical calculations and analyses, and
could also include other methods that were not observed.
Notwithstanding these observations, what is obvious to us
as researchers is that, as companies are continually combining
agile, traditional and global software development methods,
we have identified a need for an approach by which companies
can build their own bespoke software development method.

B. Future Research

Since our results show that hybrid methods are the current
state of practice in GSD projects, this should be taken as a new
baseline for future research. The strategies applied today are
still some way from perfect when it comes to devising hybrid
methods. Therefore, the first main future direction for research
is to provide better strategies to devise hybrid methods.

Also, we find that agile scaling approaches still use tra-
ditional process elements for specific purposes. Notably, the
finding that the waterfall model, even criticised a lot, is
still frequently used. So, studying the reasons for the agile
scaling approaches uses more traditional process allows us to
understand potential directions better to mitigate the use of
hybrid methods. Finally, we should develop strategies suitable
for use by practitioners when being confronted with the need
to integrate different processes in GSD projects.

Acknowledgements We thank all the study participants and
the researchers involved in the HELENA project for their great
effort in collecting data points. This work was supported, in
part, by Science Foundation Ireland grant no. 13/RC/2094.

REFERENCES

[1] B. Boehm and R. Turner, “Management challenges to implementing ag-
ile processes in traditional development organizations,” IEEE software,
vol. 22, no. 5, pp. 30-39, 2005.

[2] VersionOne, Inc., “12th Annual State of Agile Develop-
ment Survey,” https://explore.versionone.com/state-of-agile/
versionone- 1 2th-annual-state-of-agile-report, 2018, [Online; accessed
27-June-2018].

[3] R. Lockard, A. Leff, C. Johnson, J. Gifford, J. Hrcsko, T. Lightfoot,
A. Cleff, M. McCalla, J. Cusack, A. Bacon, C. Murman, and
P. Elia, “Agile uprising agile manifesto review,” 2018, [accessed
19-November-2018]. [Online]. Available: http://podcast.agileuprising.
com/manifesto-author-review/

[4] M. Marinho, J. Noll, and S. Beecham, “Uncertainty management for
global software development teams,” in International Conference on the
Quality of Information and Communications Technology. 1EEE, 2018,
pp. 238-246.

[5] V. Vinekar, C. W. Slinkman, and S. Nerur, “Can agile and traditional
systems development approaches coexist? an ambidextrous view,” Infor-
mation systems management, vol. 23, no. 3, pp. 31-42, 2006.

[6] R. Akbar and S. Safdar, “A short review of global software development
(gsd) and latest software development trends,” in Computer, Communi-
cations, and Control Technology (I4CT), 2015 International Conference
on. IEEE, 2015, pp. 314-317.

[71 M. Kuhrmann, P. Diebold, J. Miinch, P. Tell, V. Garousi, M. Felderer,
K. Trektere, F. McCaffery, O. Linssen, E. Hanser et al., “Hybrid software
and system development in practice: waterfall, scrum, and beyond,”
in Proceedings of the 2017 International Conference on Software and
System Process. ACM, 2017, pp. 30-39.

[8] G. Theocharis, M. Kuhrmann, J. Miinch, and P. Diebold, “Is water-
scrum-fall reality? on the use of agile and traditional development
practices,” in International Conference on Product-Focused Software
Process Improvement. Springer, 2015, pp. 149-166.

[9] D. §mite, C. Wohlin, T. Gorschek, and R. Feldt, “Empirical evidence in
global software engineering: a systematic review,” Empirical software
engineering, vol. 15, no. 1, pp. 91-118, 2010.

https://explore.versionone.com/state-of-agile/versionone-12th-annual-state-of-agile-report
https://explore.versionone.com/state-of-agile/versionone-12th-annual-state-of-agile-report
http://podcast.agileuprising.com/manifesto-author-review/
http://podcast.agileuprising.com/manifesto-author-review/

[10]

(11]

(12]

[13]

[14]

[15]

[16]

(17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]
[28]

[29]

[30]

[31]

[32]

[33]

This is the author’s version of the work. It is posted here by permission of ACM/IEEE for your personal use.
Not for redistribution. The definitive version was published in the ACM/IEEE International Symposium on
Empirical Software Engineering and Measurement (ESEM)

H.-C. Estler, M. Nordio, C. A. Furia, B. Meyer, and J. Schneider,
“Agile vs. structured distributed software development: A case study,”
Empirical Software Engineering, vol. 19, no. 5, pp. 1197-1224, 2014.
T. Ylikotila and P. Linna, “A collaboration model for global multicultural
software development,” Information Modelling and Knowledge Bases
XXII, vol. 225, p. 321, 2011.

J. Noll, A. Razzak, I. Richardson, and S. Beecham, “Agile practices for
the global teaming model,” in /1th International Conference on Global
Software Engineering Workshops (ICGSEW 2016). 1EEE, 2016, pp.
13-18.

B. Ramesh, L. Cao, K. Mohan, and P. Xu, “Can distributed software
development be agile?” Communications of the ACM, vol. 49, no. 10,
pp. 41-46, 2006.

M. Kuhrmann, P. Tell, J. Kliinder, R. Hebig, S. Licorish, S. MacDonell,
and Eds., “HELENA stage 2 results,” ResearchGate, 2018,
doi:10.13140/RG.2.2.14807.52649. [Online]. Available: https://www.
researchgate.net/publication/329246439_HELENA_Stage_2_Results/.
S. Beecham, I. Richardson, and J. Noll, “Assessing the strength of global
teaming practices: A pilot study,” in /0th International Conference on
Global Software Engineering (ICGSE 2015). 1EEE, 2015, pp. 110-114.
S. Beecham and J. Noll, “What motivates software engineers working in
global software development?” in International Conference on Product-
Focused Software Process Improvement. Springer, 2015, pp. 193-209.
M. Marinho, A. Luna, and S. Beecham, “Global software develop-
ment: practices for cultural differences,” in International Conference on
Product-Focused Software Process Improvement. Springer, 2018, pp.
299-317.

M. Niazi, S. Mahmood, M. Alshayeb, M. R. Riaz, K. Faisal, N. Cerpa,
S. U. Khan, and I. Richardson, “Challenges of project management in
global software development: A client-vendor analysis,” Information and
Software Technology, vol. 80, pp. 1-19, 2016.

I. Richardson, V. Casey, F. McCaffery, J. Burton, and S. Beecham, “A
process framework for global software engineering teams,” Information
and Software Technology, vol. 54, no. 11, pp. 1175-1191, 2012.

M. Paasivaara, S. Durasiewicz, and C. Lassenius, “Using scrum in
distributed agile development: A multiple case study,” in Fourth Inter-
national Conference on Global Software Engineering, (ICGSE 2009).
IEEE, 2009, pp. 195-204.

E. Hossain, M. A. Babar, and H.-Y. Paik, “Using scrum in global
software development: a systematic literature review,” in Fourth Inter-
national Conference on Global Software Engineering (ICGSE 2009).
IEEE, 2009, pp. 175-184.

S. Beecham, J. Noll, and I. Richardson, “Using agile practices to solve
global software development problems—a case study,” in International
Conference on Global Software Engineeering Workshops (ICGSEW
2014). IEEE, 2014, pp. 5-10.

M. Fowler and J. Highsmith, “The agile manifesto,” Software Develop-
ment, vol. 9, no. 8, pp. 28-35, 2001.

K. Conboy, “Agility from first principles: Reconstructing the concept
of agility in information systems development,” Information Systems
Research, vol. 20, no. 3, pp. 329-354, 2009.

C. Ebert and M. Paasivaara, “Scaling agile,” IEEE Software, vol. 34,
no. 6, pp. 98-103, 2017.

M. Paasivaara, “Adopting SAFe to scale agile in a globally distributed
organization,” in [2th International Conference on Global Software
Engineering (ICGSE 2017). 1EEE, 2017, pp. 3640.

A. Cockburn and J. Highsmith, “Agile software development, the people
factor,” Computer, vol. 34, no. 11, pp. 131-133, 2001.

T. Dyba and T. Dingsoyr, “What do we know about agile software
development?” IEEE software, vol. 26, no. 5, pp. 6-9, 2009.

A. Aitken and V. Ilango, “A comparative analysis of traditional software
engineering and agile software development,” in 2013 46th Hawaii
International Conference on System Sciences, Jan 2013, pp. 4751-4760.
S. Nerur, R. Mahapatra, and G. Mangalaraj, “Challenges of migrating
to agile methodologies,” Communications of the ACM, vol. 48, no. 5,
pp. 72-78, 2005.

0. Sievi-Korte, S. Beecham, and I. Richardson, “Challenges and recom-
mended practices for software architecting in global software develop-
ment,” Information and Software Technology, vol. 106, pp. 234 — 253,
2019.

B. Boehm and R. Turner, “Using risk to balance agile and plan-driven
methods,” Computer, vol. 36, no. 6, pp. 57-66, 2003.

P. Diebold and T. Zehler, “The right degree of agility in rich processes,”
in Managing Software Process Evolution. Springer, 2016, pp. 15-37.

10

[34]

(35]

[36]

[37]

(38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]
[40]
[47]

[48]

[49]

[50]

(51]

[52]

[53]

[54]

T. Dingsgyr, T. Dyba, M. Gjertsen, A. O. Jacobsen, T.-E. Mathisen,
J. O. Nordfjord, K. Rge, and K. Strand, “Key lessons from tailoring
agile methods for large-scale software development,” arXiv preprint
arXiv:1802.05118, 2018.

B. Fitzgerald, G. Hartnett, and K. Conboy, “Customising agile methods
to software practices at intel shannon,” European Journal of Information
Systems, vol. 15, no. 2, pp. 200-213, 2006.

J. W. Creswell and J. D. Creswell, Research design: Qualitative,
quantitative, and mixed methods approaches. Sage publications, 2017.
M. Kuhrmann, J. Nakatumba-Nabende, R.-H. Pfeiffer, P. Tell, J. Kliinder,
T. Conte, S. G. MacDonell, and R. Hebig, “Walking through the method
z00: does higher education really meet software industry demands?” in
Proceedings of the 41st International Conference on Software Engineer-
ing: Software Engineering Education and Training. 1EEE Press, 2019,
pp. 1-11.

J. Kliinder, R. Hebig, P. Tell, M. Kuhrmann, J. Nakatumba-Nabende,
R. Heldal, S. Krusche, M. Fazal-Baqaie, M. Felderer, M. F. G. Bocco
et al., “Catching up with method and process practice: An industry-
informed baseline for researchers,” in Proceedings of International
Conference on Software Engineering, ser. ICSE-SEIP. IEEE, 2019.

P. Tell, J. Kliinder, S. Kiipper, D. Raffo, S. G. MacDonell, J. Miinch,
D. Pfahl, O. Linssen, and M. Kuhrmann, “What are hybrid development
methods made of? an evidence-based characterization,” in Proceedings
of the International Conference on Software and System Processes.
IEEE Press, 2019, pp. 105-114.

J. Kliinder, P. Hohl, M. Fazal-Bagqaie, S. Krusche, S. Kiipper, O. Linssen,
and C. R. Prause, “HELENA study: Reasons for combining agile and
traditional software development approaches in german companies,”
in International Conference on Product-Focused Software Process Im-
provement. Springer, 2017, pp. 428-434.

M. Felderer, D. Winkler, and S. Biffl, “Hybrid software and system de-
velopment in practice: Initial results from austria,” in International Con-
ference on Product-Focused Software Process Improvement. Springer,
2017, pp. 435-442.

N. Paez, D. Fontdevila, and A. Oliveros, “HELENA study: Initial
observations of software development practices in argentina,” in Interna-
tional Conference on Product-Focused Software Process Improvement.
Springer, 2017, pp. 443-449.

E. Scott, D. Pfahl, R. Hebig, R. Heldal, and E. Knauss, “Initial results
of the HELENA survey conducted in estonia with comparison to results
from sweden and worldwide,” in International Conference on Product-
Focused Software Process Improvement. Springer, 2017, pp. 404-412.
M. Ciolkowski, O. Laitenberger, S. Vegas, and S. Biffl, “Practical
experiences in the design and conduct of surveys in empirical software
engineering,” in Empirical methods and studies in software engineering.
Springer, 2003, pp. 104-128.

F. Shull, J. Singer, and D. 1. Sjgberg, Guide to advanced empirical
software engineering. Springer, 2007.

C. Robson and K. McCartan, Real world research. John Wiley & Sons,
2016.

C. Larman and V. R. Basili, “Iterative and incremental development: A
brief history,” Computer, vol. 36, no. 6, pp. 47-56, 2003.

J. Kliinder, A. Schmitt, P. Hohl, and K. Schneider, “Fake news: Simply
agile,” Projektmanagement und Vorgehensmodelle 2017-Die Spannung
zwischen dem Prozess und den Mensch im Projekt, 2017.

R. Vallon, B. J. da Silva Esticio, R. Prikladnicki, and T. Grechenig,
“Systematic literature review on agile practices in global software
development,” Information and Software Technology, vol. 96, pp. 161—
180, 2018.

P. Lous, M. Kuhrmann, and P. Tell, “Is scrum fit for global software
engineering?” in Proceedings of the 12th International Conference on
Global Software Engineering. 1EEE Press, 2017, pp. 1-10.

B. Fitzgerald and S. Klaas-Jan, “The future of software development
methods,” The Routledge Companion to Management Information Sys-
tems, pp. 125-137, 2018.

T. Dyba, D. L. Sjgberg, and D. S. Cruzes, “What works for whom,
where, when, and why?: on the role of context in empirical software
engineering,” in Proceedings of the ACM-IEEE international symposium
on Empirical software engineering and measurement. ACM, 2012, pp.
19-28.

J. M. Bass, “Artefacts and agile method tailoring in large-scale offshore
software development programmes,” Information and Software Technol-
ogy, vol. 75, pp. 1-16, 2016.

I. Richter, F. Raith, and M. Weber, “Problems in agile global software

https://www.researchgate.net/publication/329246439_HELENA_Stage_2_Results/.
https://www.researchgate.net/publication/329246439_HELENA_Stage_2_Results/.

[55]

[56]

This is the author’s version of the work. It is posted here by permission of ACM/IEEE for your personal use.
Not for redistribution. The definitive version was published in the ACM/IEEE International Symposium on
Empirical Software Engineering and Measurement (ESEM)

engineering projects especially within traditionally organised corpora-
tions:[an exploratory semi-structured interview study],” in Proceedings
of the Ninth International C* Conference on Computer Science &
Software Engineering. ACM, 2016, pp. 33-43.

S. Jalali and C. Wohlin, “Global software engineering and agile prac-
tices: a systematic review,” Journal of software: Evolution and Process,
vol. 24, no. 6, pp. 643-659, 2012.

P. Diebold, J.-P. Ostberg, S. Wagner, and U. Zendler, “What do prac-
titioners vary in using scrum?” in International Conference on Agile
Software Development. Springer, 2015, pp. 40-51.

11

(571

[58]

[59]

K. Dikert, M. Paasivaara, and C. Lassenius, “Challenges and success
factors for large-scale agile transformations: A systematic literature
review,” Journal of Systems and Software, vol. 119, pp. 87-108, 2016.
D. Leffingwell, Scaling software agility: best practices for large enter-
prises. Pearson Education, 2007.

A. Putta, M. Paasivaara, and C. Lassenius, “Benefits and challenges of
adopting the scaled agile framework (safe): Preliminary results from a
multivocal literature review,” in International Conference on Product-
Focused Software Process Improvement (PROFES). Springer, 2018,
pp. 334-351.

	I Introduction
	II Background
	II-A Global Software Development
	II-B Agile and Traditional Development Approaches
	II-C Hybrid Development Approaches

	III Method
	III-A Research Questions
	III-B Survey Instrument
	III-B1 Instrument Development
	III-B2 Instrument Structure

	III-C Data Collection Procedure
	III-D Data Analysis Procedure

	IV Results
	IV-A Study Population
	IV-B Development Approaches used in GSD
	IV-C Combination of Development Approaches
	IV-D Agility of Hybrid Approaches

	V Discussion
	V-A Threats to Validity
	V-A1 Internal Validity
	V-A2 External Validity

	VI Conclusions
	VI-A Limitations
	VI-B Future Research

