
HcM-FreeRTOS: Hardware-centric FreeRTOS for
ARM Multicore

E. Qaralleh*, D. Lima**, T. Gomes**, A. Tavares**, S. Pinto**
*Princess Sumaya University for Technology

**Centro Algoritmi - University of Minho

qaralleh@psut.edu.jo

{diogo.lima, mr.gomes, atavares, sandro.pinto}@dei.uminho.pt

Abstract—Migration to multicore is inevitable. To harness
the potential of this technology, embedded system designers
need to have available operating systems (OSes) with built-in
capabilities for multicore hardware. When designed to meet real-
time requirements, multicore SMP (Symmetric Multiprocessing)
OSes not only face the inherent problem of concurrent access
to shared kernel resources, but still suffer from a bifid priority
space, dictated by the co-existence of threads and interrupts.

This work in progress paper presents the offloading of
the FreeRTOS kernel components to a commercial-off-the-shelf
(COTS) multicore hardware. The ARM Generic Interrupt Con-
troller (GIC) is exploited to implement a multicore hardware-
centric version of the FreeRTOS that not only solves the priority
inversion problem, but also removes the need of internal soft-
ware synchronization points. Promising preliminary results on
performance and determinism are presented, and the research
roadmap is discussed.

Index Terms—Unified Priority Space, RTOS, Multicore, Real-
time Systems, FreeRTOS, GIC, Cortex-A9 MPCore, ARM.

I. INTRODUCTION

Multicore technology has proven to be the only viable

solution to achieve high performance without compromising

power consumption [1], and its use on desktops and server

environments is now ubiquitous. Over the last few years, the

use of multicore processors in the embedded systems field has

been growing rapidly [2], driven by the lack of performance

in single-core processors to meet the demands of the current

software-rich generation of embedded devices. However, in

order to harness the potential of this technology, embedded

system designers need to deploy applications under embedded

operating systems (OSes) with built-in support for available

multicore hardware [3].

OSes, in general, suffer from a bifid priority space. Threads,

managed by software (kernel scheduler), need to coexist

with interrupt service routines (ISRs), managed by hardware

(interrupt controller). This division into thread priorities and

interrupt priorities, with the latter having a higher privilege

of execution, is critical on embedded real-time systems, orig-

inating a well-identified problem known as rate-monotonic

priority inversion [4]. Kleyman and Eykholt have proposed

the first solution [5] many years ago, and since then many

other approaches have been proposed to tackle this problem

[6], [7], [8], [9].

Multicore OSes, for instance, still face another problem.

When designed for symmetric multiprocessing, they are con-

ceived to satisfy two principles: (i) minimize the memory foot-

print; and (ii) have a full and homogeneous utilization of the

processor resources. However, since the kernel data structures

are present in shared memory, synchronization mechanisms

for concurrent access need to be introduced internally [10].

These internal software synchronization points constitute a

considerable source of indeterminism, becoming the main

reason why embedded real-time operating systems (RTOSes)

are delaying their transition to multicore. Only recently Müller

et al. [11] addressed both aforementioned problems, extending

the philosophy of the SLOTH [7] concept to the multicore

domain, implemented over the AUTOSAR OS and targeting

the Infineon AURIX platform.

This work in progress paper presents the implementation

of a multicore hardware-centric version of the FreeRTOS, by

offloading critical run-time kernel services to commercial-off-

the-shelf (COTS) hardware. By exploiting the GIC of the ARM

Cortex-A9 MPCore to migrate FreeRTOS system services to

hardware, not only the priority inversion problem is solved,

but also the need for internal software synchronization points

is removed. The thread-related application programming inter-

face (API) was kept syntactically intact to avoid the porting

effort for legacy applications. Preliminary results have shown

significant improvements in overall system performance and

determinism.

II. DESIGN OF HCM-FREERTOS

The rationale behind HcM-FreeRTOS is representing tasks

and ISRs by abstract interrupt sources, configuring its priority

and target core (Fig. 1). The system consists of (i) task

activation, (ii) task dispatching and (iii) task suspending.

Synchronous task activation relies on triggering the associated

interrupt source via software, by writing on its respective

interrupt controller register. Task dispatching, in turn, is based

on saving the context (not implicitly saved by hardware) of the

current executing task, followed by a branch to the new highest

priority ready-to-run task. Finally, task suspending consists in

forcing a task to yield its execution flow, allowing other lower

priority tasks/ISRs to run. Since it is not intrinsically supported

by hardware, it requires a more complex IRQ handler, which

will save the context of the currently executing task in a978-1-4673-7929-8/15/$31.00 c© 2015 IEEE

Authorized licensed use limited to: b-on: UNIVERSIDADE DO MINHO. Downloaded on January 03,2023 at 15:43:27 UTC from IEEE Xplore. Restrictions apply.

Fig. 1: Design of the hardware-centric multicore system, using

interrupt handlers for the implementation of threads

dedicated stack, disable the interrupt source, and dispatch

(resuming/restoring) the next ready-to-run task/ISR.

Targeting multicore platforms, HcM-FreeRTOS needs to

support task activation, dispatching and suspending across

multiple cores. To accomplish that, the aforementioned build-

ing blocks should be extended with a cross-core communica-

tion mechanism, typically available in the form of interpro-

cessor interrupts.

A. Hardware Requirements

The implementation of this hardware-centric approach is

only feasible if the underlying multicore hardware platform

fulfils certain requirements: (i) the hardware interrupt con-

troller must be programmable and provide several different

configurable interrupt priority levels; (ii) the interrupt subsys-

tem shall support manual triggering of interrupts as well as by

software, enabling threads to be synchronously activated; (iii)

the sum of the number of interrupt sources and priorities per

core should be enough to cover all the threads and interrupt

handlers desired for the system; (iv) a special instruction or

mechanism should exist to send interrupts to remote cores.

III. IMPLEMENTATION OF HCM-FREERTOS

This section presents an overview of the ARM interrupt

controller subsystem - GIC -, as well as a description about

the HcM-FreeRTOS implementation.

A. ARM Generic Interrupt Controller

One of the COTS interrupt subsystems that fulfils the

aforementioned hardware requirements is the ARM GIC, inte-

grated in all multicore ARM Cortex-A System-on-Chips. It is

partitioned into two logical blocks: the distributor and the CPU

interface. The former determines the highest priority interrupt

for each core and dispatches them to each CPU interface,

while the latter is responsible for handling the arbitration of

incoming interrupt requests locally. The GIC provides up to

1023 interrupt sources, classified in three different categories:

(i) SGIs (Software Generated Interrupts) (0-15) - special

interrupts generated by software for interprocessor interrupts,

banked for all cores; (ii) PPIs (Private Peripheral Interrupts)

(16-31) - peripheral interrupts specific to a single processor,

banked for all cores; (iii) SPIs (Shared Peripheral Interrupts)

(32-1023) - general interrupts shared among all cores.

B. Threads as Interrupts as Threads

As mentioned in Section II the main idea behind HcM-

FreeRTOS is designing software tasks as hardware interrupts.

However, the main drawback of having tasks run as pure

interrupts is the run-to-completion nature of the hardware

interrupt handlers. To overcome this limitation and extend

interrupts to behave also as threads, a suspending feature

was implemented by modelling tasks as consisting of three

segments: prologue, body and epilogue [8]:

• Prologue: The prologue is executed wherever a high

priority task is scheduled by the interrupt controller. It

extends the standard behaviour of the hardware interrupt

controller (i.e., it saves automatically some registers of

the CPU context) by saving the remaining context of the

current task, and restoring the context of the new task.

• Body: The body implements the task behaviour and

corresponds to the application written to run in the native

version of the FreeRTOS.

• Epilogue: The epilogue is executed wherever a task is

suspended or finished. If the task was suspended, it saves

the tasks context and then restores the state of the new

dispatched task, otherwise the task was finished and it

only restores the context of the new task.

The remaining of this section describes how the FreeRTOS

task-specific system calls were re-factored. Since the ARM

instruction set provides dedicated instructions that allow read

and write memory atomically, no additional software synchro-

nization points were necessary to include in order to deal with

concurrent access to the GIC distributor registers.

1) Scheduler Start: Starting the scheduler is fairly straight-

forward, consisting in enabling the GIC distributor and each

CPU interface through the GICD_CTRL and GICC_CTRL reg-

isters, respectively.

2) Task Creation/Activation: Whenever a task is cre-

ated, the existing TCB structure is initialized (allocating

the task stack), and the associated interrupt is configured.

Thereby, the GIC distributor requires specifying the pri-

ority level (GICD_IPRIORITYRx), setting the target CPU

(GICD_ITARGETSRx) - following a round robin schema -,

linking the interrupt handler to the task-specific code, enabling

(GICD_ISENABLERx) and setting the interrupt as pending

(GICD_ISPENDRx). After, locally to each CPU interface, if

the created task has higher priority than the currently executing

task, the prologue is executed and the created task dispatched,

hence no SGI (i.e., cross-core interaction) is needed.

3) Task Deletion: Whenever a task is deleted the interrupt

source linked to that task is disabled (GICD_ICENABLERx), it

is signalled as waiting deletion (to free the memory during the

idle periods), and if the task is currently executing in the local

Authorized licensed use limited to: b-on: UNIVERSIDADE DO MINHO. Downloaded on January 03,2023 at 15:43:27 UTC from IEEE Xplore. Restrictions apply.

core then the epilogue is performed, otherwise an SGI is sent

(i.e., cross-core interaction) to signal the remote core to delete

the current task.

4) Task Suspend: Whenever a task is suspended the pend-

ing flag of the interrupt source linked to that task is disabled

(GICD_ICPENDRx), and if the task is currently executing in

the local core the epilogue is performed, otherwise an SGI is

sent (i.e., cross-core interaction) to signal the remote core to

suspend the current task.

5) Task Resume: Whenever a task is resumed its state

is changed to ready and the interrupt is set as pending

(GICD_ISPENDRx). After, locally to each CPU interface, if the

resumed task has higher priority than the currently executing

task, the prologue is executed and the resumed task dispatched.

IV. PRELIMINARY RESULTS

The implemented solution was tested on the Fast Models

emulator, using a model of the Versatile Express (VE) board

with a dual- and quad-core ARM Cortex-A9. We compared

the native single-core version of the FreeRTOS (ver. 7.0.2)

against our redesigned hardware-centric multicore version

(HcM-FreeRTOS). For our implementation we experimented

and gathered results also for cross-core interaction. The results

were obtained using the Performance Monitoring Unit (PMU)

component, and the software was compiled with the ARM

Xilinx Toolchain.

In order to assess the performance and determinism re-

sults we performed several microbenchmarks. The selected

microbenchmarks encompass the modified system calls, which

include:

• xTaskCreate: Creates a task and dispatches it if its

priority is higher than the currently executing task;

• vTaskDelete: Deletes a task and dispatches another if

the deleted task is currently executing;

• vTaskSuspend: Suspends a task and dispatches another

if the suspended task is currently executing;

• vTaskResume: Resumes a task and dispatches it if its

priority is higher than the currently executing task;

• vTaskSetPriority: Changes the priority of a task and

dispatches it if the modified priority is higher than the

priority of the currently executing task;

For each microbenchmark we performed several experi-

ments with different system configurations, changing param-

eters such as: (i) the number of tasks (from 1 to 32); (ii) the

priority of tasks (from 1 to 255); (iii) the number of tasks with

the same priority (from 1 to 3); (iv) the priority gap between

tasks (from 32 to 253), and (v) the priority of the dispatched

or not dispatched task. The presented results report the mean

value (x) and the standard deviation (s) of a set of experiments.

We start by performing the behaviour evaluation, by ex-

tending the aforementioned test scenarios with distinct priority

levels of hardware interrupts. It is naturally perceptible that

we solved the rate monotonic priority inversion problem by

design, and we effectively corroborated our predictions by

observing an unified execution flow, with tasks and ISRs

coexisting correctly. During all experiments no ISR with

Dispatch FreeRTOS HcM

API IC CC x s x s ov.(%)

xTaskCreate

w - 1089 2 1042 0 -4.3
w/o - 968 0 945 0 -2.4

- w - - 1042 0 -
- w/o - - 945 0 -

vTaskDelete

w - 2955 2891 306 0 -89.6
w/o - 187 17 168 0 -10.2

- w - - 571 0 -
- w/o - - 168 0 -

vTaskSuspend

w - 2941 2891 283 0 -90.4
w/o - 158 2 81 0 -48.6

- w - - 446 0 -
- w/o - - 81 0 -

vTaskResume

w - 301 2 152 0 -49.6
w/o - 207 0 51 0 -75.4

- w - - 152 0 -
- w/o - - 51 0 -

vTaskPrioritySet

w - 2976 2884 170 0 -94.3
w/o - 278 64 74 0 -73.3

- w - - 170 0 -
- w/o - - 74 0 -

TABLE I: Performance and Determinism Evaluation Results

semantically low priority has interrupted a task with higher

priority, fact that was not observed in the native version of

FreeRTOS.

Table I, in turn, presents the achieved results for the over-

head evaluation. It is clear that our implementation overcomes

the native version of FreeRTOS in both metrics: performance

and determinism. Relatively to the former, the execution time

was reduced between 2.4% (xTaskCreate without dispatch)

and 94.3% (vTaskPrioritySet with dispatch). The speedup

achieved in the xTaskCreate API is considerably smaller

than the other APIs, because we implemented the suspend

feature and so, it still requires stack allocation for each task.

Regarding determinism, our evaluation methodology outlined

important sources of indeterminism in FreeRTOS, stemming

from its searching algorithm - that determines the next running

task - in the context switch operation. Since our approach is

based on hardware and relies on the GIC to provide the highest

priority ready-to-run task, the context switch, in particular,

and the APIs, in general, are naturally deterministic. This is

why our approach achieved a null standard deviation in all

experiments.

The results still corroborated the viability of implementing

multicore RTOS without the need of software synchroniza-

tion mechanisms for the concurrent access to shared kernel

resources. We only needed to guarantee the coherency during

GIC distributor registers accesses, and we did that with specific

and dedicated hardware instructions. Determinism was not

compromised and the only extra overhead with the advent of

multicore migration came from cross-core interaction, due to

the need to trigger interprocessor interrrupts (SGIs).

Authorized licensed use limited to: b-on: UNIVERSIDADE DO MINHO. Downloaded on January 03,2023 at 15:43:27 UTC from IEEE Xplore. Restrictions apply.

V. RESEARCH ROADMAP

Work in the near future will proceed through the migration

of the remaining kernel services to hardware. At this stage,

only a subset of the task management API is exploiting the

hardware interrupt controller to implement the scheduling

decisions. However, the idea is not only offload to hardware

all the scheduling services, but also implement other kernel

services. For example, synchronization mechanisms such as

mutual exclusion (mutex), can easily be implemented exploit-

ing the GIC. For local resources (resources shared between

the same processor) the Priority Ceiling Protocol based on

the temporary raise of tasks’ priority will be implemented

[8]. For global resources (resources shared between different

processors), we will investigate the applicability of the Multi-

processor Priority Ceiling Protocol [12].

After migrating all kernel services, research will focus on an

in-depth and real-world system evaluation. First, we will focus

on performance and indeterminism. All the kernel services

will be evaluated, not only by performing microbenchmarks,

but also running concrete benchmark suites - Thread Metrics

and MiBench Suites are good candidates. More sources of

indeterminism will be also investigated, and characterized.

Furthermore, experiments will be carried out in a physical

multicore development platform (e.g., Xilinx Zynq ZC702) to

assess real-world results, because Fast Models is an excellent

tool for proof-of-concept but does not model accurate cycle

counts - all instructions take the same amount of time. Memory

footprint and code management (maintainability) are other

metrics that will be also evaluated.

From a different perspective, research will continue towards

the development of an efficient hardware-based dual-OS archi-

tecture. With the emergent complexity of modern embedded

devices, which increasingly demand for general purpose com-

puting characteristics but still need to guarantee the real-time

requirements, it is necessary to develop efficient solutions that

allow the coexistence of General Purpose Operating Systems

(GPOSes) with RTOSes. Thereby, the solution of our previous

work with ARM TrustZone technology [13] will be followed

to provide the spatial and temporal isolation between the OSes.

Moreover, we will go one step further applying concepts of this

work to the RTOS running on the secure side. By exploiting

only ARM COTS hardware, we will provide efficiency and

optimization at two different levels of the system stack: not

only on the virtualization layer but also in the OS layer.

VI. CONCLUSION

Over the last few years, the interest in embedded multicore

systems has increased significantly due to the simultaneous

advantages on power and performance. However, embedded

RTOSes with built-in multicore support face two well identi-

fied problems: the need of internal software synchronization

points, and the lack of an unified priority space. This paper

presented a work in progress towards the implementation

of a multicore hardware-centric version of the FreeRTOS,

by offloading some kernel components to COTS hardware.

Migrating the scheduling decisions to the interrupt controller

we showed that it is possible to overcome the problems of

multicore RTOSes and simultaneously improve performance

and specially determinism.

The research roadmap section described that research in

the near future will focus on the migration of the remaining

kernel services to hardware, and on an extensive system

evaluation on a real multicore platform. Research will then

proceed towards the development of an efficient hardware-

centric dual-OS architecture, by exploiting only COTS ARM

SoC capabilities.

VII. ACKNOWLEDGEMENT

Sandro Pinto is supported by FCT - Fundação para a Ciência

e Tecnologia (grant SFRH/BD/91530/2012). This work has

been supported by FCT - Fundação para a Ciência e Tecnolo-

gia within the Project Scope: PEst-UID/CEC/00319/2013.

REFERENCES

[1] M. Karlsson, “Enea Hypervisor: Facilitating Multicore Migration with
the Enea Hypervisor,” ENEA White Paper, pp. 1–11, 2012.

[2] F. Reichenbach and A. Wold, “Multi-core technology – next evolution
step in safety critical systems for industrial applications?” in Digital
System Design: Architectures, Methods and Tools (DSD), 2010 13th
Euromicro Conference on, Sept 2010, pp. 339–346.

[3] D. Andrews, I. Bate, T. Nolte, C. Otero-Perez, and S. M. Petters,
“Impact of embedded systems evolution on rtos use and design,” in
1st International Workshop Operating System Platforms for Embedded
Real-Time Applications (OSPERT’05), 2005.

[4] L. Leyva-del Foyo, P. Mejia-Alvarez, and D. de Niz, “Predictable inter-
rupt management for real time kernels over conventional pc hardware,”
in Real-Time and Embedded Technology and Applications Symposium,
2006. Proceedings of the 12th IEEE, April 2006, pp. 14–23.

[5] S. Kleiman and J. Eykholt, “Interrupts as threads,” SIGOPS Oper. Syst.
Rev., vol. 29, no. 2, pp. 21–26, Apr. 1995.

[6] L. Leyva-del Foyo, P. Mejia-Alvarez, and D. de Niz, “Predictable inter-
rupt scheduling with low overhead for real-time kernels,” in Embedded
and Real-Time Computing Systems and Applications, 2006. Proceedings.
12th IEEE International Conference on, 2006, pp. 385–394.

[7] W. Hofer, D. Lohmann, and W. Schroder-Preikschat, “Sleepy sloth:
Threads as interrupts as threads,” in Real-Time Systems Symposium
(RTSS), 2011 IEEE 32nd, Nov 2011, pp. 67–77.

[8] S. Pinto, J. Pereira, D. Oliveira, F. Alves, E. Qaralleh, M. Ekpanyapong,
J. Cabral, and A. Tavares, “Porting sloth system to FreeRTOS running
on ARM cortex-m3,” in Industrial Electronics (ISIE), 2014 IEEE 23rd
International Symposium on, June 2014, pp. 1888–1893.

[9] T. Gomes, P. Garcia, F. Salgado, J. Monteiro, M. Ekpanyapong, and
A. Tavares, “Task-aware interrupt controller: Priority space unification
in real-time systems,” Embedded Systems Letters, IEEE, vol. 7, no. 1,
pp. 27–30, March 2015.

[10] J. Mistry, M. Naylor, and J. Woodcock, “Adapting freertos for multi-
cores: an experience report,” Software: Practice and Experience, vol. 44,
no. 9, pp. 1129–1154, 2014.

[11] R. Müller, D. Danner, W. Preikschat, and D. Lohmann, “Multi sloth: An
efficient multi-core rtos using hardware-based scheduling,” in Real-Time
Systems (ECRTS), 2014 26th Euromicro Conference on, July 2014, pp.
189–198.

[12] R. Rajkumar, “Real-time synchronization protocols for shared memory
multiprocessors,” in Distributed Computing Systems, 1990. Proceed-
ings., 10th International Conference on, May 1990, pp. 116–123.

[13] S. Pinto, D. Oliveira, J. Pereira, N. Cardoso, M. Ekpanyapong, J. Cabral,
and A. Tavares, “Towards a lightweight embedded virtualization archi-
tecture exploiting arm trustzone,” in Emerging Technology and Factory
Automation (ETFA), 2014 IEEE, Sept 2014, pp. 1–4.

Authorized licensed use limited to: b-on: UNIVERSIDADE DO MINHO. Downloaded on January 03,2023 at 15:43:27 UTC from IEEE Xplore. Restrictions apply.

