
Degenerate Fault Attacks on Elliptic Curve
Parameters in OpenSSL

Akira Takahashi
Department of Computer Science, DIGIT

Aarhus University
Aarhus, Denmark

takahashi@cs.au.dk

Mehdi Tibouchi
NTT Secure Platform Laboratories

Tokyo, Japan

mehdi.tibouchi.br@hco.ntt.co.jp

Abstract—In this paper, we describe several practically ex-
ploitable fault attacks against OpenSSL’s implementation of
elliptic curve cryptography, related to the singular curve point
decompression attacks of Blömer and Günther (FDTC2015) and
the degenerate curve attacks of Neves and Tibouchi (PKC 2016).

In particular, we show that OpenSSL allows to construct EC
key files containing explicit curve parameters with a compressed
base point. A simple single fault injection upon loading such a
file yields a full key recovery attack when the key file is used for
signing with ECDSA, and a complete recovery of the plaintext
when the file is used for encryption using an algorithm like
ECIES. The attack is especially devastating against curves with
j-invariant equal to 0 such as the Bitcoin curve secp256k1, for
which key recovery reduces to a single division in the base field.

Additionally, we apply the present fault attack technique to
OpenSSL’s implementation of ECDH, by combining it with Neves
and Tibouchi’s degenerate curve attack. This version of the
attack applies to usual named curve parameters with nonzero
j-invariant, such as P192 and P256. Although it is typically more
computationally expensive than the one against signatures and
encryption, and requires multiple faulty outputs from the server,
it can recover the entire static secret key of the server even in
the presence of point validation.

These various attacks can be mounted with only a single
instruction skipping fault, and therefore can be easily injected
using low-cost voltage glitches on embedded devices. We validated
them in practice using concrete fault injection experiments on
a Rapsberry Pi single board computer running the up to date
OpenSSL command line tools—a setting where the threat of fault
attacks is quite significant.

Index Terms—OpenSSL, Invalid curve attack, Fault attack,
Embedded security, Singular curve, Supersingular curve

I. INTRODUCTION

A. Physical Attacks against Cryptographic Devices

As the number of devices holding sensitive information is

on the rise, it is essential to actively research and develop

cryptographic schemes that remain secure even when deployed

in real life conditions; more concretely, we have to take into

account the existence of physical attacks against the devices

that execute cryptographic algorithms. Physical attacks are

very powerful tools that allow adversaries to deviate from

traditional security models and ultimately bypass computation-

ally hard problems. One can roughly classify physical attacks

into two types. The first one, side-channel analysis, consists of

passive attacks that attempt to recover secret information from

the physical leakage of cryptographic computations, such as

the time it takes to carry out certain operations, or the power

consumption of the device as the computation is performed.

The second one, fault analysis, consists of even stronger, active

attacks that seek to learn secrets by deliberately tampering

with the device to cause malfunction or otherwise unexpected

behavior, by modifying the voltage of the power source at

carefully chosen points in time, subjecting the device to sudden

changes of temperature, etc. [1]. These types of attacks have

been experimentally shown to be feasible in realistic settings,

and do, in fact, affect the security of numerous cryptographic

primitives and protocols in the real world. As the advent

of Internet of Things (IoT) is likely to make this threat

even more pressing, evaluating the power of physical attacks

and proposing appropriate countermeasures before deploying

new cryptographic schemes is crucial in preventing sensitive

information from getting into the wrong hands. [2]

B. Implementation Attacks against ECC

Elliptic curve cryptography (ECC) is frequently used nowa-

days because it offers relatively short key length to achieve

good security strength. Elliptic curve-based cryptographic

schemes typically operate in the group of rational points

of an elliptic curve over a finite field, and their security

relies on the hardness of the elliptic curve discrete logarithm

(ECDLP) or related problems. Possibly the best-known such

schemes are the Elliptic Curve Digital Signature Algorithm

(ECDSA) [3], the Elliptic Curve Diffie–Hellman key exchange

(ECDH) [4], and the Elliptic Curve Integrated Encryption

Scheme (ECIES) [5]. Since ECC schemes are standardized

and adopted in many cryptographic libraries like OpenSSL [6],

their security against physical attacks, such as fault attacks [7],

is of prime concern.

Biehl et al. [8] addressed the first fault attacks against ECC,

and various related techniques have been developed in the

literature since. One of the most recently discovered attacks,

which we extend in this work, is the singular curve point
decompression (SCPD) attack by Blömer and Günther [9].

The idea of the SCPD attack is quite simple but its effect

is highly destructive: if the base point of an elliptic curve

(in short Weierstrass form) with j-invariant 0 is computed

from the compressed form before its use in scalar multipli-

cation, one can completely bypass the ECDLP by injecting

371

2019 IEEE European Symposium on Security and Privacy (EuroS&P)

© 2019, Akira Takahashi. Under license to IEEE.
DOI 10.1109/EuroSP.2019.00035

a single instruction skipping fault, and consequently recover

the secret scalar. The recovery technique is based on the

fact that, after skipping a suitable instruction during point

decompression, the perturbed decompressed base point will

lie on a singular cubic curve of additive type; in other words,

when carried out on that singular curve, the group operations

correspond to a group structure isomorphic to F
+
p , the additive

group of the base field. Blömer and Günther mounted the

SCPD attack on an AVR microcontroller running the Boneh–

Lynn–Shacham (BLS) signature scheme [10] instantiated with

Barreto–Naehrig (BN) curves [11], and successfully recovered

the secret key. However, that signature scheme is not nearly

as commonly used as a standardized scheme like ECDSA.

In addition, the simple, traditional countermeasure of point

validation thwarts the SCPD attack and the authors had to

inject an additional fault to eliminate it, which assumes a

very powerful adversary and would be much harder to achieve

against more complex targets such as Linux-based embedded

systems. Therefore, the practical impact of the attack appeared

limited.

As a less invasive implementation attack than fault attacks,

Antipa et al. [12] initiated the study of the invalid curve
attacks. These types of attacks usually exploit careless im-

plementations that do not check if the input point satisfies the

predefined curve equation. The adversary’s basic strategy with

invalid curve attacks can be summarized as follows: 1) pick

some malicious point P̃ on a weak curve Ẽ where recovering

partial information of the secret scalar is computationally

easy, 2) send P̃ to the scalar multiplication algorithm, and

3) compute partial bits of the secret scalar k by examining

an invalid output [k]P̃ . The original invalid curve attacks

only targeted curves in short Weierstrass form, and were only

applicable against the ECC schemes using point arithmetic that

is independent of at least one of the curve parameters, which

is not the case for some newer curve models such as high-

profile (twisted) Edwards curves [13]. However, Neves and

Tibouchi [14] recently presented an extension of the invalid

curve attack, which they call degenerate curve attacks, and

showed that similar attacks can even be exploitable against

other curve models including Edwards curves. They also

described a Pohlig–Hellman-like technique [15] to mount

the attack in a situation where the adversary cannot obtain

the raw result of scalar multiplication, but can only get the

hash of it. Though such a setting does appear in practical

instances of ECDH, their targeted model fails to capture the

significant property of real-world protocols: in most ECDH

implementations, a shared secret key is not derived from the

resulting curve point itself, but from its x-coordinate. Hence

their approach cannot be directly applied to widely deployed

ECDH implementations.

C. Our Contributions

In this paper, we identify fault attack vulnerabilities in

OpenSSL’s elliptic curve cryptographic algorithms. Our main

contributions can be summarized as follows:

• As our first contribution, we present a variant of the

SCPD attack and its direct application to OpenSSL’s

elliptic curve-based digital signature and public key en-

cryption. In particular, we show that OpenSSL allows to

construct EC key files containing curve parameters with

a compressed base point. A simple single fault injection

upon loading such a file yields a full key recovery attack

when the key file is used for signing with ECDSA, and a

complete recovery of the plaintext when the file is used

for encryption using SM2-ECIES. The attack is especially

devastating against curves with j-invariant equal to 0 such

as secp k series standardized by SECG [16], for which

the recovery reduces to a single division in the base field.

Our variant of the SCPD attack injects a fault into the

parameter initialization phase of elliptic curves, while

the original method by Blömer and Günther targets point

decompression algorithm itself. We stress that the present

method strengthens the original because ours does not

require an expensive double fault to circumvent the point

validity check, which is a widely accepted countermea-

sure against most invalid curve attacks nowadays.

We also mention that recovering the secret scalar k in

our setting is actually slightly more involved, because

OpenSSL (and many other cryptographic libraries) relies

on a scalar multiplication algorithm that first rewrites the

scalar to fix its bit-length (as a countermeasure against

Brumley and Tuveri’s remote timing attacks [17]), and

as a result, the actual scalar used in the algorithm is

congruent to k modulo n, but not equal as an integer. We

describe a simple technique to deal with this situation.

• Additionally, we apply the present fault attack technique

to OpenSSL’s implementation of ECDH, by combining it

with Neves and Tibouchi’s degenerate curve attack. The

attack in this part targets usual named curve parameters

with nonzero j-invariant. In an ECDH key exchange, as

opposed to the case of ECDSA and SM2-ECIES, the raw

result of scalar multiplication on a degenerate curve is

usually not available to an adversary; all she could obtain

is some ciphertext generated with a shared secret key

derived from the resulting point, and therefore our variant

of the SCPD attack cannot be easily exploited against

it. To overcome this limitation, we employ a Pohlig–

Hellman-like technique by Neves and Tibouchi. We first

modify their ECDH model to properly capture more

realistic protocols, and accordingly describe our version

of Pohlig–Hellman-like attack. The attack is typically

more computationally expensive than the one against

signature and encryption schemes, and requires multiple

faulty outputs from the server, but can recover the entire

static secret key even in the presence of an EC public key
validation function.

• We experimentally verified that the above attacks reliably

work in a practical situation where physical attacks would

be of paramount concern; in particular, we make use

of O’Flynn’s low-cost voltage glitch fault [18] to mount

372

the attacks on the following three specific command line

operations of OpenSSL when executed in widely used

Raspberry Pi single board computer [19]:

– ECDSA signature generation with dgst -sign com-

mand,

– SM2-ECIES encryption with pkeyutl -encrypt
command, and

– ECDH key exchange with pkeyutl -derive com-

mand.

To the best of our knowledge, this is the first work that

presents experimental results on practically exploitable

fault attacks against cryptographic algorithms executed

in Raspberry Pi.

Organization of the paper: The remainder of the pa-

per is organized as follows. Section II summarizes relevant

mathematical facts, cryptographic schemes, and the SCPD

attack by Blömer and Günther. Section III presents our fault

injection technique against OpenSSL’s ECDSA and SM2-

ECIES implementation as well as the experimental results

of the attack on OpenSSL command line tools installed in

Raspberry Pi. Section IV extends the present attack to ECDH

key exchange in OpenSSL. We finally give concluding remarks

in Section VI.

D. Related Works

An invalid curve attack against curves in Weierstrass form

was first developed by Antipa et al. [12], and the subse-

quent works extended it to hyperelliptic curves [20], GLS

setting [21] and twisted Edwards curves [14]. Fault attack

techniques have been occasionally exploited to force an EC

scalar multiplication algorithm to operate on weak curves [22],

[23], [24], [25], [9] since the seminal work of Biehl et al. [8]

Brumley et al. [26] discovered a software bug attack on

TLS-ECDH implementation of OpenSSL. Jager et al. [27] also

practically applied invalid curve attacks to several real-world

implementations of TLS-ECDH. Valenta et al. [28] recently

performed a broad survey of ECC schemes in the wild and

confirmed their resistance to well-known invalid curve attacks.

Side-channel leaks from (EC)DSA in OpenSSL have been

cryptanalyzed by a number of papers such as [29], [17], [30],

[31], [32]. Tuveri et al. [33] recently carried out various types

of side-channel analysis against SM2 cipher suite in the pre-

release version of OpenSSL 1.1.1, and accordingly proposed

the patchset to fix possible vulnerabilities.

Various techniques of fault analysis and their countermea-

sure are surveyed in [1], [34], and detailed analysis of clock

or voltage glitch fault against ARM processor can be found

in Korak and Hoefler’s work [35]. Several papers such as

Barenghi et al. [36] and Timmers et al. [37], [38] addressed

fault analysis of general purpose CPU, though none of them

were targeting elliptic curve cryptography. O’Flynn [18], [39]

demonstrated that it is possible to cause malfunction in a

simple for-loop program executed in Raspberry Pi, by injecting

a voltage glitch fault from the ChipWhisperer side-channel and

glitch attack evaluation board [40].

II. PRELIMINARIES

A. Elliptic Curve Defined over Prime Fields

Let p be a prime satisfying p > 3. A short Weierstrass form

of an elliptic curve defined over Fp is given by the following

affine equation:

E/Fp : y2 = x3 +Ax+B

where the coefficient A and B are in Fp. The Fp-rational points

of E, including the point at infinity O = (0 : 1 : 0), form an

abelian group under the following operations:

−P := (xP ,−yP)
P +Q :=

(
λ2 − xP − xQ, λ(xP − xP+Q)− yP

)
λ :=

{
yP−yQ

xP−xQ
if Q �= ±P

3x2
P+A
2yP

if Q = P

where P = (xP , yP), Q = (xQ, yQ) and P + Q =
(xP+Q, yP+Q), respectively.

Throughout the entire paper, we assume that the stan-

dardized prime curves are defined by the following domain
parameters D:

D := (p,A,B, P, n, c)

where P ∈ E(Fp) is a base point of prime order n, and c =
#E(Fp)/n is the curve cofactor.

B. Singular Curve

We now describe one of the degenerate cases of the group

low defined in the previous subsection: the case of a singular
curve. For more comprehensive and general treatment, see

standard textbooks, e.g. [41] and [42]. A point on a curve

is said to be singular if the partial derivatives of the defining

equation of E simultaneously vanish at that point. The curve

is said to be singular if there exists at least one singular point

on it. Now we consider the following cuspidal singular curve

Ẽ defined by a short Weierstrass equation with A = B = 0:

Ẽ : y2 = x3

where (0, 0) is the only singular point. The following fact

plays a crucial role in the SCPD attack in Section II-G and

our variant in Section III.

Theorem 1. Let F+
p be the additive group of Fp and Ẽ(Fp) be

the set of nonsingular Fp-rational points on Ẽ including the
point at infinity O = (0 : 1 : 0). Then the map φ : Ẽ(Fp) →
F
+
p with

(x, y) �→ x/y

O �→ 0,

is a group isomorphism between Ẽ(Fp) and F
+
p . Its inverse

φ−1 : F+
p → Ẽ(Fp) is

t �→ (
1/t2, 1/t3

)
0 �→ O.

373

C. Supersingular Elliptic Curve

The other degenerate case we consider in this paper is that of

supersingular elliptic curves, which can be defined as follows:

Definition 1 (Supersingular curve). Let E be an elliptic curve

defined over Fp, where q is a power of the prime p. Then E
is called supersingular when #E(Fq) ≡ 1 (mod p).

For q = p and p ≥ 5, that condition is simply equivalent to

#E(Fp) = p+1 by the Hasse bound. Our attack in Section IV

relies on the following claim:

Proposition 1. Suppose E′ is an elliptic curve defined over
Fp and defined by the equation

E′ : y2 = x3 +Ax

where A �= 0. If p ≡ 3 mod 4, then E′ is supersingular.

Proof. We denote the quadratic residues of Fp by QR and

the quadratic non-residue by QNR. Since p ≡ 3 mod 4,

−1 = p−1 ∈ QNR. Hence, if f(x) := x3+Ax ∈ QR, then

f(−x) = −(x3 + Ax) = −f(x) ∈ QNR, and vice versa; in

other words, if f(x) �= 0 then exactly one of {f(x), f(−x)} is

in QR. Let S be the set of x ∈ Fp such that f(x) ∈ QR and

W be the set of roots of f(x). Because for any x ∈ Fp \W
either x ∈ S or −x ∈ S holds, we obtain

#((Fp \W) ∩ S) =
#(Fp \W)

2
.

Finally, the cardinality of Fp-rational points of E′ including

the point at infinity can be counted as follows:

#E′(Fp) = 2×#((Fp \W) ∩ S) + #W + 1 = p+ 1

which implies E′ is supersingular.

An important property of supersingular curves is the fact

that their group of points maps efficiently into a multiplicative

group: this observation is the basis of the MOV attack of

Menezes–Okamoto–Vanstone [43].

Proposition 2 (MOV attack). Let E be a supersingular curve
over Fp, p ≥ 5. Then there exists an injective, efficiently
computable group homomorphism E(Fp) → F

∗
p2 (which can

be expressed in terms of the Weil pairing on E). In particular,
the discrete logarithm problem on E is no harder than the
discrete logarithm problem in the multiplicative group F

∗
p2 .

D. ECDSA

Algorithm 1 specifies the signature generation algorithm

of ECDSA. We assume that an approved cryptographic hash

function H : {0, 1}∗ → (Z/nZ)∗ is predefined.

E. SM2-ECIES

SM2 is a cipher suite recommended by Chinese Commer-

cial Cryptography Administration Office [45] and has been

recently supported by OpenSSL version 1.1.1 [46]. Its public

key encryption algorithm, which we refer to as SM2-ECIES,

is essentially a slightly modified version the ECIES ISO

standard [5]. Algorithm 2 specifies the encryption algorithm

Algorithm 1 ECDSA signature generation [44]

Input: d ∈ Z/nZ: secret key, Q = [d]P : public key, M ∈
{0, 1}∗: message to be signed, D: domain parameters

Output: a valid signature (r, s)
1: k←$ (Z/nZ)∗

2: (xk, yk)← [k]P
3: r ← xk mod n
4: h← H(M)
5: s← (h+ rd)/k mod n
6: return (r, s)

Algorithm 2 SM2-ECIES encryption [45]

Input: Q ∈ E(Fp): public key, M ∈ {0, 1}∗: message to be

encrypted, D: domain parameters

Output: ciphertext (C1, C2, C3)
1: k←$ (Z/nZ)∗

2: C1 = (xk, yk)← [k]P
3: (x′, y′)← [k]Q
4: K ← KDF(x′||y′, |M |)
5: C2 ←M ⊕K
6: C3 ← H(x′||y′||M)
7: return (C1, C2, C3)

of SM2-ECIES. Here |M | is the bit-length of a message M ,

and KDF is a key derivation function which derives a shared

secret key K satisfying |K| = |M |.

F. Point Compression

Let P = (x, y) ∈ E(Fp) be a curve point. Since y =
+
√
x3 +Ax+B or y = −√x3 +Ax+B, one can recover

the y-coordinate if its sign (i.e. whether y is even or odd

in Fp) is stored alongside the x-coordinate; this technique is

known as point compression. In the hexadecimal format of the

compressed point, the leftmost octet contains the information

of y-coordinate: the octet 0x02 (resp. 0x03) indicates that

the y is even (resp. odd). Moreover, 0x04 indicates that the

octet string represents an uncompressed point.

For instance, the secp256k1 curve parameter standardized

by SECG in [16, §2] has the following base point in an

uncompressed 65-byte hexadecimal string:

04 79BE667E F9DCBBAC 55A06295 CE870B07

029BFCDB 2DCE28D9 59F2815B 16F81798

483ADA77 26A3C465 5DA4FBFC 0E1108A8

FD17B448 A6855419 9C47D08F FB10D4B8

whereas the compressed form of the above is represented as

a 33-byte string as follows:

02 79BE667E F9DCBBAC 55A06295 CE870B07

029BFCDB 2DCE28D9 59F2815B 16F81798

Note that the information of y-coordinate is compressed to

the leftmost octet 02 while x-coordinate remains the same.

374

Algorithm 3 Point Decompression Algorithm [47, §2.3.4]

Input: x ∈ Fp, ȳ ∈ {0x02,0x03}, A, B, p
Output: P = (x, y): uncompressed base point satisfying

y2 = x3 +Ax+B mod p
1: y ← x2

2: y ← y +A � A = 0 for secp k series

3: y ← y × x
4: y ← y +B�
5: y ← √y
6: if ȳ = 0x02 then
7: b← 0
8: else
9: b← 1

10: end if
11: if y �≡ b mod 2 then
12: y ← p− y
13: end if
14: return (x, y)

G. Singular Curve Point Decompression Attack

We now describe Blömer and Günther’s SCPD attack [9]

against elliptic curves of short Weierstrass form.

Attack model: We suppose that the compressed base point

P = (x, y) ∈ E(Fp) is stored in a cryptographic device and

assume that the scalar multiplication algorithm receives the

decompressed base point as input. The fault attacker is able to

modify the base point by injecting a suitably synchronized

fault upon point decompression algorithm that leads to an

incorrectly reconstructed y-coodinate of P .

Instruction skipping fault on base point decompression:
Algorithm 3 is the point decompression routine specified by

SECG [47, §2.3.4]. If A = 0 (as the BN-curve and secp k

series have) and a single instruction skipping fault is injected

at line 4, then the resulting y-coordinate, denoted by ỹ, is

incorrectly reconstructed so that the following holds:

ỹ2 = x3 mod p.

Hence the perturbed faulty base point is reliably on the

singular curve Ẽ : y2 = x3 as depicted in Fig. 1. Let

P̃ = (x, ỹ) be a perturbed base point and k be a secret scalar.

Then using the isomorphism φ in Theorem 1

φ([k]P̃) = φ(P̃ + . . .+ P̃︸ ︷︷ ︸
k

)

= φ(P̃) + . . .+ φ(P̃)

= kx/ỹ.

By applying the inverse φ−1, we obtain

[k]P̃ =

(
ỹ2

k2x2
,

ỹ3

k3x3

)
=

(
x

k2
,
ỹ

k3

)
.

Fig. 1: Pictorial overview of the Singular Curve Point Decom-

pression Attack when A = 0

�

x

y

E : y2 = x3 +B

P

x

y

Ẽ : y2 = x3

P̃

Hence, assuming that the x-coordinate of [k]P̃ , denoted by

x̃k, is available to an attacker, he can recover the secret scalar

k (up to sign) by simply computing a division and a square

root modulo p:

k ≡ ±
√

x

x̃k
(mod p).

Note, however, that the attack fails if x3+Ax is a quadratic

non-residue in the base field Fp, because the square root

operation at line 5 typically fails in that case (either because

the square root algorithm fails on nonquadratic residues, or

because the resulting point fails point validation). This implies

that, for example, secp192k1 and secp256k1 are susceptible to

the SCPD attack, but secp224k1 is not.

III. ATTACKING ECDSA AND SM2-ECIES IN OPENSSL

OpenSSL allows users to generate elliptic curve key files

with explicit curve parameter embedded into them (as opposed

to the use of a limited set of named curves). The construction

of such key file is in fact mentioned in the documentation

as a way of achieving backwards compatibility with versions

of OpenSSL supporting fewer named curves. Moreover, the

curve parameters in such a key file can optionally store the

curve base point in compressed form.

In this section, we show that the use of such key files can

be easily exploited by a fault attacker to mount a variant of

the SCPD attack described above. Our variant achieves a full

key recovery attack when the key file is used for signing with

ECDSA, and a complete recovery of the plaintext when the file

is used for encryption using ECIES in OpenSSL. Both attacks

were practically validated using concrete fault experiments

against a RaspberryPi.

A. OpenSSL EC Key Files

We first present a concrete situation where OpenSSL gener-

ates an EC key pair explicitly containing the domain parame-

ters with a compressed base point. In what follows, we assume

375

the version 1.1.1 [48], which is the latest release of OpenSSL

as of November 2018. Complete command line operations in

this part are found in Appendix A Fig. 8. In OpenSSL, EC key

operations are mainly dealt with two command line interfaces:

ecparam and ec. While the former is used to generate a

secret key, the latter is used to derive an corresponding public

key. By default ecparam only outputs a secret key and the

name of the domain parameter specified by -name option.

However, the command line tool also allows a user to explicitly
store the details of parameters into a key file by adding

-param_enc explicit option. This option is supported

mainly for backwards compatibility purposes; for example, not

all the target systems know the details of the named curve

(such as brainpoolP512t1 for the version below 1.0.2) and a

user might want to explicitly pass the full parameter details

to others. This use case is in fact described in the official

wiki page [49] of OpenSSL. Finally, by adding -conv_form
compressed option, one can obtain a key file including a

compressed base point as part of the parameters. Note that

this option also affects the form of a public key point. Fig. 2

displays an example output of the above operations. In order to

derive the public key in a compressed form including the same

parameter details, one can simply invoke ec command on a

generated secret key with -pubout option. Alternatively, one

can derive a key pair of the same form by first creating an EC

parameter file, as shown in Fig. 8 of Appendix A.

The signing and encrypting operations using an EC key can

be achieved by dgst and pkeyutl1, respectively. When

these commands are invoked on key files generated as above,

OpenSSL’s EC_GROUP_new_from_ecparameters()
function internally constructs the domain parameters

D = (p,A,B, P, n, c) as EC_GROUP structure, which

essentially works as follows:

(i) Convert the raw byte arrays of A, B, and p into BIGNUM
structures, by calling BN_bin2bn() utility function.

(ii) Initialize EC_GROUP structure with A,B and p as inputs.

(iii) Parse the compressed base point P̄ = (x, ȳ) and con-

vert the raw byte array of x-coordinate into a BIGNUM
structure.

(iv) Call Algorithm 3 on x, ȳ, A,B, and p to initialize the

uncompressed base point P = (x, y).
(v) Perform the validity check of P i.e. check if y2 = x3 +

Ax+B mod p holds. Return error if the check fails.

(vi) Convert the raw byte arrays of the group order n and the

curve cofactor c into BIGNUM structures.

(vii) Store P = (x, y), n, and c of BIGNUM forms into

EC_GROUP structure.

Additionally, when the compressed public key Q̄ =
(xQ, ȳQ) is loaded, o2i_ECPublicKey() function per-

1We remark that the targeted OpenSSL version in this work does not
support the use of SM2 in command line tools as is, though the codebase
for SM2 has been fully implemented; however, OpenSSL Management
Committee plans to add this feature in a post 1.1.1 release [50] and it can
be simply achieved by calling EVP_PKEY_set_alias_type() right after
loading a key file inside pkeyutl.

Fig. 2: Generation of EC key files in OpenSSL, including a

compressed base point

$ openssl ecparam -out sk.pem -name secp256k1\
-genkey -conv_form compressed -param_enc explicit

$ openssl ec -in sk.pem -noout -text

read EC key

Private-Key: (256 bit)

priv:

08:45:c9:52:d8:b9:b3:3b:c3:c5:a2:ef:2d:a9:46:

32:53:f8:a8:75:68:6d:22:31:b4:d9:fc:de:f5:f3:

b4:f0

pub:

02:94:78:28:99:e4:b3:06:53:0d:d3:43:a8:29:12:

1b:db:5b:72:b0:33:f0:76:88:d9:e8:4e:c5:c6:85:

66:26:4d

Field Type: prime-field

Prime:

00:ff:ff:ff:ff:ff:ff:ff:ff:ff:ff:ff:ff:ff:ff:

ff:ff:ff:ff:ff:ff:ff:ff:ff:ff:ff:ff:ff:fe:ff:

ff:fc:2f

A: 0

B: 7 (0x7)

Generator (compressed):

02:79:be:66:7e:f9:dc:bb:ac:55:a0:62:95:ce:87:

0b:07:02:9b:fc:db:2d:ce:28:d9:59:f2:81:5b:16:

f8:17:98

Order:

00:ff:ff:ff:ff:ff:ff:ff:ff:ff:ff:ff:ff:ff:ff:

ff:fe:ba:ae:dc:e6:af:48:a0:3b:bf:d2:5e:8c:d0:

36:41:41

Cofactor: 1 (0x1)

forms the same operations in (iii) – (v) to initialize EC_KEY
structure using the domain parameters constructed as above.

B. Our Attack

We now describe our variant of the SCPD attack that can

be easily achieved in practice against OpenSSL whenever it

loads an EC key file including a base point and a public key

in compressed forms. For simplicity, we focus on the attack

against curves with j-invariant equal to 0 (i.e., A = 0), but the

attack also generalizes to the curves with nonzero j-invariant.

Indeed, in that case, the faulty curve becomes supersingu-

lar according to Proposition 1, and hence the MOV attack

of Proposition 2 applies and reduces the discrete logarithm

problem on the curve to a discrete logarithm in the field F
∗
p2 ,

which is easy to solve for sizes of p up to at least 256 bits, and

tractable even up to 384 bits or so. Note that this supersingular

case is not covered by the paper of Blömer and Günther [9],

but our attack applies to it nonetheless.

Attack model: In our model, the attacker injects a single in-

struction skipping fault upon the invocation of BN_bin2bn()
on a parameter B in (i), and can force the resulting BIGNUM
form of B to be 0, instead of the correct value e.g. B = 7
for secp256k1. As a consequence, EC_GROUP structure is

incorrectly initialized, which causes the point decompres-

sion at (iv) to output the invalid uncompressed point P̃ =

376

(x, ỹ) such that ỹ2 = x3 holds. Note that the validity

check at (v) cannot detect the faulty uncompressed point

because the check function also receives the incorrect pa-

rameter B = 0, and therefore conceives of P̃ as a “valid”

point on the cuspidal singular curve Ẽ : y2 = x3. Fi-

nally, EC_GROUP_new_from_ecparameters() returns

the following domain parameters:

D̃ = (p, 0, 0, P̃ , n, c)

When the above faulty domain parameters are used for

scalar multiplication of P̃ , we also assume that the attacker

has access to the x-coordinate of [k]P̃ (just as the original

SCPD attack assumes).

Furthermore, the decompression of public keys is incor-

rectly performed using the domain parameters D̃; accordingly,

a faulty uncompressed public key Q̃ = (xQ, ỹQ) inevitably lies

on Ẽ as well.

Realization of the model: We now identify the specific

instruction in BN_bin2bn() which would cause the return

value to become 0 when skipped. Fig. 3 shows the source

code of BN_bin2bn() in OpenSSL 1.1.1. The function

takes a raw byte array and its length as inputs, and outputs

the corresponding BIGNUM object. Whenever BN_bin2bn()
tries to create the BIGNUM object for parameter B, it first

initializes the return value to 0 by calling BN_New() function

at line 9. Here we target the conditional branch instruction at

line 17; if that line is skipped, BN_bin2bn() immediately

aborts and returns the BIGNUM object containing the value 0.

The high-level description above omits a subtle practical

detail; in practice, a fault skips CPU instructions, which do

not necessarily match a specific line in C code, especially

when taking compiler optimizations into account. Hence the

target instructions to achieve the desired outcome would vary

depending on the actual machine code generated by the com-

piler. In Appendix B Fig. 10 we present the complete ARM

assembly code of BN_bin2bn() as generated by the built-in

GCC of the Raspberry Pi Linux distribution (with identical

compiler options, including full optimization, as specified

in the OpenSSL Makefile), and marked possible vulnerable

instructions with the comment “@SKIP!!”. In particular, we

can observe that the bne instruction at line 35 of Fig. 10

corresponds to line 17 of the original C code in Fig. 3; if

it is skipped, the execution proceeds straight up to line 42

of Fig. 10, which corresponds to the return at line 19 of

Fig. 3. Interestingly, we also found several other instructions

(at lines 30, 64, and 77) that would all cause the return value

to become 0 when skipped. For space reasons, we omit the

specific discussion of these other cases.

Recovery of the secret scalar k: In OpenSSL’s scalar

multiplication function ec_scalar_mul_ladder(), the

scalar k ∈ [1, n − 1] is first rewritten to be k̂ = k + λn
with λ ∈ {1, 2} such that the resulting scalar’s bit-length is

exactly 1-bit larger than that of the group order n, in order

to thwart a remote timing attack by Brumley and Tuveri [17].

Fig. 3: BN_bin2bn() conversion function from

crypto/bn/bn_lib.c in OpenSSL 1.1.1 [48]

1 BIGNUM *BN_bin2bn(const unsigned char *s, int len,
BIGNUM *ret)

2 {
3 unsigned int i, m;
4 unsigned int n;
5 BN_ULONG l;
6 BIGNUM *bn = NULL;
7
8 if (ret == NULL)
9 ret = bn = BN_new();

10 if (ret == NULL)
11 return NULL;
12 bn_check_top(ret);
13 /* Skip leading zero's. */
14 for (; len > 0 && *s == 0; s++, len--)
15 continue;
16 n = len;

17 if (n == 0)� {
18 ret->top = 0;
19 return ret;
20 }
21 i = ((n - 1) / BN_BYTES) + 1;
22 m = ((n - 1) % (BN_BYTES));
23 if (bn_wexpand(ret, (int)i) == NULL) {
24 BN_free(bn);
25 return NULL;
26 }
27 ret->top = i;
28 ret->neg = 0;
29 l = 0;
30 while (n--) {
31 l = (l << 8L) | *(s++);
32 if (m-- == 0) {
33 ret->d[--i]= l;
34 l = 0;
35 m = BN_BYTES - 1;
36 }
37 }
38 bn_correct_top(ret);
39 return ret;
40 }

More concretely, the function actually computes [k̂]P instead

of [k]P , where

k̂ =

{
k + 2n if �log(k + n)
 = �log n

k + n otherwise.

Though [k]P = [k̂]P indeed holds when the valid base

point is used, it is not the case anymore when the function

takes the invalid base point. Hence, recalling the discussion

in Section II-G the fault attacker can recover k̂ up to sign

from x̃k̂, where (x̃k̂, ỹk̂) = [k̂]P̃ , and eventually obtain four

candidates of k as follows:

k ∈
{
±
√

x

x̃k̂

− n (mod p),±
√

x

x̃k̂

− 2n (mod p)

}
.

Recovery of ECDSA secret key: Once the faulty ECDSA

signature pair (r̃ = x̃k̂ mod n, s̃ = (h + r̃d)/k mod n)
is obtained, we first compute candidates of the nonce k as

377

described above2. To complete the attack, it suffices to use

the well-known fact that the knowledge of k in an ECDSA

signature directly exposes the secret key d as:

d = (s̃k − h)/r̃ mod n.

Furthermore, although we have several candidates for the

correct k, it is easy to find the actual secret key: compute

all candidates for d, and keep the one that corresponds to the

public verification key.

Recovery of SM2-ECIES plaintext: In SM2-ECIES, an

attacker has access to both coordinates of [k̂]P̃ = (x̃k̂, ỹk̂)

as they are parts of the ciphertext, and can thus determine k̂
uniquely:

k̂ =
ỹx̃k̂

xỹk̂
.

Using the fact that the public key is also incorrectly decom-

pressed, i.e. Q̃ = (xQ, ỹQ) satisfies ỹQ
2
= x3

Q, the faulty seed

for KDF can be reconstructed as follows:

(x̃′, ỹ′) = [k̂]Q̃ =

(
xQ

k̂2
,
ỹQ

k̂3

)
.

Finally, the derived key K̃ = KDF(x̃′||ỹ′, |C2|) can be used

to obtain the plaintext M by computing K̃ ⊕ C2.

Comparison with the original SCPD attack: If the orig-

inal SCPD attack described in Section II-G was applied to

OpenSSL, it would target the point decompression routine

in (iv), and the faulty uncompressed base point P̃ can be

immediately detected by subsequent point validitation, since

the program still knows the genuine parameter B at this stage.

Accordingly, the original SCPD attack required a second,

suitably synchronized fault to skip the validity check function

as well. Such a double fault attack is quite challenging to

achieve in practice, especially on larger devices than the AVR

target of Blömer and Günther, due to process scheduling issues

and frequent interrupts. On the other hand, since our attack

incorrectly reconstructs the whole domain parameters at an

earlier stage, the validity check function does not know the

genuine value of B and eventually executes the assertion of

ỹ2
?
= x3, which of course always passes. As a result, our

variant can be realized using a simple, single fault injection.

We were able to validate it experimentally at low cost on

a large, multiprocess embedded system running a general

purpose operating system: namely, the Raspberry Pi running

Linux.

An important remark along those lines is that, since the

faulty generator obtained in our attack does not have the

expected order, the domain parameters on which the compu-

tations occur would not pass the full public key validation

specified in the SECG standard [47, §3.2.2.1]. Thus, if full
public key validation was always carried out by OpenSSL

2Though the attacker can only exploit the residue r̃ of the resulting x-
coordinate modulo n, we can ignore the probability that x̃k > n due to the
Hasse bound and therefore do not need to distinguish between r̃ and x̃k in
practice.

Fig. 4: Overview of the experimental setup

Fig. 5: The ChipWhisperer-Lite evaluation board, connected

to Raspberry Pi Model B.

upon loading a key file, our attack would also required a

double fault. However, although the key validation primi-

tive is indeed implemented in OpenSSL (in library function

EC_KEY_check_key()), it is not called by default, proba-

bly due to its substantial computational cost, and key recovery

is thus possible with a single fault.

C. Voltage Glitch Attack Experiment

We successfully carried out the above attacks on OpenSSL

1.1.1 installed in Raspberry Pi single board computer [19].

Experimental setup: Our device under test, Raspberry Pi

Model B, has the following features:

• ARM11-based 32-bit single core processor at 700 MHz

clock frequency

• Debian-based Linux OS called Raspbian Stretch

• GCC 6.3.0

The attack was conducted on the ChipWhisperer-Lite side-

channel and glitch attack evaluation board [40]. To inject

378

Fig. 6: Voltage trace of VCC glitch

a voltage glitch from ChipWhisperer into Raspberry Pi, we

soldered one side of wire onto the VCC side of a decoupling

capacitor, and the other side onto the SMA connector attached

to a GND test point of the device. All the command line opera-

tions are performed through SSH over the Ethernet connection,

as the Ethernet connection usually has good protection against

voltage transients. The above setup is suggested in O’Flynn’s

PhD thesis [39, §8.3.2] and the official ChipWhisperer tutorial

[51]. Figs. 4 and 5 show our experimental setup.

We then compiled OpenSSL 1.1.1 using its default Makefile

and the built-in GCC toolchain in Raspbian Stretch. The

OpenSSL source code was left untouched, except for the

addition of the following instructions:

• At the beginning of the BN_bin2bn() function:

WiringPi [52] library’s digitalWrite() function,

which allows us to transmit a trigger signal to ChipWhis-

perer through GPIO pins of the Raspberry Pi.

• After digitalWrite(): 30 nop instructions to further

facilitate the synchronization of the injected glitch.

• After the load_key() and load_pubkey()
functions in pkeyutl.c:

EVP_PKEY_set_alias_type(pkey,
SM2_EVP_PKEY_SM2) to enable the SM2-ECIES

encryption operation by default on the command line

tool (as opposed to just a library function).

The first two modifications were applied by first gen-

erating the assembly code (i.e. Fig. 10) of the original

crypto/bn/bn_lib.c, and then adding the corresponding

CPU instructions, so that all the other conditions remain the

same as in the original code.

Attack result: Before mounting the attack, we generated

an EC key pair over secp256k1 parameters containing com-

pressed points using the command line options introduced in

Section III-A. We then connected to Raspberry Pi through

SSH and invoked dgst and pkeyutl commands to generate

ECDSA signature and SM2-ECIES ciphertext, respectively.

The ChipWhisperer inserted a single voltage glitch with a

high-power MOSFET right after the trigger signal is transmit-

ted to it. After some trial and error, we found that enable-

TABLE I: Experimental results of voltage glitch fault attacks

against BN_bin2bn() function running in Raspberry Pi.

Success No effect Program crash OS crash Total

95 813 89 3 1000

only glitches repeated 127 times at offset 10 clock cycles

cause reliably reproducible misbehavior of Raspberry Pi, and

we were able to observe that the parameter B was set to

0 with the success probability ≈ 0.1. Fig. 6 shows a fault

waveform inserted into Raspberry Pi. Table I summarizes

the experimental results after 1000 trials of fault injection

against dgst command, where each entry corresponds to the

following situations:

• Success: B was successfully set to 0.

• No effect: the command output the valid signature with-

out any error.

• Program crash: the command crashed with some excep-

tion e.g. segmentation fault.

• OS crash: Linux OS crashed and completely stopped

responding.

As reported by O’Flynn, such voltage glitches rarely crashed

the OS and network connection either. Using the faulty out-

puts of dgst and pkeyutl, we successfully recovered the

ECDSA’s secret key and SM2-ECIES’s plaintext with the help

of SageMath [53].

Instruction skipping: Though we were able to observe

the desired faulty output, it does not necessarily imply that

either of the targeted instructions marked in Fig. 10 was

actually skipped. To be more specific, we cannot rule out

the possibility of other faulty effects such as a double-

execution of a certain instruction, as was reportedly achieved

by Korak and Hoefler [35] in the attack against ARM Cortex-

M0’s arithmetical instructions. For example, we can confirm

(by manually modifying the assembly code) that a double

execution of the subs instruction at line 26 would also lead

to the 0 return value. In our low-cost setup, it is difficult to

reliably synchronize a specific instruction-level glitch against

programs running in a non real-time OS like Linux, and we

thus remark that our experiment may not perfectly match the

attack model described in Section III-B. Nevertheless, the fact

that the same goal (of setting the value of B to zero) can be

achieved in multiple ways only reinforces the relevance of our

fault attack.

Attacking a fully unmodified library: One can ask whether

it would have been possible to attack a fully unmodified

version of OpenSSL using the same approach. We argue that

the answer is yes, although at the cost of a significantly

more expensive experimental setup (which would be a stretch

for typical academic budgets, but not for a less resource-

constrained attacker).

More precisely, note that the activation of SM2-ECIES on

the command line is simply a matter of convenience: the attack

could be mounted without it on code using the OpenSSL

379

library functions instead of the command line tools (and that

change is irrelevant to the ECDSA attack anyway). Therefore,

the only meaningful change that we carried out is the addition

of a manual GPIO trigger and subsequent nop instructions in

order to help synchronize the injection of the glitch.
This too can be entirely eliminated using well-known

automatic triggering techniques, such as sum-of-absolute-

differences (SAD) matching of waveforms acquired from side-

channel emanations of the device. The main challenge in

applying such techniques to our setting is the high CPU

frequency of the Raspberry Pi, which calls for high-resolution

capturing equipment and very fast response time triggering

hardware. Off-the-shelf solutions exist (e.g. Riscure’s icWaves

toolkit [54]), but they are far pricier than our $250 exper-

iment. A more advanced triggering technique has recently

been demonstrated using moderate resolution side-channel

traces, even against ARM-based, high-frequency targets run-

ning Linux [55]. The corresponding setup fits better within

academic budgets, but requires custom-made hardware and

specialized expertise, and hence was somewhat impractical for

our purposes.

IV. ATTACKING ECDH IN OPENSSL

In the previous section, we assumed that the result of the

scalar multiplication on a degenerate curve is available to

an adversary. In an ECDH key exchange, however, this is

usually not the case and the adversary can only get some

ciphertext generated with a shared secret key derived from

the resulting point. Hence, the adversary cannot apply any

algebraic operation to the resulting point, unlike the SCPD

attack. To overcome this limitation of the SCPD attack, we

employ a Pohlig–Hellman-like technique used in traditional

invalid curve attacks; specifically, the attack and its target

ECDH model in this section are inspired by Neves and

Tibouchi’s approach [14]. The attack below requires multiple

instances of the faulty output by the server, but we show that

it can be mounted in moderate time complexity and with only

small amount of queries.

A. Degenerate Fault Attack against Hashed ECDH

Target ECDH protocol: We consider the attack against

an abstract model of ephemeral-static ECDH key exchange

presented in Fig. 7, where Alice is a client holding her

ephemeral key pair and Bob is a server who loads his static

key pair as well as the domain parameters from locally stored

EC key file mykey.pem. This protocol is a variant of the

one considered in [14], with a few tweaks to increase its

practical relevance: our variant does carry out point validation

on the server side, and the session key is derived from the x-

coordinate of the common point computed by the two parties

(as opposed to the whole point), as is common in all practical

elliptic curve based key exchange protocols, including the TLS

handshake with elliptic curves. In Section IV-B, we show

how this abstract protocol can be concretely realized using

the OpenSSL command line tools, and attacked accordingly

using our fault injection techniques.

Fig. 7: EC Diffie–Hellman Protocol with hashed server output,

where ka and k are secret keys chosen from Z/nZ, Qa =
[ka]P and Q = [k]P are public keys, Da and D are domain

parameters, and x(P) denotes the x-coordinate of a point P .

Alice(ka, Qa,Da, Q,D) Bob(mykey.pem)

Qa,Da

Load k, Q and D
from mykey.pem;

Verify Q ∈ E(Fp);

Verify P ∈ E(Fp);

Verify Da = D;

Verify Qa ∈ E(Fp);

pms← x([ka]Q); pms← x([k]Qa);

K ← KDF(pms); K ← KDF(pms);

C ← Enc(K, “Hello”);

C

Target curve parameters: Our attack target is the server

whose domain parameters satisfy A �= 0 and p ≡ 3 mod 4,

which hold for many standardized curves like secp r series

(except secp224r1) [16] and Brainpool curves [56]. We also

assume that Bob’s EC key file contains the base point in

a compressed form, just as we did in the previous section.

These assumptions will allow us to exploit non-prime order

of the supersingular curve introduced in Section II-C if the

initialization of parameter B is incorrectly done.

Overview of the attack: We first describe a high-level

overview of our attack against hashed ECDH. Here we assume

that Alice is an adversary and tries to steal Bob’s secret key k
by interacting with him N times. The basic strategy of Alice is

to perform a combined attack which uses both the degenerate

curve attack of Neves and Tibouchi and the fault injection

technique presented in the previous section.

The degenerate case we fundamentally rely upon is a

supersingular curve E′ : y2 = x3 + Ax that has non-

prime order p + 1 from Proposition 1. Following Neves and

Tibouchi’s approach, for each query i, Alice sends an invalid

public key Q̃i ∈ E′(Fp) of small order �i, where �i is a

prime (power) factor of p + 1, and carries out an exhaustive

search in the subgroup 〈Q̃i〉 to find k mod �i upon receiving

an invalid ciphertext C̃i = Enc(KDF(x([k]Q̃i)), “Hello”)
from Bob. After sufficiently many queries Alice computes k
mod L using the Chinese Remainder Theorem (CRT), with

L =
∏

i �i, and can finally recover the whole k using Pollard’s

kangaroo (or lambda) algorithm [57] in O(
√

(p+ 1)/L) time

complexity.

However, Neves and Tibouchi only considered careless

protocols where point validation on the server side is absent;

in our targeted protocol of Fig. 7, Bob performs a number of

validity checks upon loading his own key file and receiving

380

Alice’s public key and domain parameters. Hence, we circum-

vent all these checks via a single instruction skipping fault

described in Section III-B, whenever Bob loads his key file.

The reader should note that it is crucial to inject a fault during
the initialization phase of parameter B (i.e. execution of

BN_bin2bn() function to load B in OpenSSL), not against

the validity check functions themselves; otherwise the attacker

would need to inject multiple faults to skip them.

Moreover, Neves and Tibouchi’s hashed ECDH model fails

to capture the significant property: in most ECDH implemen-

tations, a shared secret key K is not derived from the resulting

curve point [k]Qa itself, but from its x-coordinate, which

is often referred to as premaster secret (pms). In this more

realistic, but restricted setting, Alice’s exhaustive search can

only determine k mod �i up to sign for each query, and she

thus would have to perform the subsequent Pollard’s kangaroo

algorithm on exponentially many instances. We avoid this

problem by making a single additional query that can be used

for checking the correctness of CRT’s outputs.

Attack algorithm and analysis: We now give a complete

description of the attack in Algorithm 4. Again, we stress that

a single fault injection in 2) can circumvent all the validity

checks of domain parameters and public keys.

Theorem 2. The time complexity of Algorithm 4 is O(
√
�0 +

N�1 + 2N log2 L) and the space complexity is O(1).

Proof. For each small factor �i the exhaustive search takes

O(�i) steps and the total time complexity in 2) is O(N�1).
Executing the CRT for each (k1, . . . , kN) takes O(log2 L)
time, and there are in total 2N patterns of an input. Hence the

total time complexity of 4) is O(2N log2 L). Finally Pollard’s

kangaroo takes O(
√
�0) time. All the subroutines in the above

attack are constant space algorithms.

Query optimization and complexity estimates: In Algo-

rithm 4, we simply sorted the prime (power) factors of p+ 1
in descending order and automatically assigned one query

to each factor; however, this often yields nonoptimal total

time complexity. We present a straightforward approach for

query optimization by describing the concrete attack against

prime192v1 as an example. We also give the result of optimal

complexity estimates for other curve parameters in Table II.

First of all, prime192v1’s p+1 can be factored as follows:

p+ 1 =264 × 67280421310721× 6700417× 274177

× 65537× 641× 257× 17× 5× 3

Since N = 10 and the largest factors are �0 = 264 and �1 =
67280421310721 ≈ 246, the total time complexity would be

O(246) without any query optimization.

However, in an actual attack, we can “merge and divide”

some queries to equalize the time complexities for each

exhaustive search and Pollard’s kangaroo. On the one hand,

the exhaustive searches for order 3, 5, 17, and 257 subgroups

are computationally cheap, and therefore they can be “merged”

into other queries, so that the new queries send invalid points

Algorithm 4 Attack on hashed ECDH with point validation

Input: Bob’s public key Q and domain parameters D
Output: Secret key k such that Q = [k]P

1) Parse the domain parameters D = (p,A,B, P, n, c) of Bob’s

public key, and construct invalid domain parameters D̃a =
(p,A, 0, P̃ , n, c) which defines

• supersingular curve E′ : y2 = x3 + Ax of order p + 1 =∏N
i=0 �i where �i is a prime (power) factor of p + 1 and

�0 > �1 > . . . > �N , and
• invalid base point P̃ on E′(Fp) that shares its x-coordinate

with the valid base point P .

2) For each small factor �i in {�1, . . . , �N}:

i Pick an invalid point Q̃i ∈ E′(Fp) of order �i and send Q̃i

together with D̃a to Bob.
ii Upon Bob loading his EC key file, inject a single instruction

skipping fault to set his parameter B to 0, and consequently

force the base point to be decompressed to P̃ ∈ E′(Fp) (See
Section III-B).

iii Upon receiving a faulty ciphertext C̃i from Bob, perform an

exhaustive search in the small subgroup 〈Q̃i〉 to find ki ∈
[0, �i) such that

Enc(KDF(x([ki]Q̃i)), “Hello”) = C̃i.

Note that this procedure only finds k mod �i up to sign i.e.
Alice always obtains two solutions ±k mod �i.

3) Pick the additional invalid point Q̃L ∈ E′(Fp) of order L =∏N
i=1 �i , send Q̃L together with D̃a to Bob, and receive the

corresponding ciphertext C̃L.

4) For each candidate combination of (k1, . . . , kN) ∈ {k
mod �1,−k mod �1} × . . .× {k mod �N ,−k mod �N}:

i Compute the following using the CRT:

(k1, . . . , kN) �→ k′ ∈ Z/LZ.

ii Verify the correctness of CRT’s output by performing the
following check:

Enc(KDF(x([k′]Q̃L)), “Hello”)
?
= C̃L.

If k′ passes the above check, it means that k′ satisfies
either k′ ≡ k mod L or k′ ≡ −k mod L, of which the
former is derived from the correct candidate combination
(k1, . . . , kN) = (k mod �1, . . . , k mod �N).

5) At this stage, Alice already knows two candidates of k′, and
one of them satisfies k = k′ + Lk′′ for some k′′ < �n/L	 ≈
(p + 1)/L = �1. If Pollard’s kangaroo algorithm with inputs
Q−[k′]P and the base [L]P can find a solution k′′, then finally
outputs k′ + Lk′′.

of slightly larger composite order to Bob, with which exhaus-

tive search is still feasible. On the other hand, the search in

order 263 subgroup3 can be actually “divided” into multiple

exhaustive searches in a much smaller subgroup, e.g. order

ρ := 221 subgroup; concretely, we first pick order ρ3 point

Q̃ρ3 as well as Q̃ρ2 = [ρ]Q̃ρ3 and Q̃ρ = [ρ]Q̃ρ2 , and also

rewrite k as follows:

k = κ̄ρ3 + κ2ρ
2 + κ1ρ+ κ0

3We lose 1-bit in this search because prime192v1 has no 264 order
subgroup due to the quadratic non-residue curve parameter A.

381

where κi < ρ and κ̄ <
⌊
n/ρ3

⌋
. The first query uses Q̃ρ

and performs exhaustive search in 〈Q̃ρ〉 to recover κ0 ≡ k

mod ρ up to sign; the second query uses Q̃ρ2 to recover κ1,

which still reduces to the exhaustive search in 〈Q̃ρ〉 because

[k]Q̃ρ2 = [κ1ρ]Q̃ρ2 + [κ0]Q̃ρ2 = [κ1]Q̃ρ + [κ0]Q̃ρ2 and the

latter term is already known. Note that after the second query

we can trivially rule out the wrong candidate of κ0 because the

exhaustive search would find no solution in that case. Likewise

we can recover κ2 by using Q̃ρ3 in the third query. As a

consequence three iterations of exhaustive search in 〈Q̃ρ〉 are

sufficient to find κ2ρ
2 + κ1ρ+ κ0 = k mod ρ3 (up to sign).

To achieve these query optimizations, we can, for example,

reconstruct the factors of p+ 1 as follows:

�′0 = 67280421310721× 2

�′1 = 6700417, �′2 = 17× 257× 641

�′3 = 3× 5× 65537, �′4 = 274177

�′5 = ρ3 = 263

which leads to 7 queries that send invalid points

Q̃1, . . . , Q̃4, Q̃ρ, Q̃ρ2 , and Q̃ρ3 of corresponding orders (+ 1

additional query with the point Q̃L′ of order L′ =
∏5

i=1 �
′
i).

Because �′0 ≈ 247, �′1 ≈ 223 and L′ ≈ 2145, we obtain the total

time complexity of O(
√

�′0 + 7�′1 + 25 log2 L′) = O(225.5),
which is much less than the nonoptimal queries.

B. Application to OpenSSL

Attack on manual ECDH key exchange in OpenSSL: We

now describe a practical scenario that realizes the ECDH

protocol of Fig. 7 using OpenSSL command line tools. Com-

plete command line operations in this part can be found in

Appendix A Fig. 9. Suppose Bob holds a static EC key

containing explicit curve parameters as well as the compressed

base point, which we described in Section III-A. When Bob

manually performs the ECDH key exchange with Alice, he

may use pkeyutl -derive command with Alice’s public

key file and his own key file as inputs, so that he can

obtain the premaster secret x([k]Qa). Accordingly, Bob can

generate the master secret key K and ciphertext C for “Hello”

message using an appropriate cryptographic hash function (e.g.

SHA256) as KDF and symmetric encryption algorithm (e.g.

AES-256-CBC), respectively; of course, these can be achieved

via basic OpenSSL commands.

Here Alice’s attack strategy is quite simple; since pkeyutl
-derive invokes BN_bin2bn() function when loading

an EC key file, she can directly apply the fault attack in

Section III-B to force Bob’s curve parameter B to have 0,

whenever Bob tries to derive a premaster secret using Alice’s

malicious public key.

Experimental results: We successfully mounted the above

attack on OpenSSL 1.1.1 installed in Raspberry Pi. We tar-

geted prime192v1 as Bob’s curve parameters and first found

an order (p + 1)/2 point at x = 260 on supersingular

curve E′ : y2 = x3 − 3x; then we prepared 8 public

keys which contain invalid domain parameter B = 0 and

low order points Q̃1, . . . , Q̃4, Q̃ρ, Q̃ρ2 , Q̃ρ3 , and Q̃L′ . Upon

loading these public keys during the execution of pkeyutl
-derive, a single voltage glitch fault was inserted into

BN_bin2bn() function, just as we did in Section III-C.

When the fault successfully caused the domain parameters

to have B = 0, all the subsequent validity checks passed

and the command output a faulty pms without raising any

error; otherwise, the command aborted immediately with error

messages. Then we invoked dgst command to hash a faulty

pms, and to derive a master key K; finally we used it to

encrypt “hello” message with enc command.

After collecting 8 faulty ciphertexts returned from the above

operations, we performed the exhaustive search, CRT with the

correctness check, and Pollard’s kangaroo algorithm described

in Algorithm 4 with the help of SageMath [53]. The exhaustive

searches for 7 instances took an hour and computing the

CRT for 25 candidates of k′ was done in few seconds, using

a standard desktop computer equipped with Intel Core i5-

4460 CPU and Ubuntu 18.04. Finally, we executed Pollard’s

kangaroo on two candidates of k′ ≡ k mod L′, which took

90 minutes, and successfully found the correct secret key k.

C. Applicability to TLS

Although that option is probably not commonly used in

practice, the TLS standard does support certificates for elliptic

curve cryptography using explicit curve parameters, as well

as point compression for the group generator as part of those

parameters (see [58, §5.4], particularly the definition of the

ECPoint structure). It is therefore natural to ask to what

extent the attack described in this section applies to the

TLS handshake when using elliptic curve cryptography cipher

suites.

Note first that one has to posit a rather powerful attacker

against the TLS server, than can initiate adversarial TLS

handshakes while at the same time injecting faults on the

server itself. This can correspond to settings in which the

server is an embedded device, in which faults can be injected

remotely (e.g., using exploits such as Rowhammer.js [59]).

Even so, the abstract model described in Fig. 7 does not

quite map to any of the ECDH-derived key exchange protocols

defined in TLS as summarized, e.g., in [58, §2]. However, one

can modify the attack to match the “fixed ECDH” setting (i.e.,

the case of a static server key), albeit at the cost of significant

increase in query complexity. Moreover, although the attack

does in principle require a static key on the server side, it can

interestingly also apply to certain practical implementations of

“ephemeral ECDH”.

Fixed ECDH: The TLS-ECDH setting closest to the one

we consider is “fixed ECDH”, where the server uses a static

key and there is no client authentication. In that case, the

TLS handshake takes a form very close to Fig. 7, but with

one crucial difference: namely, the client has to send its

ClientFinished message encrypted under the key ob-

tained from the key exchange (which is already known since

the server’s public key is static). This is a problem for our

382

TABLE II: Complexity estimates of the attack against ECDH over standardized curves

Curve p |�′0| |�′1| Time # Queries
√
x3 +Ax

?∈ F
∗
p

prime192v1 2192 − 264 − 1 47 23 O(225.5) 8 Yes
prime256v1 2224(232 − 1) + 2192 + 296 − 1 94 46 O(248.3) 6 Yes
secp384r1 2384 − 2128 − 296 + 232 − 1 188 36 O(293.5) 7 Yes
secp521r1 2521 − 1 1 1 O(1) 521 No

brainpoolP192r1 — 63 49 O(250.0) 4 Yes
brainpoolP224r1 — 140 50 O(269.7) 3 No
brainpoolP256r1 — 164 68 O(281.7) 3 Yes
brainpoolP384r1 — 181 88 O(290.1) 4 Yes
brainpoolP512r1 — 151 125 O(2126.3) 4 Yes

attack, because although the client does know the valid public

key of the server, he does not know the perturbed key on

the fauly curve E′, and therefore cannot easily encrypt its

ClientFinished message.

There is a simple workaround to this limitation, however:

since the derived keys tried by the client are obtained from

points of small orders �1, . . . , �N on E′, the client can simply

repeat its handshake attempts with key candidates derived from

all the possible multiples of those points of small orders,

until the server is able to decrypt the ClientFinished
message and replies. That case corresponds to a correct guess,

and therefore reveals the secret key of the server modulo

�1, . . . , �N as before. This is essentially the approach taken

in the original invalid curve attacks by Antipa et al. [12]

The time complexity of that variant of the attack is the same

as for the attack in the previous section: the only difference is

that the exhaustive search phase (Step 2iii of Algorithm 4) is

now carried out using online queries to the server instead of

offline computations (at a significant, but constant, overhead).4

The query complexity, on the other hand, does obviously

increase sharply.

Ephemeral ECDH: Clearly, our attack on ECDH requires

several faulty executions of the key exchange protocol to

recover a secret, and therefore should not apply to “ephemeral

ECDH” key exchange (ECDHE_RSA and ECDHE_ECDSA in

TLS), where the server is supposed to use a fresh secret for

every session in order to ensure perfect forward secrecy. In

practice, however, many TLS servers reuse those ephemeral

keys for a long period of time in order to reduce the compu-

tational overhead of new encrypted connections: Springall et

al. [60] found that, as of 2016, around 15% of the ECDHE

domains in the Alexa Top Million practiced some form of

key reuse, some of them for months at a time! This type of

key reuse is even the default behavior of some popular TLS

implementations (e.g., the bug report to fix this issue in NSS,

submitted in 2015, appears to remain open at the time of this

writing [61]).

In such a setting, the same attack as above applies directly,

and recovers the supposedly-ephemeral-but-actually-reused se-

cret of the server (and hence allows to decrypt all TLS sessions

the adversary can record until the subsequent key update).

4Similarly, note that the check done in Step 4ii of Algorithm 4 can be
carried out using 2N handshake attempts, which is negligible.

V. COUNTERMEASURES

The vulnerabilities we pointed out stem from the fact that

OpenSSL command line tools support loading a compressed

base point from external EC key files. Hence, as a straightfor-

ward countermeasure we suggest that the ecparam command

line interface deprecate -conv_form compressed option,

so that the generation of such vulnerable EC key files will

never occur. More generic, low-level countermeasures against

fault attacks can be found in e.g. [34, §5]. We also mention

general advice on the use of compressed curve points when

one implements ECC:

• To thwart the kinds of attacks described in Section III

and Section IV, one should never store the base point in

compressed form.

• On the other hand, the use of public key points in

compressed form per se is not a problem; in fact, it is

advisable to use them because this assures the resulting

point is on the curve, so that one can prevent other invalid

curve attacks.

VI. CONCLUDING REMARKS

This paper brought the SCPD attack and the degenerate

curve attacks closer to practice, and identified fault attack vul-

nerabilities in OpenSSL’s implementation of ECDSA, SM2-

ECIES and ECDH. We stress that the attacks on the first two

schemes over secp k series (except 224k1) are particularly

devastating because the adversary would be able to recover a

secret key (resp. plaintext) from a single faulty signature (resp.

ciphertext) with almost no computational cost. Note that while

we have not directly witnessed the use of such unusual EC

keys as Fig. 2 in the wild, there are reasons to believe that

they could exist (beyond Heninger’s conjecture that “given

samples from enough cryptographic implementations, any

outrageous vulnerability is likely to be present” [62]). Indeed,

the construction of these key files is explicitly described in the

OpenSSL official documentation (see III-A) and their use is

permitted by the original elliptic curve extensions to TLS [58].

Beyond OpenSSL, we point out that there is a possibility

that other cryptographic libraries, especially the ones for

embedded systems, are using base points in compressed forms.

Such values do appear in SECG’s recommended elliptic curve

domain parameters [16], and there is a plausible reason why

practitioners might want to use them; since reducing code size

383

is a major concern for embedded implementations, compress-

ing the base point, which results in a code size reduction of

24–64 bytes, can potentially justify the use of compressed

base points when program memory is at a premium5. Though

we fortunately confirmed that the several well-known libraries

such as mbed TLS [64], wolfSSL [65], Crypto++ [66] and

libsecp256k1 [67] do not implement compressed base points,

some implementations for non-production use do include them

in reality; for instance, the base point of secp256k1 in a

compressed form appears in [68, Appendix D.2]. In particular,

the ECDSA over secp256k1 curve, on which we mounted

the attack in Section III-C, is nowadays a high-profile target

owing to its use in the Bitcoin protocol [69]. Therefore,

future research should consider the potential effect of the

SCPD attack on hardware Bitcoin wallets, including in-house

implementations. All in all, the lesson of this paper is quite

simple: do not store your base points in compressed form! It

would also seem advisable to always avoid the use of explicit

curve parameters in ECC implementations and only rely on a

reasonable set of named curves.

ACKNOWLEDGEMENT

Akira Takahashi was supported by the European Research

Council (ERC) under the European Unions’s Horizon 2020

research and innovation programme under grant agreement

No 803096 (SPEC), and the Danish Independent Research

Council under Grant-ID DFF-6108-00169 (FoCC). We thank

anonymous reviewers for valuable comments and suggestions.

REFERENCES

[1] H. Bar-El, H. Choukri, D. Naccache, M. Tunstall, and C. Whelan, “The
Sorcerer’s Apprentice Guide to Fault Attacks,” Proceedings of the IEEE,
vol. 94, no. 2, pp. 370–382, 2006.

[2] A. Takahashi, “A Study on Attacks against Nonces in Schnorr-like
Signatures,” Master’s thesis, Kyoto University, 2018, https://akiratk0355.
github.io/file/thesis-master-takahashi.pdf.

[3] P. Gallagher, Digital Signature Standard (DSS), NIST, 2013, fIPS PUB
186–4.

[4] W. Diffie and M. E. Hellman, “New directions in cryptography,” IEEE
Transactions on Information Theory, vol. 22, no. 6, pp. 644–654, 1976.

[5] V. Shoup, “A Proposal for an ISO Standard for Public Key Encryption,”
Cryptology ePrint Archive, Report 2001/112, 2001.

[6] OpenSSL Management Committee, “OpenSSL: Cryptography and SS-
L/TLS Toolkit,” https://www.openssl.org/.

[7] D. Boneh, R. A. DeMillo, and R. J. Lipton, “On the Importance of
Checking Cryptographic Protocols for Faults (Extended Abstract),” in
EUROCRYPT ’97, ser. LNCS, vol. 1233. Springer, 1997, pp. 37–51.

[8] I. Biehl, B. Meyer, and V. Müller, “Differential Fault Attacks on
Elliptic Curve Cryptosystems,” in CRYPTO 2000, ser. LNCS, vol. 1880.
Springer, 2000, pp. 131–146.

[9] J. Blömer and P. Günther, “Singular Curve Point Decompression At-
tack,” in FDTC 2015. IEEE, 2015, pp. 71–84.

[10] D. Boneh, B. Lynn, and H. Shacham, “Short Signatures from the Weil
Pairing,” Journal of Cryptology, vol. 17, no. 4, pp. 297–319, 2004.

[11] P. S. L. M. Barreto and M. Naehrig, “Pairing-Friendly Elliptic Curves
of Prime Order,” in SAC 2005, ser. LNCS, vol. 3897. Springer, 2005,
pp. 319–331.

[12] A. Antipa, D. R. L. Brown, A. Menezes, R. Struik, and S. A. Vanstone,
“Validation of Elliptic Curve Public Keys,” in PKC 2003, ser. LNCS,
vol. 2567. Springer, 2003, pp. 211–223.

5The justification of this scenario closely resembles the discussion in
[63, §3.2]. We note that it is significantly more plausible in our setting
of an ECDSA implementation than in an implementation of pairing-based
cryptography.

[13] D. J. Bernstein, P. Birkner, M. Joye, T. Lange, and C. Peters, “Twisted
Edwards Curves,” in AFRICACRYPT 2008, ser. Lecture Notes in Com-
puter Science. Springer, Berlin, Heidelberg, Jun. 2008, pp. 389–405.

[14] S. Neves and M. Tibouchi, “Degenerate curve attacks: Extending invalid
curve attacks to Edwards curves and other models,” IET Information
Security, vol. 12, no. 3, pp. 217–225, 2018.

[15] S. C. Pohlig and M. E. Hellman, “An improved algorithm for comput-
ing logarithms over GF (p) and its cryptographic significance,” IEEE
Transactions on Information Theory, vol. 24, no. 1, pp. 106–110, Jan.
1978.

[16] SEC 2: Recommended Elliptic Curve Domain Parameters, Standards for
Efficient Cryptography Group (SECG), 2010, version 2.0.

[17] B. B. Brumley and N. Tuveri, “Remote Timing Attacks Are Still
Practical,” in ESORICS 2011, ser. LNCS. Springer, Berlin, Heidelberg,
Sep. 2011, pp. 355–371.

[18] C. O’Flynn, “Fault Injection using Crowbars on Embedded Systems,”
Cryptology ePrint Archive, Report 2016/810, 2016.

[19] Raspberry Pi Foundation, “Raspberry Pi: A small and affordable com-
puter that you can use to learn programming,” https://www.raspberrypi.
org/.

[20] K. Karabina and B. Ustaoglu, “Invalid-curve attacks on (hyper)elliptic
curve cryptosystems,” Advances in Mathematics of Communications,
vol. 4, no. 3, pp. 307–321, 2010.

[21] T. Kim and M. Tibouchi, “Invalid Curve Attacks in a GLS Setting,” in
IWSEC 2015, ser. LNCS, vol. 9241. Springer, 2015, pp. 41–55.

[22] M. Ciet and M. Joye, “Elliptic Curve Cryptosystems in the Presence
of Permanent and Transient Faults,” Designs, Codes and Cryptography,
vol. 36, no. 1, pp. 33–43, Jul. 2005.

[23] J. Blömer, M. Otto, and J.-P. Seifert, “Sign Change Fault Attacks on
Elliptic Curve Cryptosystems,” in FDTC 2006, ser. LNCS, L. Breveg-
lieri, I. Koren, D. Naccache, and J.-P. Seifert, Eds., vol. 4236. Springer
Berlin Heidelberg, 2006, pp. 36–52.

[24] P.-A. Fouque, R. Lercier, D. Réal, and F. Valette, “Fault attack on
elliptic curve Montgomery ladder implementation,” in FDTC 2008,
L. Breveglieri, S. Gueron, I. Koren, D. Naccache, and J.-P. Seifert, Eds.
IEEE, 2008, pp. 92–98.

[25] T. Kim and M. Tibouchi, “Bit-Flip Faults on Elliptic Curve Base Fields,
Revisited,” in ACNS 2014, ser. LNCS, vol. 8479. Springer, 2014, pp.
163–180.

[26] B. B. Brumley, M. Barbosa, D. Page, and F. Vercauteren, “Practical
Realisation and Elimination of an ECC-Related Software Bug Attack,”
in CT-RSA 2012, ser. LNCS, O. Dunkelman, Ed., vol. 7178. Springer
Berlin Heidelberg, 2012, pp. 171–186.

[27] T. Jager, J. Schwenk, and J. Somorovsky, “Practical Invalid Curve
Attacks on TLS-ECDH,” in ESORICS 2015, ser. LNCS, vol. 9326.
Springer, 2015, pp. 407–425.

[28] L. Valenta, N. Sullivan, A. Sanso, and N. Heninger, “In Search of
CurveSwap: Measuring Elliptic Curve Implementations in the Wild,”
in Euro S&P 2018. IEEE, Apr. 2018, pp. 384–398.

[29] B. B. Brumley and R. M. Hakala, “Cache-Timing Template Attacks,”
in ASIACRYPT 2009, ser. LNCS. Springer, Berlin, Heidelberg, Dec.
2009, pp. 667–684.

[30] N. Benger, J. van de Pol, N. P. Smart, and Y. Yarom, “”Ooh Aah... Just
a Little Bit” : A Small Amount of Side Channel Can Go a Long Way,”
in CHES 2014, ser. LNCS, vol. 8731. Springer, 2014, pp. 75–92.

[31] J. van de Pol, N. P. Smart, and Y. Yarom, “Just a Little Bit More,”
in CT-RSA 2015, ser. LNCS, K. Nyberg, Ed., vol. 9048. Springer
International Publishing, 2015, pp. 3–21.

[32] C. Pereida Garcı́a, B. B. Brumley, and Y. Yarom, “”Make Sure DSA
Signing Exponentiations Really Are Constant-Time”,” in CCS 2016.
New York, NY, USA: ACM, 2016, pp. 1639–1650.

[33] N. Tuveri, S. ul Hassan, C. P. Garcia, and B. B. Brumley, “Side-Channel
Analysis of SM2: A Late-Stage Featurization Case Study,” in ACSAC
2018. New York, NY, USA: ACM, 2018, pp. 147–160.

[34] A. Barenghi, L. Breveglieri, I. Koren, and D. Naccache, “Fault Injection
Attacks on Cryptographic Devices: Theory, Practice, and Countermea-
sures,” Proceedings of the IEEE, vol. 100, no. 11, pp. 3056–3076, Nov.
2012.

[35] T. Korak and M. Hoefler, “On the Effects of Clock and Power Supply
Tampering on Two Microcontroller Platforms,” in FDTC 2014. IEEE,
Sep. 2014, pp. 8–17.

[36] A. Barenghi, G. M. Bertoni, L. Breveglieri, and G. Pelosi, “A fault
induction technique based on voltage underfeeding with application to

384

attacks against AES and RSA,” Journal of Systems and Software, vol. 86,
no. 7, pp. 1864–1878, Jul. 2013.

[37] N. Timmers, A. Spruyt, and M. Witteman, “Controlling PC on ARM
Using Fault Injection,” in FDTC 2016. IEEE, Aug. 2016, pp. 25–35.

[38] N. Timmers and C. Mune, “Escalating Privileges in Linux Using Voltage
Fault Injection,” in FDTC 2017. IEEE, Sep. 2017, pp. 1–8.

[39] C. O’Flynn, “A Framework for Embedded Hardware Security Analysis,”
Ph.D. dissertation, Dalhousie University, 2017.

[40] C. O’Flynn and Z. D. Chen, “ChipWhisperer: An Open-Source Platform
for Hardware Embedded Security Research,” in COSADE 2014, ser.
LNCS, E. Prouff, Ed., vol. 8622. Springer, 2014, pp. 243–260.

[41] J. H. Silverman, The Arithmetic of Elliptic Curves, 2nd ed., ser. Graduate
Texts in Mathematics. Springer-Verlag New York, 2009.

[42] L. C. Washington, Elliptic Curves: Number Theory and Cryptography,
2nd ed. Chapman & Hall/CRC, 2008.

[43] A. Menezes, T. Okamoto, and S. A. Vanstone, “Reducing elliptic
curve logarithms to logarithms in a finite field,” IEEE Transactions on
Information Theory, vol. 39, no. 5, pp. 1639–1646, 1993.

[44] D. Johnson, A. Menezes, and S. A. Vanstone, “The Elliptic Curve Digital
Signature Algorithm (ECDSA),” International Journal of Information
Security, vol. 1, no. 1, pp. 36–63, 2001.

[45] S. Shen and X. Lee, SM2 Digital Signature Algorithm, IETF, 2014,
draft-shen-sm2-ecdsa-02.

[46] “OpenSSL 1.1.1 series release notes,” https://www.openssl.org/news/
openssl-1.1.1-notes.html, 2018.

[47] SEC 1: Elliptic Curve Cryptography, Standards for Efficient Cryptogra-
phy Group (SECG), 2009, version 2.0.

[48] “OpenSSL version 1.1.1,” https://github.com/openssl/openssl/tree/
OpenSSL 1 1 1, 2018.

[49] “OpenSSL wiki: Command line elliptic curve operations,” https://wiki.
openssl.org/index.php/Command Line Elliptic Curve Operations, ac-
cessed on November 1st, 2018.

[50] “OpenSSL issue #6719,” https://github.com/openssl/openssl/issues/6719,
2018.

[51] “ChipWhisperer Tutorial A3 VCC Glitch Attacks,” https:
//wiki.newae.com/Tutorial A3 VCC Glitch Attacks#Glitching More
Advanced Targets: Raspberry Pi, accessed on November 1st, 2018.

[52] G. Henderson, “Wiring Pi: GPIO interface library for the Raspberry Pi,”
http://wiringpi.com/.

[53] The Sage Developers, “SageMath, the Sage Mathematics Software
System (Version 7.5.1),” 2017, http://www.sagemath.org.

[54] Riscure, “icWaves: A security test tool for side channel analysis and
fault injection testing,” https://www.riscure.com/product/icwaves/.

[55] A. Beckers, J. Balasch, B. Gierlichs, and I. Verbauwhede, “Design and
implementation of a waveform-matching based triggering system,” in
COSADE, ser. LNCS, F. Standaert and E. Oswald, Eds., vol. 9689.
Springer, 2016, pp. 184–198.

[56] J. Merkle and M. Lochter, Elliptic Curve Cryptography (ECC) Brainpool
Standard Curves and Curve Generation, IETF, {RFC 5639}.

[57] J. M. Pollard, “Monte Carlo methods for index computation (mod p),”
Mathematics of Computation, vol. 32, no. 143, pp. 918–924, 1978.

[58] S. Blake-Wilson, N. Bolyard, V. Gupta, C. Hawk, and B. Moeller,
“Elliptic curve cryptography (ECC) cipher suites for transport layer
security (TLS),” Internet Requests for Comments, RFC Editor, RFC
4492, May 2006, http://www.rfc-editor.org/rfc/rfc4492.txt.

[59] D. Gruss, C. Maurice, and S. Mangard, “Rowhammer.js: A Remote
Software-Induced Fault Attack in JavaScript,” in DIMVA 2016, ser.
LNCS, J. Caballero, U. Zurutuza, and R. J. Rodrı́guez, Eds., vol. 9721.
Springer International Publishing, 2016, pp. 300–321.

[60] D. Springall, Z. Durumeric, and J. A. Halderman, “Measuring the
security harm of TLS crypto shortcuts,” in IMC 2016, P. Gill, J. S.
Heidemann, J. W. Byers, and R. Govindan, Eds. ACM, 2016, pp.
33–47.

[61] H. Kario, “Bug 1166338: Don’t reuse ECDHE key by default,” NSS
Bugzilla Bugtracker, May 2015, https://bugzilla.mozilla.org/show bug.
cgi?id=1166338.

[62] N. Heninger, “Fun with the hidden number problem,” Talk at the AMS
Special Session on the Mathematics of Cryptography, Mar. 2019, https:
//public.csusm.edu/ssharif/hawaii/heninger.pdf.

[63] A. Takahashi, M. Tibouchi, and M. Abe, “New Bleichenbacher Records:
Fault Attacks on qDSA Signatures,” IACR Transactions on Crypto-
graphic Hardware and Embedded Systems, vol. 2018, no. 3, pp. 331–
371, 2018.

[64] ARM Limited., “mbed TLS,” https://tls.mbed.org/.

Fig. 8: Complete command line operations in Section III

Generate a key pair including compressed base point

openssl ecparam -out sk.pem -name secp256k1 -genkey \
-conv_form compressed -param_enc explicit

openssl ec -in sk.pem -pubout -out pk.pem

Alternative way: generate a parameter file, then derive a

key pair↪→
openssl ecparam -out ec_param.pem -name secp256k1 \

-param_enc explicit

openssl ecparam -out sk.pem -in ec_param.pem -genkey \
-conv_form compressed

openssl ec -in sk.pem -pubout -out pk.pem

Sign/verify with ECDSA

openssl dgst -sha256 -sign sk.pem file.txt > sigma.sig

openssl dgst -sha256 -verify pk.pem \
-signature sigma.sig file.txt

Encrypt/decrypt with SM2 ECIES (assuming

EVP_PKEY_set_alias_type(pkey, EVP_PKEY_SM2) is set)↪→
openssl pkeyutl -encrypt -in file.txt -pubin \

-inkey pk.pem -out cipher

openssl pkeyutl -decrypt -in cipher -inkey sk.pem

Fig. 9: Complete command line operations in Section IV

Bob generates a key pair including compressed base point

openssl ecparam -out sk.pem -name prime192v1 -genkey \
-conv_form compressed -param_enc explicit

openssl ec -in sk.pem -pubout -out pk.pem

Derive ECDH premaster secret with Alice's public key as

input↪→
openssl pkeyutl -derive -inkey sk.pem \

-peerkey pk_alice.pem -out pms.bin

Generate master secret key with SHA256

openssl dgst -sha256 -binary pms.bin > K.bin

Encrypt hello message with AES-256-CBC

echo "hello" | openssl enc -aes256 -k K.bin -e -out C.bin

[65] “wolfSSL,” https://www.wolfssl.com/.
[66] “Crypto++ Library 7.0,” https://www.cryptopp.com/.
[67] “libsecp256k1,” https://github.com/bitcoin-core/secp256k1.
[68] D. Wang, “Secure Implementation of ECDSA Signatures in Bitcoin,”

Master’s thesis, University College London, Sep. 2014, http://www.
nicolascourtois.com/bitcoin/thesis Di Wang.pdf.

[69] S. Nakamoto, “Bitcoin: A peer-to-peer electronic cash system,” 2009,
http://www.bitcoin.org/bitcoin.pdf.

APPENDIX A

OPENSSL COMMAND LINE OPERATIONS

See Fig. 8 and Fig. 9.

APPENDIX B

ASSEMBLY CODE FOR BN_BIN2BN() FUNCTION

See Fig. 10. We observed that the instructions with the com-

ment “SKIP !!” cause the return value of BN_bin2bn()
function to have 0 when skipped.

385

Fig. 10: Complete assembly code for BN_bin2bn() function, generated by GCC 6.3.0 in Raspberry Pi

1 .arch armv6

2 .align 2

3 .global BN_bin2bn

4 .syntax unified

5 .arm

6 .fpu vfp

7 .type BN_bin2bn, %function

8 BN_bin2bn:

9 @ args = 0, pretend = 0, frame = 0

10 @ frame_needed = 0, uses_anonymous_args = 0

11 push {r4, r5, r6, r7, r8, r9, r10, lr}

12 subs r8, r2, #0

13 mov r4, r0

14 mov r6, r1

15 movne r10, #0

16 beq .L351

17 .L330:

18

19 cmp r6, #0

20 ble .L332

21 ldrb r3, [r4]

22 cmp r3, #0

23 bne .L332

24 add r3, r4, #1

25 .L334:

26 subs r6, r6, #1

27 mov r4, r3

28 beq .L333

29 ldrb r2, [r3]

30 add r3, r3, #1 @ SKIP!!

31 cmp r2, #0

32 beq .L334

33 .L332:

34 cmp r6, #0

35 bne .L335 @ SKIP!!

36 .L333:

37 mov r9, r8

38 mov r3, #0

39 str r3, [r8, #4]

40 .L329:

41 mov r0, r9

42 pop {r4, r5, r6, r7, r8, r9, r10, pc}

43 .L335:

44 sub r5, r6, #1

45 mov r0, r8

46 lsr r7, r5, #2

47 add r7, r7, #1

48 mov r1, r7

49 bl bn_wexpand(PLT)

50 and r5, r5, #3

51 subs r9, r0, #0

52 beq .L352

53 mov r2, #0

54 mov r3, r2

55 add r6, r4, r6

56 mov r0, r2

57 str r7, [r8, #4]

58 str r2, [r8, #12]

59 .L337:

60 ldrb r1, [r4], #1

61 cmp r5, #0

62 sub r5, r5, #1

63 orr r3, r1, r3, lsl #8

64 beq .L338 @ SKIP!!

65 cmp r4, r6

66 bne .L337

67 mov r0, r8

68 bl bn_correct_top(PLT)

69 mov r9, r8

70 .L353:

71 mov r0, r9

72 pop {r4, r5, r6, r7, r8, r9, r10, pc}

73 .L338:

74 ldr r2, [r8]

75 sub r7, r7, #1

76 cmp r4, r6

77 str r3, [r2, r7, lsl #2] @ SKIP!!

78 mov r5, #3

79 mov r3, r0

80 bne .L337

81 mov r0, r8

82 bl bn_correct_top(PLT)

83 mov r9, r8

84 b .L353

85 .L351:

86 bl BN_new(PLT)

87 subs r8, r0, #0

88 movne r10, r8

89 bne .L330

90 mov r9, r8

91 b .L329

92 .L352:

93 mov r0, r10

94 bl BN_free(PLT)

95 b .L329

96 .size BN_bin2bn, .-BN_bin2bn

386

