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Abstract—Safety-critical real-time embedded systems are be-
coming difcult to model and analyze as they accommodate
more and more functionalities, and they rely on more and more
complex HW and SW implementations. One of the main difculty
with such systems is to nd the right coupling between the task
model and the analysis method. Indeed, if the task model is too
simple it may add pessimism to the result of the analysis, and it
may not be possible to prove the correctness of the systems. If the
model is too complex, the analysis may be not efcient enough to
be usable; or worst the model may have an incomplete method
only or no method at all, so the system cannot be analyzed.
Finding, the right couple task model analysis method is a balance
between expressiveness and analysis efciency.

In this article, we introduce a new graph real-time task model
(noted GGTM) which has been used for several years for the
deployment and the analysis of different embedded systems.
We discuss its expressiveness compared to the literature and
demonstrate its advantages. We also, present a decidable and
efcient, exact schedulability analysis.

Index Terms—Real-Time Systems, Graph Task Model, Schedu-
lability Analysis

I. INTRODUCTION

Today’s HW and SW implementations are making safety-
critical real-time embedded systems more and more complex.
This is especially true with drones and robots, for which there
are also the missions and the interactions with the environment
to become more diverse and their human interactions implies
safety guarantees. In such a complex ecosystem, the timing
behavior of task is crucial, since modeling, and analysis apply
for assuring the system timing behavior, i.e. determinism;
timing analyses and schedulability analysis enforce the timing
guarantees.

An expressive model must capture and abstract the com-
plexity of the real system. In the past decade’s different real-
time task models have been developed. The widely known
Liu and Layland task model [1] has been upgraded with new
models and conditions that have been introduced to answer
real problems of modeling, execution, and analysis. Then the
notion of sporadic tasks was introduced [2], [3], followed by
the notion of multiframe tasks [4], [5], [6] in which a task
is split in a sequence of executions. These two models are
subsumed by the Generalized Multiframe Tasks model [7].
All these models have based ”list” task modeling in which the
task is represented with a sequence of executions. The next
structural extension of the tasks model is to take into account
the ”tree” tasks model, more precisely the DAG task model.
The recurring real-time task model [8], [9], [10], noncyclic

generalized multiframe tasks [11] and the non-cyclic recurring
real-time task model [12], [13] are embedding that. Finally,
complex real-time systems composed graph tasks model [14],
[15] was introduced [16], [17], [18]. Each previously cited task
model came with a specic schedulability analysis, which can
determine if the real-time system is schedulable or not.

Another approach to handle a more complex real-time
systems is to use other techniques with more general and
more powerful models like model-checking. Some theories
like timed automata [19] or Timed Petri Nets [20], because
they are dealing with time seem well-tted for this kind of
problem. But it has already been shown that are undecidable
while deadline with real-time preemptive systems [21], [22].
And even if the decidability can be proven on a specic model
the method can still be not efcient enough [23], [24] or
incomplete [25].

To analyze more complex real-time systems it is important
to have a precise model and a well-tted analysis. If the task
model is too abstract or if the analysis is too simple, then it can
not take into account the neness of the actual behavior of the
system. From the schedulability point of view, this means that
method is pessimistic (i.e. it indicates that the system is not
schedulable whereas a more precise method demonstrates the
schedulability). On the other hand, there are model-checking
techniques that can approach complex task models but cannot
analyze it due to the undecidability problem or the lack of
efciency. In between there is a gray zone that this paper wants
to tackle with.

Contribution: We propose a new task model named
Generalized Graph real-time Task Model (GGTM), in which
the task execution is described by a graph. We discuss the
expressiveness of this task model compared to the previously
cited ones. Moreover, we propose a non-pessimistic (exact)
and decidable analysis method. The complexity and the ef-
ciency of the method will also be discussed and benchmarking
is provided to support considerations on analysis and method
computation time.

Organization of the paper: In section II we present the
GGTM and its real-time execution behavior semantic. Sec-
tion III details the expressiveness of the model and compares
it to the state of the art. Section IV presents the exact analysis
method. Section V the schedulability analysis is applied to
a simple example rst, then a benchmarking analysis is pre-
sented to highlight the cost of the analysis method proposed.
Section VI is for concluding and future work.



II. GGTM TASK MODEL

A. Task model notations

A GGTM system is a set of independent tasks (Γ =
{ τ1, . . . τN }). Each task τi has a priority Pi, an afnity
cpui, and a graph Gi which describes its internal behavior:
τi = {Pi, cpui,Gi}. Notice that task migration from one
processor to another is not allowed in this model. The graph Gi

is composed of a set of vertices V = {vi,1, . . . , vi,n}, an initial
vertex v1, a set of arcs A = {ai,1, . . . , ai,m} representing the
transitions between the vertices. Each oriented arc is a pair of
two vertices, its source and its destination ai,j :


a−i,j , a

+
i,j


.

The set of vi previous (resp. next) vertices in the graph is
noted prev(vi) (resp. next):

prev(vi) = {vj | 〈vj , vi〉 ∈ A}
next(vi) = {vj | 〈vi, vj〉 ∈ A} .

Each vertex of Gi can be either an execution vertex or a wait
vertex. To ease the presentation, if a vertex vi,j is an execution
(resp. wait) vertex then it will be noted ei,j (resp. wi,j). An
execution vertex represents the execution of a specic code
of the task. Thus, an execution vertex (ei,j : 〈ci,j , di,j〉)
is characterized by its worst-case execution (ci,j) time and
optionally its relative deadline (di,j , or if none). A wait
vertex is characterized by its clock duration wi,j : δi,j . A wait
vertex means that the task will wait until its internal clock
reached the value specied in the corresponding vertex. These
notions will be detailed later. The type function is also added
to ease the following formula; the type of vertex vi can be
either Exec for an execution vertex or Wait for a wait vertex.
Moreover, the GGTM contains a parameter that characterizes
the internal clock bound noted Ki. This parameter has an
important role during the analysis, thus it will be explained
in detail later in this article.

Notice that worst case-executions, deadlines, and clocks are
positive (non-strict) values. We can also notice that this model
allows for arbitrary deadlines. To simplify the notations, the
task indexed will be omitted while considering a single task.

B. Semantic of the task model

The execution of a GGTM τi is based on its internal graph
model and the interactions of the higher priority tasks. During
its execution, a task has exactly one active vertex at a time.
The current active vertex of a task changes according to the
GGTM arcs. Each task has an internal clock which is set to
zero when the system starts. This clock increases according to
time and can be reduced while nishing a wait vertex. There is
no restriction in the GGTM structure: execution vertex (resp.
wait) can be followed by either another execution or a wait.

Execution vertex: While running an execution vertex
(ei,j) the task is computing its corresponding code, thus the
task is consuming 0 to ci,j time processor unit. But this task
can be delayed or preempted by others, thus this action can
take longer than ci,j . During the execution vertex run, the
internal clock (Ii) is increased with time. Notice that Ii is
still increasing if the task is preempted by another task. At

the end of the execution vertex any next vertex vi,k can be
selected according to the GGTM arcs.

Wait vertex: A wait vertex (wi,j) does not consume CPU
time. While entering a wait vertex two cases may occur: 1)
if the task internal clock is lower than the wait vertex clock
then the task waits until the internal clock value is equal to the
vertex clock value; 2) if the task internal clock is greater than
or equal to the wait vertex then its internal clock is decreased
by the wait clock value and the next vertex is selected.

a) Task system: The behavior of the complete system
is the combination of the behavior of each task according to
the preemptive xed priority scheduler in which each task is
mapped to a single processor according to its afnity (cpui).

Deadline: In our model, the deadline is relative to the
internal clock of the task. A task τi misses its deadline iff while
running an execution vertex (ei,j : 〈ci,j , di,j〉) its internal
clock value Ii is greater than the deadline specied in the
vertex: Ii > di,j . Notice that deadlines of the execution
vertices have no impact on the real-time execution of the tasks.
Thus, if a task misses one of its deadlines it goes on.

Killing parameter: The killing parameter Ki is the maxi-
mum value of the task internal clock allowed. As stated before,
the task internal clock increases with time, it is decreased when
running a wait vertex. If the internal clock of the task reaches
this bound (Ki) then the task is stopped. For the analysis point
of view, the killing parameter is used as a task clock bound.

C. Example

Let’s consider the example in Figure 1 composed of one
GGTM task composed of three execution vertices (e1, e2 and
e1), three wait vertices (w4, w5 and w6) and eight transitions.

e1: 〈1, 2〉

e2: 〈2, 4〉

e3: 〈5, 8〉

w4: 2

w5: 5

w6: 10

Fig. 1. GGTM example.

A trace is a sequence of vertices of the studied task
noted [vi,j , . . . , vi,k]. In order to explain the behavior of
such a task model we will consider the following trace:
[e1, w4, e1, e2, w5, e1, w4]. In this trace, the task is executed
without being delayed nor preempted by any other task. The
timeline of the trace is presented in gure 2.

t
0 1 2 3 4 5 6 7 8 9

e1 w4 e1 e2 w5 e1 w4

w4 w5 w4

Fig. 2. Execution trace [e1, w4, e1, e2, w5, e1, w4].
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III. GGTM EXPRESSIVENESS AND MOTIVATIONS

We describe the expressiveness of the GGTM, and compare
it to relevant execution models from the literature.

A. Periodic task model

Let’s consider the classical periodic task model [1] with
release date (ri), priority (Pi), period (Ti), deadline (Di), and
WCET (Ci).In our model, the periodic task is easily translated
with a GGTM composed of 2 wait vertices (the rst represents
the release, and the second the period) and as execution vertex
for the task computation, and the deadline. Figure 3 represents
the GGTM for a periodic task. Consequently, our model is
strictly more expressive than the periodic task model.

w1: ri e2: 〈Ci, Di〉 w3: Ti

Fig. 3. Periodic task representation.

B. Multiframe and generalized multiframe task model

The multiframe task model and the Generalized Multiframe
(GMF) task model [7] are two extensions of the periodic task
model. The GMF task model subsumes the multiframe task
model [5]. Both have a schedulability analysis for the xed-
priority preemptive scheduler. The translation of the GMF task
model into the GGTM is straight forward. Indeed, a GMF task
is a sequence of alternate an execution vertex followed by a
wait vertex. However, a major difference exists. GMF deals
with sporadic tasks, thus the period is the minimum separation
between two execution. In our execution model, the wait vertex
represents an exact ”separation” between two vertices.

C. Graph based task model

Another kind of extension is to use a graph (or Direct
Acyclic Graph - DAG) to describe the task behavior. The
Recurring Real-Time task model [8] (RRT) extends the GMF
task model by considering a DAG instead of a sequence
of execution and ”period”. The non-cyclic RRT mode [13]
also extends both recurring RT and non-cyclic GMF. Finally,
the digraph real-time task model [16] subsumes the previous
ones by considering a directed graph composed of vertices
representing the executions (and deadlines) and edges for
the ”period” (delay between executions). Let’s consider the
digraph (Directed graph) task represented in gure 4.

v1 v2

v3

〈e1, d1〉 〈e2, d2〉

〈e3, d3〉

p1

p2

p3

p4

Fig. 4. Digraph task.

It can be translated into the GGTM by representing each
digraph vertex with an execution vertex and each edge of the

digraph with a wait vertex in the proposed model. Figure 5
shows the result of the translation.

e1: 〈e1, d1〉 e2: 〈e2, d2〉

e3: 〈e3, d3〉

w4: p1

w5: p2

w6: p3 w7: p4

Fig. 5. Digraph task translation.

The GGTM is more general than the digraph real-time task
model because we can chain execution vertices and also wait
for vertices contrary to the digraph real-time model in which
an execution is always followed by a ”period”. However, there
are four main differences: rst, the GGTM has a unique initial
vertex, contrary to the digraph RTT in which the initial node
is not specied. Then, the digraph real-time task model is
sporadic; the edges are minimum inter-release separation time
and not exact inter-release time. Moreover, the digraph real-
time task model is based on the preemptive earliest deadline
rst scheduler. Finally, in the task model presented in this
paper, we can have deadlines greater than the periods.

D. Concrete motivation

a) Re-synchronization: The rst issue we had on dif-
ferent robots came from the sensors reading. In practice,
the sensors (laser, GNSS, cameras, . . . ) produce data with a
specic frequency. The rate is accurate but never perfect. Thus,
sometimes the synchronization can be lost, and some data may
be lost. To avoid this issue we need to specify a task made
with two-part: one for the synchronization and one for data
computation. Figure 6 shows how to answer this problem with
the proposed task model. The cycle composed of e1 and w3

is used to check if a new data is produced by the sensor. If
one data is produced then the vertex e2 is executed to treat
the input.

e1: 〈c1, d1〉 e2: 〈c2, d2〉

w3: δ3

w4: δ4

Fig. 6. Synchronization issue solved.

In practice, this pattern is characterized by a tiny wait
duration in w3 depending on the sensor specication and a
longer wait duration after the data computation in w4. This
pattern also gives a precise bound of the delay between
the data produced by the sensor and the beginning of its
computation: δ3.

b) Complex tasks: In practice, if a task has complex
behavior from the time point of view, the GGTMmodel can be
helpful. This execution model has proven to be useful for the
implementation of various complex tasks such as path planning
and tracking, SLAM, and various decision tasks.
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IV. GGTM ANALYSIS

A. Methodology

The main objective of the analysis of the GGTM is to
compute the behavior graph of each task. Once this graph ob-
tained we can check if the deadlines are missed and highlight
counter-examples traces. This graph may also provide valuable
information about the real-time behavior of the systems.

Theorem 1. In GGTM, there is no possible interaction be-
tween tasks mapped to different processors.

Proof. The tasks are mapped on a single processor and are
not allowed to change their allocation during the execution.
Moreover, there is no synchronization nor precedence between
tasks. Consequently, tasks from different processors are inde-
pendent, from the real-time point of view.

Theorem 2. In GGTM, task behavior can only be altered by
the tasks running on the same CPU with a higher priority.

Proof. The only interactions between tasks can be either delay
or preemption. A task can only be delayed (resp. preempted)
by another task with a higher priority. Consequently, the
interactions between tasks can be completely ordered.

Lemma 1. Consequently, the analysis of system composed of
several GGTM can be done incrementally: one processor at a
time and one task at a time-ordered by their priorities.

The main algorithm consists of: for each processor, for each
task τi allocated on this processor ordered by priority, compute
its behavior graph (noted Bi). The behavior graph of a task
is computed by taking into account its supply graph of the
processor. The supply graph represents the availability of the
processor for a specic task. Because we are dealing with
graphs for the tasks, the supply ”function” is also a graph.
Once the behavior graph of a task computed we can check
different properties such as looking for deadline miss. Finally,
the current processor utilization induced by the behavior of
the current task is added to the supply graph for the next task.
Then the supply graph is compacted to reduce as possible its
size. This methodology is described by the algorithm 1.

foreach cpu ∈ cpus do
tasks ← {τi ∈ Γ | cpui = cpu};
tasks ← sort by priority(tasks) ;
supply ← empty supply graph();
foreach τi ∈ tasks do

Bi ← compute(supply, Gi) ;
check properties(Bi) ;
supply ← next(Bi) ;
supply ← compact(supply) ;

end
end

Algorithm 1: Analysis algorithm principle

B. Supply graph denition

A supply graph is a directed graph noted S composed of
vertices noted VS and arcs noted AS . Each vertex vSi is a

tuple made of the vertex type and the duration (noted ∆i);
the vertex type can be either Idle or loaded Loaded. While
analyzing the task τi the Loaded vertices correspond to the
executions of the tasks with a higher priority than τi. If the
supply graph current vertex type is Idle then the task τi can
be executed. According to the analysis algorithm 1 a specic
supply graph is only used for the computation of specic task
behavior. Thus, to ease the paper reading while analyzing the
task τi the corresponding supply graph will be noted Si.

C. Behavior graph denition

The main objective of the behavior graph of a task is to
show its behavior according to its supply graph. Consequently,
it contains both information related to the supply graph and
information on the task. The behavior graph B is a directed
graph composed of vertices noted VB and arcs noted AB. Each
vertex contains a tuple 〈s, t, begin, end〉 in which: s is the
current supply vertex, t is the current task vertex, begin is used
to represent the internal behavior parameters while entering the
current vertex, and end at the end of the vertex. Both begin
and end contains three parameters 〈S, I, E〉:

1) S is a positive number representing the remaining du-
ration of the Supply vertex s. This duration can only
decrease.

2) I is a positive number representing the task’s Inner clock
value. This value can only increase up to Ki.

3) E is a positive number representing the remaining
Execution time needed by the task to nish t. This value
can only decrease.

A behavior vertex represents the evolution of the system
behavior while time changes but the vertices of both the
supply graph and task graph remain unchanged. The arcs of
the behavior graph represent the change of either the supply
graph vertex or the task graph vertex. The pointed notation
will be used if the vertex is not needed (ex. begin.I).

D. Killing parameter

As previously described, each task τi has a killing parameter
Ki which is an upper bound for the internal clock. Thus, dur-
ing the computation of the behavior task, if the internal clock
reaches Ki is marked as killed. Because our main objective
is to study the schedulability of the task the killer parameter
must be long enough to detect deadline miss, but it also has to
be as small as possible to reduce computation time. Thus, it
must be greater than all the deadlines (Ki > max(di,j)) and
greater than the wait duration to avoid stopping the task while
waiting (Ki > max(δi,j)).

We can determine Ki value with the following formula:

Ki = max(di,j) +max(δi,k) + 1

E. Supply graph initialization

The initial supply graph is used to represent a processor
fully available for the tasks. It is composed of a single vertex:

〈Idle,+∞〉
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F. Behavior graph computation

The behavior graph computation principle is to compute,
for each vertex from the initial one, the next possible vertices.
This is repeated until no new vertex can be added to the graph.
We will explain later why this process terminates.

1) Initial vertex: The rst vertex is composed of the supply
and the task vertex are the corresponding initial vertices: s1 =
vS1 and t1 = v1. The remaining time into the initial supply
vertex is equal to its duration. The initial internal clock value
is set to zero. The initial remaining computation time of the
initial execution vertex is set to its WCET if the rst task
vertex is equal to an execution vertex, or it equals to zero if
it’s a wait vertex.


vS1 , v1, begin, end



The initial vertex begin parameters depend on the rst
task vertex type. If the task vertex type is Exec then E
the parameter representing the remaining computation time is
equal to c1 otherwise it is equal to 0. In both cases, the supply
duration is set according to the rst supply vertex duration and
the initial task internal clock value is set to 0.

(type(v1) = Exec) =⇒ (begin = 〈∆1, 0, c1〉)
(type(v1) = Wait) =⇒ (begin = 〈∆1, 0, 0〉)

2) Vertex length: The length of a behavior vertex vBi is
the time spent is this vertex before a transition occurs. Thus,
the length of a behavior vertex depends on the supply and the
task vertex types.

Supply is loaded: The supply graph represents the tasks
with higher priority. Thus, if the supply is loaded then the
system have to wait for the end of the current supply vertex:

(type(s) = Loaded) =⇒ (length = begin.S)

Task is running: If the supply is idle and the current task
vertex is an execution then the system is running the studied
task. This ends as soon as the execution is nished or the
current supply vertex ends:

(type(s) = Idle ∧ type(t) = Exec) =⇒
(length = min (begin.S, begin.E))

Task is waiting: If the supply is Idle and the task is
waiting then the current vertex ends as soon as the supply
vertex ends or the clock reached the wait vertex clock duration.

(type(s) = Idle ∧ type(t) = Wait) =⇒
(length = min (begin.S,max (begin.I − δ, 0)))

The max part of the formula is necessary to maintain a non-
negative duration if the wait vertex is late (I > δ). In this
conguration, the behavior vertex ends without consuming
time.

3) Time evolution: A time transition is represented in each
behavior graph vertex using the begin and end parameters
which dened the internal changes of the systems when the
time evolves. The begin parameter is computed while entering
the vertex, thus the end parameter depends on the inner vertex
parameters: the supply and the task current vertex and the
’begin’ parameter.

Task is waiting: If the task is waiting then the supply
duration decreases according to time, the clock increases and
the remaining computation is 0:

(type(t) = Wait) =⇒⎛
⎝end =

〈 begin.S − length,
begin.I + length,
0

〉⎞
⎠

Task is running: If the supply is idle and the task is
running an execution vertex then the supply duration decreases
according to time, the clock increases and the remaining
computation of the task vertex decreases:

(type(s) = Idle ∧ type(t) = Wait) =⇒⎛
⎝end =

〈
begin.S − length,
begin.I + length,
begin.E − length

〉⎞
⎠

Task is preempted: If the supply is loaded and the task
is an execution vertex (the tasks is preempted by higher
priority tasks) then the supply duration decreases according
to time, the clock increases and the remaining computation
stay unchanged:

(type(s) = Idle ∧ type(t) = Wait) =⇒⎛
⎝end =

〈
begin.S − length,
begin.I + length,
begin.E

〉⎞
⎠

4) ”Choice” transition:
Supply transitions: At the end of the vertex time evolu-

tion, the next supply or task graph transition has to be selected.
The supply graph represents the higher priority tasks, thus if its
current vertex is nished (end.S = 0) then its next transition
is selected even if the task graph vertex is also nished. It
is important to notice that the process is repeated for each
next transitions. To ease the following formula, the next vertex
according to the task graph will be noted v′. This notation
is also applied to every behavior graph element including to
supply vertices, begin and end parameters.

〈s, t, begin, end〉 〈s′, t, begin′, end′〉
(end.S = 0) =⇒ (begin′ = 〈∆s′ , end.I, end.E〉)
Task transition: The next task vertex is selected only if

the current task vertex is nished and the supply vertex is not
nished.

〈s, t, begin, end〉 〈s, t′, begin′, end′〉
If the next task vertex type is wait then the clock is reduced

by the clock duration specied in the task graph vertex:

(end.S = 0 ∧ type(t′) = Wait) =⇒
(begin′ = 〈S, end.I − δ, 0〉)

If the next task vertex is an execution then the remaining
computation time is set to the WCET of the corresponding
task vertex:

(end.S = 0 ∧ type(t′) = Exec) =⇒
(begin′ = 〈S, end.I, c′〉)
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G. Next supply graph

Once the behavior graph computed for a task, the next
supply graph, for the next task, has to be computed. The next
supply graph is a graph with the same structure as the current
behavior graph (same vertices number and same transitions).
Each behavior vertex is transformed into a supply vertex
depending on the fact the vertex uses the processor or not:

〈s, t, begin, end〉 
Loaded(length) if type(s) = (Loaded ∨ Exec)
Idle(length) otherwise

H. Compact supply graph

The computation of the behavior graph highly depends on
the supply graph size that’s why it is important to keep it
as small as possible. A next supply graph created from the
behavior graph can be compacted by two operations that
maintain the supply graph’s semantic.

Remove empty: consists in removing all the empty ver-
tices. A supply vertex si is empty if its duration is equal to zero
(∆i = 0). To achieve this simplication every out coming arc
of the empty vertex is added to every previous vertex. Finally,
the empty supply vertex is removed.

Merge: consists in merging two consecutive ”single” ver-
tices with the same type. Indeed, if two vertices s1 and s2 have
the same type (type(s1) = type(s2)) and the rst one has only
one out coming transition to the second (next(s1) = {s2})
which has only one incoming transition (prev(s2) = {s1})
(from the rst one), then these two vertices can be merged into
a single one. This functionality is described by algorithm 2.

foreach x ∈ VS , y ∈ VS do
if mergeable(x, y) then

v ← new vertex;
type(v) ← type(x) ;
∆v ← ∆x +∆y ;
VS ← VS + v ;
foreach p ∈ prev(x) do

AS ← AS + 〈p, v〉
end
foreach n ∈ next(y) do

AS ← AS + 〈v, n〉
end
VS ← VS − x− y

end
end

Algorithm 2: Merge two supply vertices.

I. Check task properties

Once the behavior graph computed we can check properties.
Deadline miss: A behavior graph vertex is deadline miss

if the task vertex is execution and if the internal clock is greater
than (strictly) its corresponding deadline:

deadline miss := (typet(t) = Exec ∧ end.I > d)

Killed: A behavior graph vertex is killed if its internal
clock is greater than the killing parameter:

killed := end.I > K.

Late: A behavior graph vertex is late if its internal clock
greater than its corresponding wait duration:

late := end.I > δ.

Response time: The worst-case response time (WCRT)
of a task execution vertex e is the maximum internal clock
value for a behavior vertex with the same task vertex:

wcrt(e) := max {end.I | t = e} .
Schedulable: A task is schedulable if the behavior graph

contains neither killed vertex nor deadline miss vertex.
Other properties: Any other properties related to the

behavior graph can also be tracked. For example, we already
used the behavior graph to study the impact of some specic
task preemption on the worst-case response time of another
task. The behavior graph can also be used for explanation,
for example, if the task is not schedulable it is interesting to
determine which paths can lead to a deadline miss.

J. Discussion

a) Pessimism: The main principle of the analysis method
presented in this article is to compute every possible behavior
of GGTM tasks. By construction, the behavior graph exhibits
the exact behavior of the corresponding tasks. Consequently,
the analysis method is exact (non-pessimistic).

b) Completeness: Moreover, the analysis can be applied
to any GGTM systems without any restriction. Consequently,
the method is complete.

c) Decidability: To prove the decidability of the method
we have demonstrated that the decision procedure ends. The
main algorithm iterates over the tasks. The number of tasks is
bounded. For each task three algorithms are applies: comput-
ing behavior graph, checking real-time properties, computing
the next supply graph and compacting the supply graph.

Checking the real-time properties is a simple request on the
behavior graph, at worst each node is checked once. Thus, the
termination is guaranteed.

Computing the next supply graph principle is to create a
supply graph with the same structure as the input behavior
graph. Thus, the next supply computation simply iterates on
the behavior graph. Thus, the termination is also guaranteed.

Compacting the supply graph applies recursively two oper-
ations (remove empty and merge). Each operation reduces the
size (number of vertices); thus the procedure ends.

To demonstrate that the computation of the behavior graph
ends, we have to demonstrate that the number of vertices
is bounded. Each node is a tuple 〈s, t, begin, end〉 in which
begin and end are tuples 〈S, I, E〉. The supply graph and the
task graph are bounded by denition. The parameter S is a
positive number bounded by the maximum duration of the
supply nodes. The I parameter is a positive number bounded
by the killing parameter. The parameter E is a positive number
bounded maximum duration of the executions vertices of the
task graph. All the parameters are bounded then the number of
nodes is also bounded. Consequently, the size of the behavior
graph is bounded, and the procedure ends.
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V. EXPERIMENTAL RESULTS

A. Example

To illustrate the analysis method proposed in this article
let’s consider an example of three tasks. The three tasks are
executed on the same processor and ordered by priority.

1) Tasks set: The rst task is a simple periodic task with
a rst release date equals to zero, C = 1 and D = P = 10.
The second task has the same pattern as the one presented in
gure 6 with the following parameters values: e1: c1 = 1 and
d1 = 2, e2: c2 = 5 and d2 = 7, w3: δ3 = 5, w4: δ4 = 10. The
third task is a periodic task with release date equals to zero,
c1 = 4, d1 = 10 and δ2 = 10

2) Analysis: First task: The analysis is made task by task:
for each task, the corresponding supply graph is given, and
the result is the behavior graph and/or traces that highlight a
specic property.

a) Supply graph: The supply graph of the rst task is
the empty supply graph in which the processor is never used.

b) Behavior graph: As a result of the analysis of the rst
task, its behavior graph is computed. Because the supply graph
is empty the behavior graph is very similar to the GGTM.
Figure 7 shows the behavior graph.

run : (+∞, 0, 1) → (+∞, 1, 0) idle : (+∞, 1, 0) → (+∞, 10, 0)

Fig. 7. Behavior graph of the rst task

3) Analysis: Second task:
a) Supply graph: The supply graph of the second task is

computed based on the behavior graph of the rst task. Thus,
it only contains two vertices: at rst, the processor is loaded
for 1 time unit and then the processor is idle for 9 time units.
These two vertices are repeated indenitely.

b) Behavior graph: The behavior graph of the second
task is made of 15 vertices as presented in gure 8:

• the vertices in blue and noted Pxxx represents the pre-
emption of the second task by higher priorities tasks;

• the vertices in green and noted Rxxx represents the
moments in which the second task is running;

• the vertices in white and noted Ixxx represents the
vertices in which the processor is idle:

• the vertices in gray and noted Lxxx represents the mo-
ments in which the higher priority tasks are executed
while the second task is waiting.

P1 : (1, 0, 1) → (0, 1, 1) R2 : (9, 1, 1) → (8, 2, 0) R12 : (8, 2, 5) → (3, 7, 0)

I3 : (8, 2, 0) → (5, 5, 0) R4 : (5, 0, 1) → (4, 1, 0) I7 : (9, 6, 0) → (9, 6, 0)

R8 : (4, 1, 5) → (0, 5, 1) I11 : (8, 7, 0) → (5, 10, 0) L6 : (1, 5, 0) → (0, 6, 0)

P9 : (1, 5, 1) → (0, 6, 1) R10 : (9, 6, 1) → (8, 7, 0) I5 : (4, 1, 0) → (0, 5, 0)

P15 : (9, 11, 0) → (9, 11, 0) L14 : (1, 10, 0) → (0, 11, 0) I13 : (3, 7, 0) → (0, 10, 0)

Fig. 8. Behavior graph of the second task.

c) Properties: The behavior graph of the second task
shows that there is no deadline miss, thus the second task is
schedulable. It also shows the preemption and other informa-
tion about task real-time behavior.

4) Analysis: Third task:
a) Supply graph: The supply graph of the third task is

based on the behavior graph of the second task but compacted.
Figure 9 shows the supply graph.

1 1 5

3 1

6 3

1

4

1 3

Fig. 9. Supply graph of the third task

For example, the vertices R8, P9 and R10 are merged
because they represent three consecutive processor utilization
with a total duration of 6. The vertices I7 and P15 are removed
because they are not consuming time.

b) Properties: Due to the number of vertices, the behav-
ior graph won’t be displayed here. But our analysis tool also
provides the minimal (in length) traces for each property. In
this case, the task is not schedulable and the minimal trace
that leads to a deadline miss composed of ve vertices:

1) 〈L0, e1, (1, 0, 4) → (0, 1, 4)〉: at rst the processor is
used by the higher priority tasks for 1 time unit;

2) 〈L1, e1, (1, 1, 4) → (0, 2, 4)〉: then the processor is
loaded for 1 other time unit;

3) 〈L3, e1, (5, 2, 4) → (0, 7, 4)〉: the processor is loaded for
5 time units; at this point the task is unschedulable.

4) 〈I4, e1, (3, 7, 4) → (0, 10, 1)〉: the task is running the
vertex e1 for 3 time units

5) 〈L5, e1, (1, 10, 1) → (0, 11, 1)〉: nally the task is pre-
empted for 1 time unit and the task misses its deadline
for the vertex e1.

B. Computation Time Benchmark

In the following, we discuss the computation time of the
analysis we proposed.

a) Tasks generation: We have previously demonstrated
the expressiveness of our model and its schedulability analysis
in the previous sections thus, we decided to generate periodic
tasks because generating a GGTM for many tasks is a very
complex problem. Indeed, most of the generated complex
tasks system may be trivially not schedulable and then the
computation won’t increase with the number of the tasks.
Moreover, the use of periodic tasks provides a clearer insight
into the complexity of the system. Thus, We decided to
generate periodic tasks and increase the number of tasks to
increase the computation of our method. The task period is
randomly chosen, its computation time is randomly picked
between 0 to Ti/n with n the number of tasks of the system.
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Thus, the task load is homogeneously dispatched between the
different tasks and the load of the system stays relatively small.
Each task has a deadline equals to its period. For each task
number n a hundred simulation is run.

b) Results: The benchmark is executed on an i7-
8850H@ 2.60GHz. Figure 10 shows that the computation
increase according to the number of the tasks but even for
many tasks the computation time is just a few seconds. Let’s
remind that the computation time is for one processor and
increases linearly with the number of processors.
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Fig. 10. Computation time benchmark.

As mentioned previously, we used this method on different
systems and the computation time was never an issue; rst,
because of the number of tasks by processor is quite small.
Moreover, task time parameters are correlated.

c) Discussion: The previous benchmark highlight the
efciency of the analysis method. However, it is also inter-
esting to notice the difference between the complexity and
the computation time. Indeed, the complexity relies on the
worst-case scenario in which : during the computation of the
behavior graph each time unit leads to a new vertex, each
behavior graph and supply graph are completely connected,
the size of the supply graph is the size of the behavior graph,
and the compact algorithm does not affect. In practice, the
compact algorithm and the links between timings restrain the
size of the behavior and supply graph.

VI. CONCLUSIONS

In this paper, we introduce the Generalized Graph Real-
Time Task Model. Then, we compare its expressiveness with
the state of the art and demonstrated that the proposed model
is more general than most of the previous ones, and does not
subsume by the other ones. We also present an exact analysis
method, and shows that it can scale to large real-time systems.

Different extensions are under investigation. First, we are
exploring the possibility to check different temporal logic
formulas (LTL/CTL) on the behavior graph obtained by the
analysis. The main objective is to checks complex properties
about the real-time behavior of the tasks.

Another perspective to be considered is to translate part
of the algorithm semantic on the task graph. The intent here
is to add branching conditions described by rst-order logic

formulas. Indeed, in our model, all the next arcs are allowed
but in practice, the transitions are ordered and guarded. This
enhancement may remove unreachable traces.
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