
ar
X

iv
:1

30
1.

01
23

v5
 [

cs
.D

S]
 2

9
M

ay
 2

01
4

On Randomized Memoryless Algorithms for the Weighted

k-server Problem

Ashish Chiplunkar Sundar Vishwanathan

Department of Computer Science and Engineering

Indian Institute of Technology Bombay

Mumbai India

{ashishc, sundar}@cse.iitb.ac.in

Abstract

The weighted k-server problem is a generalization of the k-server problem, wherein the

cost of moving a server of weight βi through a distance d is βi · d. On uniform metric

spaces, this models caching with caches having different page replacement costs. We prove

tight bounds on the performance of randomized memoryless algorithms for this problem on

uniform metric spaces. We first prove that there is an αk-competitive memoryless algorithm

for this problem, where αk = α2

k−1
+ 3αk−1 + 1; α1 = 1. We complement this result by

proving that no randomized memoryless algorithm can have a competitive ratio better than

αk.

To prove the upper bound of αk, we develop a framework to bound from above the

competitive ratio of any randomized memoryless algorithm for this problem. The key tech-

nical contribution is a method for working with potential functions defined implicitly as the

solution of a linear system. The result is robust in the sense that a small change in the

probabilities used by the algorithm results in a small change in the upper bound on the

competitive ratio. The above result has two important implications. Firstly, this yields an

αk-competitive memoryless algorithm for the weighted k-server problem on uniform spaces.

This is the first competitive algorithm for k > 2, which is memoryless. For k = 2, our

algorithm agrees with the one given by Chrobak and Sgall [8]. Secondly, this helps us prove

that the Harmonic algorithm, which chooses probabilities in inverse proportion to weights,

has a competitive ratio of kαk.

The only known competitive algorithm for every k before this work is a carefully crafted

deterministic algorithm due to Fiat and Ricklin [10]. This algorithm uses memory crucially,

and their bound on its competitive ratio is 24
k

. Our algorithm is not only memoryless, but

also has a considerably improved competitive ratio of αk < 1.62
k

. Further, the derandom-

ization technique of Ben-David et al. [5] implies that there exists a deterministic algorithm

for this problem with competitive ratio α2

k
< 2.562

k

.

1 Introduction

The k-server problem of Manasse et al. [14] is, arguably, the most extensively studied problem in

the online setting. The large body of research around this problem is summarized in a beautiful

survey by Koutsoupias [12]. In this problem, k servers occupy points in a metric space. An

1

http://arxiv.org/abs/1301.0123v5

adversary presents a sequence of requests, each of which is a point in the metric space. To serve

the current request, the algorithm moves one of the servers to the requested point, incurring a

cost equal to the distance traveled by the server. In the online model, an algorithm is required to

serve the current request before the next request is revealed. A (randomized) online algorithm

is said to be c-competitive against an adversary, if it produces a solution, whose (expected) cost

is at most c times the cost of the solution produced by the adversary.

A generalization of the k-server problem, proposed by Fiat and Ricklin [10], and called the

weighted k-server problem, associates a weight with each server. The cost incurred in moving a

server is equal to the product of its weight and the distance traveled. Introducing weights adds a

new dimension to the k-server problem and presents new challenges. While a (2k−1)-competitive

algorithm is known for the k-server problem [13], the only competitive algorithms known for

the weighted k-server problem are for uniform spaces [10], and for k = 2 [16]. On uniform

spaces, this problem models caching with different types of caches, each having a different page

replacement cost. Fiat and Ricklin [10] point out the practical significance of such caches in

optimizing both the overall write time, as well as the chip area occupied.

A randomized algorithm for the weighted k-server problem is said to be memoryless if its

behavior on a request is completely determined by the pairwise distances between the k points

occupied by its servers and the requested point. In other words, a memoryless algorithm for the

weighted k-server problem with a given set of weights is specified by a function, which maps the
(

k+1
2

)

distances to a probability distribution on the servers. In particular, on uniform metric

spaces, a memoryless algorithm is completely specified by a probability distribution p on the

servers, where pi is the probability by which the ith server is shifted to the requested point, if

that point is not already occupied by some server. The Harmonic algorithm is a memoryless

algorithm, which moves the servers with probabilities inversely proportional to their weights.

For online problems modeling certain practical problems like caching, it is imperative that

decisions are taken instantaneously. Ideally, we would like the algorithm to be memoryless. For

the k-server problem, the Harmonic algorithm is known to be O(k2k)-competitive on any metric

space [11, 4]. Additionally, Coppersmith et al. [9] proved that on resistive metric spaces, there

exists a k-competitive memoryless algorithm, in which the probabilities of moving the servers

are determined by the resistive inverse of the metric space. It hence came as a surprise when

Chrobak and Sgall [8] proved that no memoryless algorithm with a finite competitive ratio exists,

even for the weighted 2-server problem on the line metric (which is, in fact, resistive). Among

other nice results in the same paper, Chrobak and Sgall [8] give the only known competitive

memoryless algorithm for uniform spaces: a 5-competitive algorithm for 2 servers, which they

prove is optimal. We generalize their bounds and prove the following theorems.

Theorem 1. For every k, there exists an αk-competitive memoryless algorithm for the weighted

k-server problem on uniform metric spaces against an online adaptive adversary, where αk

satisfies the recurrence: αk = α2
k−1 + 3αk−1 + 1 for k > 1, and α1 = 1.

Theorem 2. There does not exist a memoryless algorithm for the weighted k-server problem on

uniform metric spaces with competitive ratio less than αk, for any k, against an online adaptive

adversary.

2

In order to establish Theorem 1, we prove a more general result. Given server weights

β = (β1, . . . , βk), and a probability distribution p on the servers used by an algorithm, we derive

an upper bound α̃(β, p) on the competitive ratio, as a function of β and p. Given β, we use

this result to identify a probability distribution p, such that the competitive ratio is at most

αk. As a by-product of this more general result, we also derive that the Harmonic algorithm is

(kαk)-competitive, for any β, against an online adaptive adversary. For k = 2, we get α2 = 5,

and our result matches that of Chrobak and Sgall [8].

Towards proving Theorem 2, we first prove that the upper bound of α̃(β, p) is tight. Specif-

ically, we prove that if the separation mini βi+1/βi between the weights is sufficiently large,

then there exists an online adaptive adversary, which forces the algorithm using the probability

distribution p to perform almost α̃(β, p) times worse. It is interesting to note that we leverage

the machinery developed to prove the upper bound, to prove this lower bound too; we use the

same potentials in a different avatar. We then prove that with weights 1, r, r2, . . . , rk−1, for a

sufficiently large r, infp α̃(β, p) can be forced to be arbitrarily close to αk.

The main difficulty in analyzing algorithms for this problem stems from the inability to

describe suitable potential functions explicitly. We formulate a set of linear inequalities that

the potentials must satisfy, where the co-efficients involved in the inequalities depend on the

probabilities and the weights. This by itself has been done before; see for example [3]. However,

the rest of the work is very different. We then show that the point, at which a certain carefully

chosen subset of the linear inequalities is tight, is feasible. Our work indicates that the potentials

given by this point are complicated rational functions of the probabilities and weights, and

describing them seems hopeless, even for k = 4. Our key technical contribution is a framework

to work with potential functions defined implicitly, as the solution of a linear system.

Theorem 1 also has the following consequence. Together with the derandomization result

by Ben-David et al. [5], it implies the existence of a deterministic algorithm, for the weighted

k-server problem on uniform spaces, with competitive ratio α2
k. It can be easily proved that

αk < 1.62
k

and thus, we have an upper bound of 2.562
k

. This is significantly better than the

earlier bound on the deterministic competitive ratio by Fiat and Ricklin [10], which was more

than 24
k

.

2 Preliminaries and Techniques

Let β = (β1, . . . , βk) be the weights of the servers in an instance of the weighted k-server

problem. Consider a memoryless algorithm that, in response to a request on a point not already

occupied by a server, moves the ith server with probability pi. We derive an upper bound on

its competitive ratio, as a function of β and p = (p1, . . . , pk). Note that whenever a point not

occupied by the algorithm’s servers is requested, the expected cost incurred by the algorithm is
∑k

j=1 pjβj .

2.1 Potential functions

In this paper, we design algorithms against an online adaptive adversary [5]. An online adaptive

adversary observes the behavior of the algorithm on the previous requests, generates the next

3

request, and immediately serves it. The traditional method for analyzing an online algorithm

is to associate a potential with each state, determined by the positions of the adversary’s and

algorithm’s servers, such that

1. When the adversary moves, the increase in the potential is at most α times the cost

incurred by it.

2. When the algorithm moves, the decrease in the potential is at least as much as the cost

incurred by the algorithm.

We think of each request being first served by the adversary, and then by the algorithm. A

standard telescoping argument implies that the competitive ratio is then bounded from above

by α.

In our case, we define the states as follows. At any point of time, let ai (resp. si) denote

the position of the adversary’s (resp. algorithm’s) ith server. We identify our state with the

set S = {i | ai = si} ⊆ [k]. We denote by φS the potential we associate with state S. We

assume, without loss of generality, that the adversary never requests a point occupied by one

of algorithm’s servers, and that the adversary moves its servers only to serve requests. Suppose

that at some point of time the state is S, and the adversary moves its ith server, incurring a cost

βi. If i /∈ S, then the state does not change, while if i ∈ S the state changes to S \ {i}. In order

to prove α-competitiveness it is sufficient to have potentials satisfying

φS\{i} − φS ≤ βi · α for every S and i ∈ S (1)

Suppose that the current state is S, and it is the algorithm’s turn to serve the request.

The request must be ai for some i /∈ S. If the algorithm moves its ith server, the new state is

S ∪ {i}. This happens with probability pi, and the decrease in potential is φS − φS∪{i}. Else if

the algorithm moves its jth server for some j ∈ S, the new state is S \ {j}. This happens with

probability pj, and the decrease in potential is φS − φS\{j}. Finally, if the algorithm moves its

jth server for some j /∈ S and j 6= i, there is no change in the state, and hence the potential.

We want the expected decrease in potential to be at least the expected cost incurred by the

algorithm. Thus, we need

pi(φS − φS∪{i})−
∑

j∈S

pj(φS\{j} − φS) ≥
k

∑

j=1

pjβj for every S and i /∈ S (2)

2.2 A Linear Program and a choice of an Extreme Point

Among the set of potentials φS , for each S ⊆ [k], satisfying (2), we wish to pick one to minimize

α, which is bounded from below due to (1). The conditions (2) define a polyhedron in R2k . Note

that the right hand side of each constraint in (2) is constant. We assume that φ∅, the potential

of the empty set, is 0.

To simplify calculations and to facilitate an inductive approach, we introduce, with foresight,

a change of variables. Let us replace the variables (φS)S⊆[k] by the variables (ϕS)S⊆[k] such that

φS = −(
∑k

j=1 pjβj)ϕS . With this substitution, we have the following optimization problem.

4

Minimize α subject to

For every S and i ∈ S,




k
∑

j=1

pjβj





ϕS − ϕS\{i}

βi
≤ α (3)

For every S and i /∈ S,

pi
(

ϕS∪{i} − ϕS

)

−
∑

j∈S

pj
(

ϕS − ϕS\{j}

)

≥ 1 (4)

ϕ∅ = 0 (5)

Note that the objective value of this problem does not change when all the pj’s are scaled by

a positive constant, and the feasible space merely gets scaled by the inverse of that constant.

Henceforth, for convenience, we will ignore the fact that p1, . . . , pk sum to 1. We may think

of p1, . . . , pk as the relative frequencies of moving the respective servers, and therefore, the

algorithm moves the ith server with probability pi/(
∑k

j=1 pj).

Our task is to establish the existence of one feasible point of the linear program given by

(3), (4), (5) with the required bound on the competitive ratio. Recall that linear programming

theory says the optimum must be attained at an extreme point. We guess a subset of 2k linearly

independent constraints among (4) which will be satisfied with equality. This forms the implicit

description of the potentials. Assume without loss of generality, that p1 ≥ · · · ≥ pk. Let

ϕS = ϕS(p) for all S be the solution of the following linear system of equations:

pi
(

ϕS∪{i} − ϕS

)

−
∑

j∈S

pj
(

ϕS − ϕS\{j}

)

= 1 (6)

for every S 6= [k] and i: the smallest integer not in S, assuming ϕ∅ = ϕ∅(p) = 0. Let α(p) =

maxS,i∈S

(

∑k
j=1 pjβj

)

ϕS(p)−ϕS\{i}(p)

βi
. We need to prove that the quantities ϕS(p), as defined

above, constitute a feasible point, that is, satisfy all the remaining constraints in (4). We will

then prove an upper bound on the value of the objective function α(p).

2.3 Checking Feasibility: The Gauss-Seidel Trick

The näıve way to check feasibility is to determine each ϕS(·) explicitly, substitute in (4), and

verify that the constraints are satisfied for every p. However, these functions tend to be more

and more complicated as k grows, and it is hopeless to find the closed form expressions, even

when k = 4. We therefore resort to the following indirect way.

Suppose we want to prove that the solution x∗ ∈ Rn of the system Ax = b satisfies c⊤x∗ ≤ d.

The Gauss-Seidel iterative procedure in numerical computation to compute x∗ is as follows.

Write A as L∗ +U , where L∗ consists of the diagonal and the lower triangular part of A, and U

consists of the upper triangular part. Choose an initial point x0, and for i going from 1 to ∞,

calculate xi = L−1
∗ (b−Uxi−1). In other words, in every iteration, the jth coordinate is computed

using the jth equality in the system Ax = b, and the latest values of other coordinates. The

coordinates are computed in a fixed order in all iterations. Under certain sufficiency conditions

on A, which imply that L∗ is invertible, the sequence (xi) converges to x∗.

5

Our technique for proving c⊤x∗ ≤ d is as follows. With a suitable choice of the initial point

x0, we prove that c⊤x0 ≤ d, and that for all i, c⊤xi−1 ≤ d implies c⊤xi ≤ d. This proves that

the entire sequence (xi) satisfies the constraint c⊤x ≤ d. Further, since the constraint defines a

closed subset of Rn, the limit point x∗ also satisfies the constraint. We will call this trick the

Gauss-Seidel trick for feasibility checking.

Two sufficient conditions for the Gauss-Seidel iterations to converge are that the system be

strictly diagonally dominated, or irreducibly diagonally dominated.1 In our case, the system

given by (6) is diagonally dominated, but it is neither strictly diagonally dominated, nor irre-

ducibly diagonally dominated. Hence, the Gauss-Seidel trick does not apply directly. To deal

with this and other minor technical issues, we will define ϕS inductively, using certain other

functions fS of the probabilities. For a fixed probability distribution, these functions fS will be

the solutions of a strictly diagonally dominated linear system. We will use the Gauss-Seidel trick

to prove certain linear inequalities involving these functions, which will imply the inequalities

in (4).

3 Proof of the Upper Bound

3.1 Defining the Potentials

Let R(X) = R(X1,X2, . . .) denote the field of rational expressions over the countably infinite set

of indeterminates {X1,X2, . . .}. Recall that any element of this field is a ratio of a multivariate

polynomial to another non-zero multivariate polynomial. By definition, a polynomial is a real

combination of finitely many monomials. Hence, any rational expression in R(X) involves only

finitely many indeterminates. Given any ϕ ∈ R(X), let n be the largest integer such that Xn

appears in ϕ. Then for q = (q1, q2, . . . , qm), the evaluation ϕ(q) ∈ R for the substitution Xi = qi

is well defined, as long as m ≥ n and the denominator of ϕ does not vanish at q.

We will now formally define the functions ϕS ∈ R(X), one for each finite subset S ⊆ N.

If n is the largest integer in S, then the rational expression ϕS will involve the indeterminates

X1, . . . ,Xn only, and its evaluation will be well defined in the open positive orthant of Rn.

For a finite S ⊆ N and i ∈ S, define the rational function I
S\{i}
S ∈ R(X) to beXi(ϕS−ϕS\{i}).

The function ϕS is to be thought of as an electric potential applied at S, with the sets S and

S \ {i} connected by a conductance Xi. Therefore I
S\{i}
S can be viewed as the current flowing

from S to S \ {i}. Note that the potentials and currents will satisfy the Kirchhoff’s voltage law

but not the current law.

We define ϕS by induction on the largest integer n in S. ϕ∅ is defined to be identically zero.

Having defined ϕT for each T ⊆ [n − 1] (and hence, I
[n−1]\{j}
[n−1]

for each j ∈ [n − 1]), for S ⊆ [n]

such that n ∈ S, we define

ϕS = ϕS\{n} +
fS
Xn

(7)

1http://en.wikipedia.org/wiki/Gauss-Seidel_method

6

http://en.wikipedia.org/wiki/Gauss-Seidel_method

where the rational functions fS ∈ R(X) satisfy the following equations.

f[n] = 1 +

n−1
∑

j=1

I
[n−1]\{j}
[n−1] (8)

and for S 6= [n], with i < n, the smallest integer not in S,



Xi +
∑

j∈S

Xj



 fS = XifS∪{i} +
∑

j∈S\{n}

XjfS\{j} (9)

We claim that the linear system given by the equations (9) and (8) in the variables {fS | S ⊆

[n], n ∈ S} has a unique solution in R(X). To see this, substitute arbitrary positive values

for X1, . . . ,Xn, and observe that the coefficient matrix is strictly diagonally dominant. This

ensures that the determinant of the coefficient matrix is not identically zero. Furthermore, this

also guarantees that the evaluation fS(p) is well defined, for p = (p1 . . . , pn) ∈ (R>0)
n. Moreover,

the Gauss-Seidel procedure converges to the solution when started from any point.

It will be useful to have an expression for the currents in terms of the functions fS, which

we derive next. First, note that I
S\{n}
S = fS . Further, for i ∈ S, i < n we have

I
S\{i}
S = Xi

(

ϕS − ϕS\{i}

)

= Xi

[(

ϕS\{n} +
fS
Xn

)

−

(

ϕS\{i,n} +
fS\{i}

Xn

)]

= Xi

(

ϕS\{n} − ϕS\{i,n}

)

+
Xi

Xn

(

fS − fS\{i}
)

= I
S\{i,n}
S\{n} +

Xi

Xn

(

fS − fS\{i}
)

(10)

We note the following facts, which can be easily proved by induction. For any constant c ∈ R,

1. ϕS(cX) = ϕ(cX1, cX2, . . .) = ϕS(X)/c.

2. I
S\{i}
S (cX) = I

S\{i}
S (X). In particular, fS(cX) = fS(X).

While (7), (8), (9) may be taken as an independent definition, we will now show that this

definition of ϕS coincides with the equation (6) in Section 2.2.

Lemma 1. Let S be a finite subset of N and let i be the smallest integer not in S. Then

Xi

(

ϕS∪{i} − ϕS

)

= 1 +
∑

j∈S

Xj

(

ϕS − ϕS\{j}

)

or equivalently

ISS∪{i} = 1 +
∑

j∈S

I
S\{j}
S

Proof. The claim is true for S = ∅, since I∅{1} = f[1] = 1, by equation (8). We prove by induction

on the largest integer n in S. First, consider the case when S = [n]. Then i = n + 1, and we

have IS
S∪{i} = f[n+1] = 1 +

∑n
j=1 I

[n]\{j}
[n] , where the second equality is given by equation (8). In

particular, the claim holds for n = 1.

7

Now for the inductive step, assume n > 1, and S ([n]. Hence, i < n. We have from

equation (10)

ISS∪{i} = I
S\{n}
S∪{i}\{n} +

Xi

Xn

(

fS∪{i} − fS
)

(11)

But i is also the smallest integer not in S \ {n}, and by the induction hypothesis, we have

I
S\{n}
S∪{i}\{n} = 1 +

∑

j∈S\{n}

I
S\{j,n}
S\{n}

Further, rearranging equation (9), we get

Xi

(

fS∪{i} − fS
)

= XnfS +
∑

j∈S\{n}

Xj

(

fS − fS\{j}
)

Substituting in equation (11), and again using equation (10), we get

ISS∪{i} = 1+fS+
∑

j∈S\{n}

[

I
S\{j,n}
S\{n} +

Xj

Xn

(fS − fS\{j})

]

= 1+I
S\{n}
S +

∑

j∈S\{n}

I
S\{j}
S = 1+

∑

j∈S

I
S\{j}
S

Remark. The definitions of the rational functions ϕS , I
S
S∪{i}, fS are all independent of k, the

number of servers under consideration. However, in the analysis of the weighted k-server prob-

lem, the potential function is to be defined for sets S ⊆ [k] only. Hence, we use the functions

ϕS , I
S
S∪{i}, fS for S ⊆ [k] and i ≤ k only. These involve the indeterminates X1, . . . ,Xk only.

For a randomized memoryless algorithm, given by a probability distribution p = (p1, . . . , pk) on

the servers, we evaluate these functions by the substitution Xi = pi, and use the evaluations in

our analysis.

3.2 Proving Feasibility

Towards proving Theorem 1, our first goal is to prove that the potentials satisfy the constraints

given by (4). Towards this, we first prove suitable inequalities involving the evaluations fS(p),

and then use induction and (10). The inequalities that we need are given by the following

lemma, which essentially says that the quantity pi
(

fS∪{i}(p)− fS(p)
)

is monotone with respect

to i, for a fixed S and p.

Lemma 2. Let S ⊆ [n] be a set containing n. Suppose p = (p1, . . . , pn) with p1 ≥ · · · ≥ pn > 0.

Then for any i, i′ /∈ S, i < i′ < n, we have

pi
(

fS∪{i}(p)− fS(p)
)

≤ pi′
(

fS∪{i′}(p)− fS(p)
)

The proof of this lemma is the technical heart of the upper bound. It is in this proof that we

use the Gauss-Seidel trick. We prove that the claim is true after every iteration of the Gauss-

Seidel procedure, when started from an appropriately chosen point. This lemma enables us to

prove the following current monotonicity property.

8

Lemma 3 (Monotonicity of currents). Let S be a finite subset of N, i, j /∈ S, i < j and

S ∪ {i, j} ⊆ [n]. Suppose p = (p1, . . . , pn) with p1 ≥ · · · ≥ pn > 0. Then we have

ISS∪{i}(p) ≤ ISS∪{j}(p)

We defer the proofs of the above two claims to the Appendix. The following feasibility

lemma, which states that the constraints (4) are satisfied, is immediate from Lemmas 1 and 3.

Lemma 4 (Feasibility). Let S be a finite subset of N, i /∈ S, and S ∪ {i} ⊆ [n]. Suppose

p = (p1, . . . , pn) with p1 ≥ · · · ≥ pn > 0. Then we have

pi
(

ϕS∪{i}(p)− ϕS(p)
)

≥ 1 +
∑

j∈S

pj
(

ϕS(p)− ϕS\{j}(p)
)

or equivalently

ISS∪{i}(p) ≥ 1 +
∑

j∈S

I
S\{j}
S (p)

with equality if i is the smallest integer not in S.

3.3 Bounding the Objective Function

Recall that in Section 2.2, we mentioned that the randomized memoryless algorithm, which uses

the probability distribution p = (p1, . . . , pk) with p1 ≥ · · · ≥ pk, for server weights β1, . . . , βk,

has a competitive ratio bounded by




k
∑

j=1

pjβj



max
S,i∈S

ϕS(p)− ϕS\{i}(p)

βi
=





k
∑

j=1

pjβj



max
S,i∈S

I
S\{i}
S (p)

piβi

Given β1, . . . , βk, we would like to choose a probability distribution p that minimizes this. How

this can be done is unclear due to the presence of the rational function I
S\{i}
S . However, we will

show that each current I
S\{i}
S (p) is bounded from above by constants (which depend on S and

i but not on p). Towards proving this, the key property we need is that for any p, S 7→ ϕS(p)

is a supermodular set function.

Lemma 5 (Supermodularity). Let S be a finite subset of N, i, j /∈ S, and S ∪ {i, j} ⊆ [n].

Suppose p = (p1, . . . , pn) with p1 ≥ · · · ≥ pn > 0. Then we have

ϕS∪{i}(p) + ϕS∪{j}(p) ≤ ϕS∪{i,j}(p) + ϕS(p)

Thus for any fixed p, the function mapping a set S to ϕS(p) is supermodular, and we have

IS
′

S′∪{i}(p) = pi
(

ϕS′∪{i}(p)− ϕS′(p)
)

≤ pi
(

ϕS∪{i}(p)− ϕS(p)
)

= ISS∪{i}(p)

whenever S′ ⊆ S ⊆ [n] and i ∈ [n] \ S.

We defer the proof to the Appendix. As mentioned earlier, this lemma enables us to prove

that each current is bounded from above by a constant independent of p. We will define one

such constant for each finite subset of N, by induction on the following enumeration of the finite

subsets of N, called the colex order.

9

Definition 1. Let S and T be finite subsets of N. We say that S precedes T in the colex order

if there exists i ∈ T \ S such that S and T agree on membership of integers greater than i.

For example, the first few sets in the colex order are ∅, {1}, {2}, {1, 2}, {3}, {1, 3}, {2, 3},

{1, 2, 3}, etc. Given a set S, the next set is obtained by the including i, the smallest number

not in S, and removing all the numbers 1, . . . , i − 1 from S. Similarly, the set just before S is

obtained by removing from S the smallest number j in it, and putting in all the smaller numbers

1, . . . , j− 1. We will refer to the colex order in the forthcoming inductive definitions and proofs.

Definition 2. For each finite S ⊆ N define CS using the following recurrence. C∅ = 1 and if

S 6= ∅, then CS = 1 +
∑

j∈S CS\{j}∪[j−1]. For each n ∈ N define αn as αn = α2
n−1 + 3αn−1 + 1,

where α0 = 0.

Note that the above definition is valid because S \{j}∪ [j− 1] precedes S in the colex order,

for any j ∈ S. The bounds on the currents are given by the following lemma.

Lemma 6 (Boundedness of currents). For every finite set S ⊆ [n] and for all p = (p1, . . . , pn)

with p1 ≥ · · · ≥ pn > 0, IS
S∪{i}(p) ≤ CS, where i is the smallest integer not in S.

Proof. We induct on the position of S in the colex order. For the base case, when S = ∅ and

i = 1, we have I∅{1}(p) = f{1}(p) = 1 = C∅ for all p, by equation (8). For the inductive case,

assume that the claim holds for all finite subsets of N which precede a set S in the colex order.

Let i be the smallest integer not in S. Then by Lemma 1, we have

ISS∪{i}(p) = 1 +
∑

j∈S

I
S\{j}
S (p) ≤ 1 +

∑

j∈S

I
S\{j}∪[j−1]
S∪[j−1]

(p) ≤ 1 +
∑

j∈S

CS\{j}∪[j−1] = CS

where the first inequality is due to supermodularity (Lemma 5), and the second is by the

induction hypothesis, since the smallest integer not in S \ {j} ∪ [j − 1] is j.

Our final ingredients towards the proof of Theorem 1 are the following two lemmas relating

the quantities from Definition 2.

Lemma 7. For finite subsets S, T of N, if S precedes T in the colex order, then CS < CT . In

particular for any n, C[n]\{n} < C[n]\{n−1} < · · · < C[n]\{2} < C[n]\{1}.

Proof. It is sufficient to prove CS < CT when S is the set immediately preceding T in the colex

order, that is, S = T \ {i} ∪ [i − 1], where i is the smallest integer in T . But by Definition 2,

we immediately have CS = CT\{i}∪[i−1] < CT . Further for i < j ≤ n, since [n] \ {j} precedes

[n] \ {i} in the colex order, we have C[n]\{j} < C[n]\{i}.

Lemma 8. For every n ∈ N, αn =
∑n

j=1C[n]\{j} = C[n] − 1.

Proof. We prove the claim by induction on n, noting that the claim holds for n = 0. Let

n ≥ 1 and assume C[n−1] = αn−1 + 1. For any S ⊆ [n] containing n, we first prove CS =

(αn−1 + 2)CS\{n}, by induction on the position of S in the colex order.

In the colex order, the first subset of [n] containing n is {n}. For S = {n}, we have from

Definition 2 and by induction on n,

C{n} = 1 + C[n−1] = 2 + αn−1 = (αn−1 + 2)C∅

10

For an arbitrary S ⊆ [n] containing n, we have from Definition 2 and by induction on n,

CS = 1 +
∑

j∈S

CS\{j}∪[j−1] = 1 + C[n−1] +
∑

j∈S\{n}

CS\{j}∪[j−1] = αn−1 + 2 +
∑

j∈S\{n}

CS\{j}∪[j−1]

Since S \ {j} ∪ [j − 1] precedes S in the colex order, CS\{j}∪[j−1] = (αn−1 + 2)CS\{j,n}∪[j−1].

Thus,

CS = αn−1 + 2 + (αn−1 + 2)
∑

j∈S\{n}

CS\{j,n}∪[j−1]

= (αn−1 + 2)



1 +
∑

j∈S\{n}

CS\{j,n}∪[j−1]



 = (αn−1 + 2)CS\{n}

This proves CS = (αn−1 + 2)CS\{n}, for all S ⊆ [n] containing n. In particular, we have

C[n] = (αn−1 + 2)C[n−1]. Again, by induction on n and from Definition 2, we have

C[n] = (αn−1 + 2)(αn−1 + 1) = α2
n−1 + 3αn−1 + 2 = αn + 1

3.4 Proof of Theorem 1

We now show how the above lemmas imply Theorem 1. First, we prove an upper bound on the

competitive ratio achieved by the probability distribution p = (p1, . . . , pk), when the weights are

β1, . . . , βk.

Theorem 3. Consider an instance of the weighted k-server problem with weights β1, . . . , βk,

and a randomized memoryless algorithm which moves the ith server with a probability pi, where

p1 ≥ · · · ≥ pk. Then the competitive ratio of this algorithm against an adaptive online adversary

is at most α̃(β, p), where

α̃(β, p) =





k
∑

j=1

pjβj



max
i∈[k]

I
[k]\{i}
[k]

(p)

piβi

Proof. Lemma 4 assures that the constraints (4) hold. To satisfy the set of constraints given by

(3), we choose

α =





k
∑

j=1

pjβj



 max
S⊆[k],i∈S

ϕS(p)− ϕS\{i}(p)

βi

Due to the supermodularity property from Lemma 5, the maximum is attained for S = [k].

Thus we have

α =





k
∑

j=1

pjβj



max
i∈[k]

ϕ[k](p)− ϕ[k]\{i}(p)

βi
=





k
∑

j=1

pjβj



max
i∈[k]

I
[k]\{i}
[k] (p)

piβi

11

With Theorem 3 in place, we are ready to prove Theorem 1.

Proof of Theorem 1. Let β1, . . . , βk be the weights of the servers, and assume β1 ≤ · · · ≤ βk,

without loss of generality. The required memoryless algorithm behaves as follows. Let pi =

C[k]\{i}/βi for all i. On receiving a request which is not covered by any server, the algorithm

serves it with the ith server with probability pi/P , where P =
∑k

j=1 pj. By Lemma 7 and our

assumption: β1 ≤ · · · ≤ βk, we have p1 ≥ . . . ≥ pk. Thus, we can apply Theorem 3, and hence,

the competitive ratio of our algorithm is at most

α̃(β, p) =





k
∑

j=1

pjβj



max
i∈[k]

I
[k]\{i}
[k] (p)

piβi
=





k
∑

j=1

C[k]\{j}



max
i∈[k]

I
[k]\{i}
[k] (p)

C[k]\{i}
≤ αk

where the last inequality follows from Lemma 8, and Lemma 6. Note that since the currents are

invariant under scaling of p, so is α̃(β, p), and hence, P can be ignored.

Corollary 1 (to Theorem 3). The Harmonic algorithm for the weighted k-server problem on

uniform spaces has a competitive ratio of kαk against an online adaptive adversary.

Proof. The probabilities for the Harmonic algorithm are given by pi = (1/βi)/
∑k

j=1(1/βj).

Therefore, 1/(piβi) =
∑k

j=1(1/βj) for all i. Also,
∑k

j=1 pjβj = k/
∑k

j=1(1/βj). By Theorem 3

the competitive ratio is given by

α =





k
∑

j=1

pjβj



max
i∈[k]

I
[k]\{i}
[k] (p)

piβi
= k ·max

i∈[k]
I
[k]\{i}
[k] (p) ≤ k ·max

i∈[k]
C[k]\{i} ≤ k ·

k
∑

i=1

C[k]\{i} = kαk

4 Proof of the Lower Bound

In this section, we show that it is not possible to improve the upper bound of αk on the

competitive ratio of randomized memoryless algorithms for the weighted k-server problem, on

uniform spaces. We will exhibit costs β such that, irrespective of the probability distribution

chosen by an algorithm, an adversary can force a competitive ratio approaching αk.

4.1 Constructing Adversaries

As a first step towards proving Theorem 2, we prove that Theorem 3 is essentially tight. For

an algorithm which uses probabilities p = (p1, . . . , pk) when the weights are β = (β1, . . . , βk),

we prove a lower bound on the competitive ratio, which goes arbitrarily close to α̃(β, p), as the

separation between the weights grows unbounded.

Fix β1 ≤ · · · ≤ βk, the weights of the servers, and let s = max1≤i<k βi/βi+1. Fix some online

algorithm. For each t ∈ [k], we define an adversary At, who gives requests from a uniform metric

space with 2k+1 points. As before, at any point of time let ai (resp. si) denote the position of

the adversary’s (resp. algorithm’s) ith server. The adversary maintains the following invariant

whenever it gives a request.

ai 6= sj for all i < j; i, j ∈ [k] and ai’s are all distinct. (12)

12

The strategy of the adversary At is the following.

1. If ai = si for all i ∈ [k], then move the tth server to a point not occupied by any of the 2k

servers, (in other words different from ai and si for all i), and request that point.

2. Else, find the smallest i such that ai 6= si. (Invariant (12) ensures that ai is not occupied

by the algorithm.) Request ai.

3. If invariant (12) is violated for some i, j after the algorithm serves the request, then move

the ith server to a point not occupied by any of the 2k servers.

Note that t plays a role only in step 1, and that the adversary pays only in steps 1 and 3.

Let ADV and ADV ′ denote the total cost paid by the adversary in steps 1 and 3 respectively,

and let ALG be the (expected) total cost paid by the online algorithm. The following lemma is

immediate.

Lemma 9. ALG ≥ ADV ′/s.

Proof. Every time the adversary executes step 3 and moves its ith server out of a point, the

algorithm must have moved its jth server, for some j > i, to that point from elsewhere. Thus,

the algorithm paid βj ≥ βi/s, whereas the adversary pays βi.

Note that the above lemma holds even if the algorithm is not memoryless. Now the next

two claims assume that the algorithm is memoryless, and prove lower bounds on its competitive

ratio. Fix a randomized memoryless algorithm, which moves the ith server with probability pi,

whenever there is no server on the requested point.

Theorem 4. Let t ∈ [k] be such that

α̃(β, p) =





k
∑

j=1

pjβj



max
i∈[k]

I
[k]\{i}
[k] (p)

piβi
=





k
∑

j=1

pjβj



 ·
I
[k]\{t}
[k] (p)

ptβt

(in other words, i = t achieves the maximum). Then the competitive ratio of the algorithm

against At is at least α̃(β, p)/(1 + sα̃(β, p)).

Proof. We prove ALG ≥ α̃(β, p)ADV . The theorem follows from this and Lemma 9, since

the total cost paid by the adversary is ADV + ADV ′. As before, at any point of time let

S = {i | ai = si} ⊆ [k], and S will denote the state of the system. We will again assign a

potential to each state, but this time we will ensure the following.

1. When the adversary At moves its tth server in step 1, the increase in potential is at least

α̃(β, p) · βt.

2. When the algorithm is moves a server, the expected decrease in potential is at most the

expected cost paid by the algorithm.

13

Note that when the adversary moves its servers in step 3 to ensure ai 6= sj for all i < j, the state

remains the same. Thus, the above two statements imply ALG ≥ α̃(β, p)ADV . Interestingly,

the potentials that we assign to the states here are same as those that we assigned in the proof

of the upper bound. That is, φS = −(
∑k

j=1 pjβj)ϕS(p). Note however, that we have not made

any assumption about whether p is a non-decreasing sequence.

Consider the situation when the adversary incurs a cost of βt, in step 1. Since ai = si for all

i, the state is [k]. The state after the move is [k] \ {t}, and the change in potential is

φ[k]\{t} − φ[k] =





k
∑

j=1

pjβj



 (ϕ[k](p)− ϕ[k]\{t}(p)) =





k
∑

j=1

pjβj



 ·
I
[k]\{t}
[k] (p)

pt
= α̃(β, p) · βt

Now, consider the algorithm’s move in response to a request, when the system is in state

S ([k]. Let i be the smallest integer not in S. By step 2 of the adversary, the next request is

ai, and this point is not occupied by any of the algorithm’s servers. Hence, the algorithm must

incur a cost
∑k

j=1 pjβj in expectation. The expected change in potential is

pi
(

φS∪{i} − φS

)

+
∑

j∈S

pj
(

φS\{j} − φS

)

= −





k
∑

j=1

pjβj







pi
(

ϕS∪{i}(p)− ϕS(p)
)

−
∑

j∈S

pj
(

ϕS(p)− ϕS\{j}(p)
)





= −
k

∑

j=1

pjβj

where the last equality follows from Lemma 1. Thus, we have proved ALG ≥ α̃(β, p)ADV .

Since β1 ≤ · · · ≤ βk, we expect a reasonable algorithm to choose probabilities p1 ≥ · · · ≥ pk,

at least when the ratio βi+1/βi is sufficiently large for all i. We prove the next lemma in order to

rule out the possibility of a “counter-intuitive” algorithm being competitive, where the algorithm

always chooses pj > pi for some j > i, no matter how large βj/βi is.

Lemma 10. For any i ∈ [k], the competitive ratio of the algorithm against Ai is at least

γi(β, p)/(1 + sγi(β, p)), where γi(β, p) =
(

∑k
j=1 pjβj

)

/piβi.

Proof. Analogous to Theorem 4, it is sufficient to prove ALG ≥ γi(β, p)ADV . Say that a new

phase begins whenever aj = sj for all j ∈ [k]. We prove that in every phase the change in

ALG is at least γi(β, p) times the change in ADV . Observe that the ith server of the algorithm

must move at least once in every phase. Suppose this happens for the first time on the mth

request. Then m is a geometrically distributed random variable with parameter pi and hence

E[m] = 1/pi.

For each of the firstm−1 requests, the algorithm does not move its ith server, and moves its jth

server with probability pj/(1−pi), for j 6= i. Hence the algorithm pays
(

∑

j∈[k]\{i} pjβj

)

/(1−pi)

in expectation on each of the first m − 1 requests, and βi on the mth one. The total expected

cost paid on the first m requests, conditioned on m, is

(m− 1)×

∑

j∈[k]\{i} pjβj

1− pi
+ βi

14

Thus, the expected cost paid by the algorithm in a phase, until it moves its ith server for the

first time, is given by

E

[

(m− 1)×

∑

j∈[k]\{i} pjβj

1− pi
+ βi

]

= E[m− 1]×

∑

j∈[k]\{i} pjβj

1− pi
+ βi

=

(

1

pi
− 1

)

×

∑

j∈[k]\{i} pjβj

1− pi
+ βi

=

∑

j∈[k]\{i} pjβj

pi
+ βi

=

∑

j∈[k] pjβj

pi
= γi(β, p)× βi

This is a lower bound on the change in ALG in a phase. Further, step 1 of the adversary Ai

is executed exactly once in a phase, and hence, ADV increases by exactly βi in every phase.

Thus, we have proved ALG ≥ γi(β, p)ADV .

4.2 Proof of Theorem 2

With Theorem 4 in place, proving Theorem 2 reduces to proving that α̃(β,p)
1+sα̃(β,p) can be forced

to be arbitrarily close to αk, where s = max1≤i<k βi/βi+1, with a suitably chosen β. Let the

weights of the servers, parameterized by r > 1, be given by βi(r) = ri−1. Consider a randomized

memoryless algorithm with a bounded competitive ratio, which chooses a probability distribution

p(r) for the weights β(r). If lim supr→∞ pj(r)/pi(r) = δ > 0 for some i < j, then there exist

arbitrarily large r such that pj(r)/pi(r) ≥ δ. Then by Lemma 10, the adversary Ai forces an

unbounded lower bound on the competitive ratio, which is a contradiction. Thus, we must have

lim supr→∞ pj(r)/pi(r) = 0, and since pj(r)/pi(r) ≥ 0, we have

lim
r→∞

pj(r)

pi(r)
= 0 for all i < j; i, j ∈ [k] (13)

Thus, for a sufficiently large r, we must have p1(r) ≥ · · · ≥ pk(r). As a consequence of the next

lemma, we prove that the supermodularity inequalities, that we applied in the proof of Lemma

6, are all tight in the limit as r → ∞.

Lemma 11. Let S ([k] and i be the smallest integer not in S. Suppose j /∈ S and i < j < k.

Then limr→∞

[

I
S∪{i}
S∪{i,j}(p(r))− IS

S∪{j}(p(r))
]

= 0.

Proof. On one hand we have

ϕS∪{i,j}(p(r))− ϕS(p(r)) =
[

ϕS∪{i,j}(p(r))− ϕS∪{i}(p(r))
]

+
[

ϕS∪{i}(p(r))− ϕS(p(r))
]

=
I
S∪{i}
S∪{i,j}(p(r))

pj(r)
+

IS
S∪{i}(p(r))

pi(r)

On the other hand

ϕS∪{i,j}(p(r))− ϕS(p(r)) =
[

ϕS∪{i,j}(p(r))− ϕS∪{j}(p(r))
]

+
[

ϕS∪{j}(p(r))− ϕS(p(r))
]

=
I
S∪{j}
S∪{i,j}(p(r))

pi(r)
+

IS
S∪{j}(p(r))

pj(r)

15

Thus

I
S∪{i}
S∪{i,j}(p(r))

pj(r)
+

IS
S∪{i}(p(r))

pi(r)
=

I
S∪{j}
S∪{i,j}(p(r))

pi(r)
+

IS
S∪{j}(p(r))

pj(r)

I
S∪{i}
S∪{i,j}(p(r))− ISS∪{j}(p(r)) =

pj(r)

pi(r)

[

I
S∪{j}
S∪{i,j}(p(r))− ISS∪{i}(p(r))

]

Taking limits as r → ∞, noting that currents are bounded (Lemma 6), and using (13), we get

the required result.

By repeatedly applying the above lemma, we have for any S ([k] and j /∈ S,

lim
r→∞

[

I
S∪[j−1]
S∪[j] (p(r))− ISS∪{j}(p(r))

]

= 0

or in other words, for S ⊆ [k] and j ∈ S

lim
r→∞

[

I
S\{j}∪[j−1]
S∪[j−1] (p(r))− I

S\{j}
S (p(r))

]

= 0 (14)

Recall that in Lemma 6, we proved that if i is the smallest integer not in S, then IS
S∪{i}(p) ≤

CS for any non-increasing p, where the constant CS was given by Definition 2. We will now

prove that as r goes to ∞, IS
S∪{i}(p(r)) approaches CS .

Lemma 12. For any S ([k], let i be the smallest integer not in S. Then limr→∞ IS
S∪{i}(p(r)) =

CS.

Proof. We again prove the statement by induction on the position of S in the colex order given

by Definition 1. For the base case, when S = ∅ we indeed have I∅{1}(p(r)) = 1 = C∅ for all r.

For the inductive case, assume the claim holds for all finite subsets of N which precede a set

S in the colex order. Let i be the smallest integer not in S. Then we have

lim
r→∞

ISS∪{i}(p(r)) = 1 +
∑

j∈S

lim
r→∞

I
S\{j}
S (p(r)) = 1 +

∑

j∈S

lim
r→∞

I
S\{j}∪[j−1]
S∪[j−1] (p(r))

= 1 +
∑

j∈S

CS\{j}∪[j−1] = CS

where the first equality is by Lemma 1, second due to (14), third by induction hypothesis, since

the smallest integer not in S \ {j} ∪ [j − 1] is j, and the fourth by Definition 2.

Proof of Theorem 2. We have

lim inf
r→∞

α̃(β(r), p(r)) = lim inf
r→∞





k
∑

j=1

pj(r)βj(r)



max
i∈[k]

I
[k]\{i}
[k] (p(r))

pi(r)βi(r)

≥ lim inf
r→∞





k
∑

j=1

pj(r)βj(r)



×

∑k
i=1 I

[k]\{i}
[k] (p(r))

∑k
i=1 pi(r)βi(r)

= lim inf
r→∞

k
∑

i=1

I
[k]\{i}
[k] (p(r)) =

k
∑

i=1

C[k]\{i} = αk (15)

16

where the penultimate equality is given by Lemma 12, and the last one by Lemma 8. Thus,

lim inf
r→∞

α̃(β(r), p(r))

1 + α̃(β(r), p(r))/r
= lim inf

r→∞

(

1

α̃(β(r), p(r))
+

1

r

)−1

=

[

lim sup
r→∞

(

1

α̃(β(r), p(r))
+

1

r

)]−1

≥

[

lim sup
r→∞

1

α̃(β(r), p(r))
+ lim sup

r→∞

1

r

]−1

≥ αk

where the first inequality follows from sub-additivity of the lim sup operator, and the last in-

equality from (15). Thus, for any ε > 0, there exists an R such that for all r > R, we have

α̃(β(r), p(r))

1 + α̃(β(r), p(r))/r
≥ αk − ε

Using Theorem 4 with s = max1≤i<k βi(r)/βi+1(r) = 1/r, we conclude that the competitive

ratio of the algorithm is no less than αk.

5 Concluding Remarks

We have proved that there exists a competitive memoryless algorithm for the weighted k-server

problem on uniform metric spaces. This is in contrast to the line metric, which does not

admit a competitive memoryless algorithm, even with two servers. The competitive ratio αk,

that we establish, is given by αk = α2
k−1 + 3αk−1 + 1. We can bound αk as follows. We have

αk+2 = (αk−1+2)2−(αk−1+2)+1 < (αk−1+2)2. Therefore, αk+2 < (αt+2)2
k−t

= [(αt+2)2
−t

]2
k

for any t < k. For t = 4, one can verify that (αt + 2)2
−t

< 1.6, and hence αk < 1.62
k
, as

promised in the introduction. We have also proved that αk is the best possible competitive ratio

of memoryless algorithms for the weighted k-server problem on uniform metric spaces. With

this, we settle the problem completely.

The immediate increment to our results would perhaps be to determine whether there exists

a competitive memoryless algorithm for the weighted server problem on star metrics. This

problem translates to having a weight βi for the i
th cache location, and a cost ct with each page

t; the overall cost of replacing page t by page t′ at the ith cache location being βi(ct + ct′). It

would be interesting to see whether our techniques work on the star metric too.

We improve the upper bound on the deterministic competitive ratio by [10] for the weighted

server problem on uniform metrics. However, our bound is still doubly exponential, whereas

the lower bound is only exponential in the number of servers. It would be interesting to reduce

this gap. The prime candidate for improving the upper bound is perhaps the (generalized)

work function algorithm, which has been proved to be optimally competitive for the weighted

2-server problem on uniform metrics [8], and which is the best known algorithm for several other

problems [13, 6].

The introduction of different costs for replacements at different cache locations seems to make

the caching problem notoriously hard. This is certified by the fact that attempts to develop algo-

rithms better than the one by Fiat and Ricklin [10] have given negligible success even with k = 3.

For k = 2, Sitters [16] has shown that the generalized work function algorithm is competitive

for the generalized server problem on arbitrary metrics, which subsumes the weighted 2-server

problem. He has also expressed a possibility of the non-existence of a competitive algorithm

17

for k > 2. All this is in a striking contrast with the problem of weighted caching, where the

pages (points) have costs instead of cache locations (servers). For the weighted caching problem

k-competitive deterministic and O(log k)-competitive randomized algorithms have been discov-

ered [7, 15, 17, 18, 2, 1], even when the pages have different sizes, matching the respective lower

bounds.

Acknowledgment

The authors would like to thank Nikhil Bansal for pointing them to some references.

References

[1] Anna Adamaszek, Artur Czumaj, Matthias Englert, and Harald Räcke. An O(log k)-

competitive algorithm for generalized caching. In SODA, pages 1681–1689. SIAM, 2012.

[2] Nikhil Bansal, Niv Buchbinder, and Joseph Naor. A primal-dual randomized algorithm for

weighted paging. J. ACM, 59(4):19, 2012.

[3] Yair Bartal, Marek Chrobak, and Lawrence L. Larmore. A randomized algorithm for two

servers on the line (extended abstract). In ESA, volume 1461 of Lecture Notes in Computer

Science, pages 247–258. Springer, 1998.

[4] Yair Bartal and Eddie Grove. The harmonic k-server algorithm is competitive. Journal of

the ACM, 47(1):1–15, 2000.

[5] Shai Ben-David, Allan Borodin, Richard M. Karp, Gábor Tardos, and Avi Wigderson. On

the power of randomization in on-line algorithms. Algorithmica, 11(1):2–14, 1994.

[6] William R. Burley. Traversing layered graphs using the work function algorithm. Journal

of Algorithms, 20(3):479–511, 1996.

[7] Marek Chrobak, Howard J. Karloff, T. H. Payne, and Sundar Vishwanathan. New results

on server problems. In SODA, pages 291–300, 1990.

[8] Marek Chrobak and Jǐŕı Sgall. The weighted 2-server problem. Theoretical Computer

Science, 324(2-3):289–312, 2004.

[9] Don Coppersmith, Peter Doyle, Prabhakar Raghavan, and Marc Snir. Random walks on

weighted graphs and applications to on-line algorithms. J. ACM, 40(3):421–453, 1993.

[10] Amos Fiat and Moty Ricklin. Competitive algorithms for the weighted server problem.

Theoretical Computer Science, 130(1):85–99, 1994.

[11] Edward F. Grove. The harmonic online k-server algorithm is competitive. In Proceedings

of the 23rd Annual ACM Symposium on Theory of Computing, pages 260–266. ACM, 1991.

[12] Elias Koutsoupias. The k-server problem. Computer Science Review, 3(2):105–118, 2009.

18

[13] Elias Koutsoupias and Christos H. Papadimitriou. On the k-server conjecture. Journal of

the ACM, 42(5):971–983, 1995.

[14] Mark S. Manasse, Lyle A. McGeoch, and Daniel Dominic Sleator. Competitive algorithms

for on-line problems. In Proceedings of the 20th Annual ACM Symposium on Theory of

Computing, pages 322–333. ACM, 1988.

[15] Mark S. Manasse, Lyle A. McGeoch, and Daniel Dominic Sleator. Competitive algorithms

for server problems. J. Algorithms, 11(2):208–230, 1990.

[16] René Sitters. The generalized work function algorithm is competitive for the generalized

2-server problem. SIAM J. Comput., 43(1):96–125, 2014.

[17] Neal E. Young. The k-server dual and loose competitiveness for paging. Algorithmica,

11(6):525–541, 1994.

[18] Neal E. Young. On-line file caching. In SODA, pages 82–86, 1998.

Appendix

A Proof of Lemma 2

Throughout this section, we assume p = (p1, . . . , pn) is such that p1 ≥ · · · ≥ pn > 0. In order to

prove Lemma 2, we use the Gauss-Seidel trick on the system given by equations (9) and (8). In

every iteration, we calculate an approximation to fS(p) in decreasing order of |S|. For S ⊆ [n]

containing n, we take f0
S(p) = 0 if S 6= [n] and f t

[n](p) = 1 +
∑n−1

j=1 I
[n−1]\{j}
[n−1] (p) for all t. Having

obtained f t−1
S′ (p) for each such S′, and f t

S′(p) for each such S′ ⊇ S 6= [n], we obtain f t
S(p) using

the following update rule.



pi +
∑

j∈S

pj



 f t
S(p) = pif

t
S∪{i}(p) +

∑

j∈S\{n}

pjf
t−1
S\{j}(p) (16)

The system given by equations (9) and (8) becomes strictly diagonally dominant under the

substitution Xj = pj, since each pj > 0. Therefore, the approximations converge to the solution

of the system. That is, limt→∞ f t
S(p) = fS(p). We prove some claims about these iterated

solutions.

Claim 1 (Iteration monotonicity). f t
S(p) is non-decreasing with respect to t, in other words,

f t−1
S (p) ≤ f t

S(p) for every S.

Proof. We prove by induction on t, and reverse induction on |S|. The claim is obvious for t = 1,

since f t
[n](p) ≥ 0 does not change with t, and for any other S, f0

S(p) = 0 and f1
S(p) ≥ 0. Now,

19

assuming the claim for t−1, and for all S′ ⊇ S in the current (tth) iteration, we have for S 6= [n]



pi +
∑

j∈S

pj



 f t
S(p) = pif

t
S∪{i}(p) +

∑

j∈S\{n}

pjf
t−1
S\{j}(p)

≥ pif
t−1
S∪{i}(p) +

∑

j∈S\{n}

pjf
t−2
S\{j}(p)

=



pi +
∑

j∈S

pj



 f t−1
S (p)

We now derive an equation which will be used repeatedly in the next claim. Let i be the

smallest integer not in S, and let i′ < n, i′ 6= i also not be in S. Then the smallest integer not

in S ∪ {i′} is i. Therefore, by equation (16) applied to S ∪ {i′}, we have



pi + pi′ +
∑

j∈S

pj



 f t
S∪{i′}(p) = pif

t
S∪{i,i′}(p) + pi′f

t−1
S (p) +

∑

j∈S\{n}

pjf
t−1
S∪{i′}\{j}(p) (17)

Adding pi′f
t
S(p) to both sides of equation (16), we get



pi + pi′ +
∑

j∈S

pj



 f t
S(p) = pif

t
S∪{i}(p) + pi′f

t
S(p) +

∑

j∈S\{n}

pjf
t−1
S\{j}(p) (18)

Subtracting (18) from (17), we get



pi + pi′ +
∑

j∈S

pj





(

f t
S∪{i′}(p)− f t

S(p)
)

= pi

(

f t
S∪{i,i′}(p)− f t

S∪{i}(p)
)

− pi′
(

f t
S(p)− f t−1

S (p)
)

+
∑

j∈S\{n}

pj

(

f t−1
S∪{i′}\{j}(p)− f t−1

S\{j}(p)
)

(19)

The following claim states a version of Lemma 2 for the iterated solutions. Lemma 2 follows

easily from this, taking limit as t → ∞.

Claim 2. Let S = [n] \ {l1, . . . , lm} be such that n ∈ S, where l1 < · · · < lm < n. Then the

following are true.

1. f t
S∪{li}

(p) ≥ f t
S(p) for i = 1, . . . ,m

2. pli

(

f t
S∪{li}

(p)− f t
S(p)

)

≤ pli+1

(

f t
S∪{li+1}

(p)− f t
S(p)

)

for i = 1, . . . ,m− 1

Proof. We prove this claim by induction on t. For t = 0, the claim is obvious. So suppose t > 0.

We first consider the case when i = 1.

Consider Part 1 of the claim. The smallest integer not in S is l1. Rewriting (16), we have

pl1

(

f t
S∪{l1}

(p)− f t
S(p)

)

= pnf
t
S(p) +

∑

j∈S\{n}

pj

(

f t
S(p)− f t−1

S\{j}(p)
)

20

By Claim 1 and induction on t, we have f t
S(p) ≥ 0 and f t

S(p)−f t−1
S\{j}(p) ≥ f t−1

S (p)−f t−1
S\{j}(p) ≥ 0.

Hence f t
S∪{l1}

(p)− f t
S(p) ≥ 0, and thus Part 1 is proved for i = 1, for any S.

Consider Part 2 of the claim. When |S| = n − 1, there is nothing to prove in Part 2. So

assume |S| < n − 1. l1 and l2 are respectively the smallest and second smallest integers not in

S, and thus, l2 is the smallest integer not in S ∪ {l1}. Therefore, we have



pl1 +
∑

j∈S

pj



 f t
S(p) = pl1f

t
S∪{l1}

(p) +
∑

j∈S\{n}

pjf
t−1
S\{j}(p)



pl2 + pl1 +
∑

j∈S

pj



 f t
S∪{l1}

(p) = pl2f
t
S∪{l1,l2}

(p) + pl1f
t−1
S (p) +

∑

j∈S\{n}

pjf
t−1
S∪{l1}\{j}

(p)

Thus,



pl2 + pl1 +
∑

j∈S

pj



 pl1

(

f t
S∪{l1}

(p)− f t
S(p)

)

= pl2pl1f
t
S∪{l1,l2}

(p)− p2l1f
t
S∪{l1}

(p)

−pl2pl1f
t
S(p) + p2l1f

t−1
S (p) (20)

+
∑

j∈S\{n}

pjpl1

(

f t−1
S∪{l1}\{j}

(p)− f t−1
S\{j}(p)

)

Further, from equation (19),



pl1 + pl2 +
∑

j∈S

pj



 pl2

(

f t
S∪{l2}

(p)− f t
S(p)

)

= pl1pl2

(

f t
S∪{l2,l1}

(p)− f t
S∪{l1}

(p)
)

−p2l2
(

f t
S(p)− f t−1

S (p)
)

(21)

+
∑

j∈S\{n}

pjpl2

(

f t−1
S∪{l2}\{j}

(p)− f t−1
S\{j}(p)

)

We need to prove (20) is at most (21). By induction on t, for each j ∈ S \ {n}, we have

pjpl1

(

f t−1
S∪{l1}\{j}

(p)− f t−1
S\{j}(p)

)

≤ pjpl2

(

f t−1
S∪{l2}\{j}

(p)− f t−1
S\{j}(p)

)

Canceling pl2pl1f
t
S∪{l1,l2}

(p), we are left to prove

−p2l1f
t
S∪{l1}

(p)− pl2pl1f
t
S(p) + p2l1f

t−1
S (p) ≤ −pl2pl1f

t
S∪{l1}

(p)− p2l2
(

f t
S(p)− f t−1

S (p)
)

Using f t
S(p)− f t−1

S (p) ≥ 0 by Claim 1, and the fact that pl1 ≥ pl2 > 0, we have

−pl2pl1
(

f t
S(p)− f t−1

S (p)
)

≤ −p2l2
(

f t
S(p)− f t−1

S (p)
)

Therefore, it is sufficient to prove

−p2l1f
t
S∪{l1}

(p)− pl2pl1f
t−1
S (p) + p2l1f

t−1
S (p) ≤ −pl2pl1f

t
S∪{i}(p)

that is,

pl2pl1f
t
S∪{l1}

(p)− pl2pl1f
t−1
S (p) ≤ p2l1f

t
S∪{l1}

(p)− p2l1f
t−1
S (p)

21

that is,

pl2

(

f t
S∪{l1}

(p)− f t−1
S (p)

)

≤ pl1

(

f t
S∪{l1}

(p)− f t−1
S (p)

)

This is true, since by Claim 1 and induction on t, we have f t
S∪{l1}

(p) − f t−1
S (p) ≥ f t−1

S∪{l1}
(p) −

f t−1
S (p) ≥ 0, and pl2 ≤ pl1 .

We are now ready to prove the claim completely for any S and i. We perform reverse

induction on |S|, and then on i. We have proved the claim when |S| = n − 1. So assume that

|S| < n− 1, and that the claim holds for all supersets of S. We have proved the claim for i = 1,

so assume i > 1, and that the claim holds for i− 1.

For Part 1, by induction on i, we have f t
S∪{li−1}

(p) − f t
S(p) ≥ 0 and pli−1

(f t
S∪{li−1}

(p) −

f t
S(p)) ≤ pli(f

t
S∪{li}

(p)− f t
S(p)). Therefore f t

S∪{li}
(p) ≥ f t

S(p).

We now prove Part 2 for i < m. Since f t
S∪{li}

(p) ≥ f t
S(p) and pli ≥ pli+1

, it is sufficient to

prove



pl1 + pli +
∑

j∈S

pj



 pli

(

f t
S∪{li}

(p)− f t
S(p)

)

≤



pl1 + pli+1
+

∑

j∈S

pj



 pli+1

(

f t
S∪{li+1}

(p)− f t
S(p)

)

Substituting from equation (19), we are left to prove

pl1pli

(

f t
S∪{li,l1}

(p)− f t
S∪{l1}

(p)
)

−p2li
(

f t
S(p)− f t−1

S (p)
)

+
∑

j∈S\{n}

pjpli

(

f t−1
S∪{li}\{j}

(p)− f t−1
S\{j}(p)

)

≤

pl1pli+1

(

f t
S∪{li+1,l1}

(p)− f t
S∪{l1}

(p)
)

− p2li+1

(

f t
S(p)− f t−1

S (p)
)

+
∑

j∈S\{n}

pjpli+1

(

f t−1
S∪{li+1}\{j}

(p)− f t−1
S\{j}(p)

)

But by reverse induction on |S|, we have

pli

(

f t
S∪{li,l1}

(p)− f t
S∪{l1}

(p)
)

≤ pli+1

(

f t
S∪{li+1,l1}

(p)− f t
S∪{l1}

(p)
)

and by induction on t, for each j ∈ S \ {n}, we have

pjpli

(

f t−1
S∪{li}\{j}

(p)− f t−1
S\{j}(p)

)

≤ pjpli+1

(

f t−1
S∪{li+1}\{j}

(p)− f t−1
S\{j}(p)

)

Further since f t
S(p)− f t−1

S (p) ≥ 0 by Claim 1, and pli ≥ pli+1
> 0, the claim stands proved.

Proof of Lemma 2. Let S = [n] \ {l1, . . . , lm}, where l1 < · · · < lm < n, be a set containing

n. Suppose p = (p1, . . . , pn) with p1 ≥ · · · ≥ pn > 0. Then for all i, i′ ∈ {l1, . . . , lm}, i < i′, we

are required to prove

pi
(

fS∪{i}(p)− fS(p)
)

≤ pi′
(

fS∪{i′}(p)− fS(p)
)

Note that it is sufficient to prove the claim for i = lj and i′ = lj+1 for each j. From Part 2 of

Claim 2, we have for every t, plj (f
t
S∪{lj}

(p)− f t
S(p)) ≤ plj+1

(f t
S∪{lj+1}

(p)− f t
S(p)). Taking limit

as t → ∞, we get plj (fS∪{lj}(p)− fS(p)) ≤ plj+1
(fS∪{lj+1}(p)− fS(p)).

22

Similarly, using Part 1 of Claim 2 and taking limit as t → ∞, we get fS∪{i}(p) ≥ fS(p) if

i /∈ S. Using this fact and (10), it is easy to prove inductively that as long as p1 ≥ · · · ≥ pn > 0,

ISS∪{i}(p) ≥ 0 if i /∈ S (22)

In other words, all currents are non-negative.

B Proof of Lemma 3

Assume p = (p1, . . . , pn) is such that p1 ≥ · · · ≥ pn > 0. In order to prove Lemma 3, we require

the following two claims, apart from Lemma 2.

Claim 3 (Symmetry). For any n, let the sequence p be such that pn = pn−1. Then we have for

any S ⊆ [n− 1] such that n− 1 ∈ S

1. fS(p) = fS\{n−1}∪{n}(p).

2. ϕS(p) = ϕS\{n−1}∪{n}(p)

Proof. Consider the subset of quantities {fS(p) | n ∈ S, n − 1 /∈ S}. These form a unique

solution to the system given by


pi +
∑

j∈S

pj



 fS(p) = pifS∪{i}(p) +
∑

j∈S\{n}

pjfS\{j}(p) (23)

for S 6= [n− 2] ∪ {n}, where i < n− 1 is the smallest integer not in S, and





n
∑

j=1

pj



 f[n−2]∪{n}(p) = pn−1



1 +

n−1
∑

j=1

I
[n−1]\{j}
[n−1] (p)



+

n−2
∑

j=1

pjf[n−2]∪{n}\{j}(p) (24)

since 1 +
∑n−1

j=1 I
[n−1]\{j}
[n−1] (p) = f[n](p). Suppose we replace fS(p) by fS∪{n−1}\{n}(p) for each S.

We will prove that equations (23) and (24) are still satisfied. This will imply the first part of

the claim. Equation (23) can be verified easily using the fact that pn = pn−1, and we are left to

check (24). That is, we have to prove





n
∑

j=1

pj



 f[n−1](p) = pn−1



1 +

n−1
∑

j=1

I
[n−1]\{j}
[n−1] (p)



+

n−2
∑

j=1

pjf[n−1]\{j}(p)

Since f[n−1](p) = I
[n−2]
[n−1](p) and pn = pn−1, we are left to prove





n−1
∑

j=1

pj



 f[n−1](p) = pn−1



1 +

n−2
∑

j=1

I
[n−1]\{j}
[n−1] (p)



+

n−2
∑

j=1

pjf[n−1]\{j}(p)

that is,




n−1
∑

j=1

pj
pn−1



 f[n−1](p)−
n−2
∑

j=1

pjf[n−1]\{j}(p)

pn−1
= 1 +

n−2
∑

j=1

I
[n−1]\{j}
[n−1] (p)

23

that is,

f[n−1](p) +
n−2
∑

j=1

pj(f[n−1](p)− f[n−1]\{j}(p))

pn−1
= 1 +

n−2
∑

j=1

I
[n−1]\{j}
[n−1] (p) (25)

Using the fact from equation (10), that

I
[n−1]\{j}
[n−1] (p) = I

[n−2]\{j}
[n−2] (p) +

pj(f[n−1](p)− f[n−1]\{j}(p))

pn−1

and substituting this in the right hand side of (25), we are left with

f[n−1](p) = 1 +

n−2
∑

j=1

I
[n−2]\{j}
[n−2] (p)

which is indeed true. The second part of the claim follows from the first part and (7).

The next claim states that the function fS(p) increases, as pn decreases from pn−1 to 0, for

fixed p1, . . . , pn−1.

Claim 4 (p-monotonicity). Let p′ be such that p′j = pj for 1 ≤ j < n and p′n ≤ pn. Then for

each S ⊆ [n], fS(p
′) ≥ fS(p).

Proof. When n /∈ S, and also when S = [n], the claim is obvious, since in this case, fS(p)

depends only on p1, . . . , pn−1. Else if n ∈ S ([n], then we again prove that the claim holds after

each iteration of the Gauss-Seidel procedure described in Appendix A, implying that the claim

holds for the limit. Thus, we need to prove f t
S(p

′) ≥ f t
S(p) for each t. We again use induction

on t, and reverse induction on |S|. For t = 0 the claim is trivial. For t > 0 we have proved the

claim for S = [n]. So let S ([n], n ∈ S and let i < n be the smallest integer not in S. Assuming

the claim for t− 1 and for all S′ ⊇ S in the current tth iteration, we have


p′i +
∑

j∈S

p′j



 f t
S(p

′) = p′if
t
S∪{i}(p

′) +
∑

j∈S\{n}

p′jf
t−1
S\{j}(p

′)

≥ pif
t
S∪{i}(p) +

∑

j∈S\{n}

pjf
t−1
S\{j}(p)

=



pi +
∑

j∈S

pj



 f t
S(p)

Note that the inequality holds because p′i = pi and p′j = pj for all j ∈ S \ {n}. But we also have

p′i +
∑

j∈S p
′
j ≤ pi +

∑

j∈S pj, and therefore, f t
S(p

′) ≥ f t
S(p).

Proof of Lemma 3. Let S be a finite subset of N, i, j /∈ S, i < j and S ∪{i, j} ⊆ [n]. Suppose

p = (p1, . . . , pn) with p1 ≥ · · · ≥ pn > 0. We are required to prove

ISS∪{i}(p) ≤ ISS∪{j}(p)

Note that we may assume, without loss of generality, that the largest integer in S∪{j} is n. We

prove the claim by induction on n. For n = 1, there is nothing to prove. For n > 1 we consider

two cases: n > j and n = j.

24

In the former case, the largest integer in S as well as S ∪ {i} is n. From equation (10), we

need to prove

I
S\{n}
S∪{i}\{n}(p) +

pi
pn

(

fS∪{i}(p)− fS(p)
)

≤ I
S\{n}
S∪{j}\{n}(p) +

pj
pn

(

fS∪{j}(p)− fS(p)
)

But by induction hypothesis, we have

I
S\{n}
S∪{i}\{n}(p) ≤ I

S\{n}
S∪{j}\{n}(p)

and from Lemma 2, we have

pi
pn

(

fS∪{i}(p)− fS(p)
)

≤
pj
pn

(

fS∪{j}(p)− fS(p)
)

Adding these inequalities, we get the desired result.

In the latter case, that is n = j, S ∪ {i} ⊆ [n − 1]. We have IS
S∪{j}(p) = IS

S∪{n}(p) =

fS∪{n}(p), and this increases with decreasing pn, due to Claim 4. On the other hand, IS
S∪{i}(p)

is independent of pn, since S ⊆ S ∪ {i} ⊆ [n − 1]. Therefore, it is sufficient to prove the claim

assuming pn = pn−1.

We consider two sub-cases: n − 1 ∈ S and n − 1 /∈ S. First, suppose n − 1 ∈ S. Then by

Claim 3, we have

pi
(

ϕS∪{i}(p)− ϕS(p)
)

= pi
(

ϕS∪{i}\{n−1}∪{n}(p)− ϕS\{n−1}∪{n}(p)
)

which means IS
S∪{i}(p) = I

S\{n−1}∪{n}
S∪{i}\{n−1}∪{n}(p), and

pn
(

ϕS∪{n}(p)− ϕS(p)
)

= pi
(

ϕS∪{n}(p)− ϕS\{n−1}∪{n}(p)
)

which means IS
S∪{n}(p) = I

S\{n−1}∪{n}
S∪{n} (p). Since i < n− 1, by the earlier case (taking j = n− 1)

we have I
S\{n−1}∪{n}
S∪{i}\{n−1}∪{n}(p) ≤ I

S\{n−1}∪{n}
S∪{n} (p), and hence IS

S∪{i}(p) ≤ IS
S∪{n}(p), as required.

Finally, suppose n − 1 /∈ S. We already have IS
S∪{i}(p) ≤ IS

S∪{n−1}(p) by induction on

n. By Claim 3, we have IS
S∪{n−1}(p) = fS∪{n−1}(p) = fS∪{n}(p) = IS

S∪{n}(p), and hence,

IS
S∪{i}(p) ≤ IS

S∪{n}(p), as required.

C Proof of Lemma 5

Proof. Let S be a finite subset of N, i, j /∈ S, and S ∪ {i, j} ⊆ [n]. Suppose p = (p1, . . . , pn)

with p1 ≥ · · · ≥ pn > 0. Without loss of generality, assume i < j and therefore pi ≥ pj. Then

by Lemma 3, we have

pi(ϕS∪{i}(p)− ϕS(p)) = ISS∪{i}(p) ≤ ISS∪{j}(p) (26)

If m is the smallest integer not in S, then m ≤ i < j, and the smallest integer not in S ∪ {j} is

m. Hence from Lemma 1, we have

I
S∪{j}
S∪{m,j}(p) = 1 +

∑

j′∈S∪{j}

I
S∪{j}\{j′}
S∪{j} (p) = 1 + ISS∪{j}(p) +

∑

j′∈S

I
S∪{j}\{j′}
S∪{j} (p) ≥ ISS∪{j}(p) (27)

25

where the inequality follows from (22). By Lemma 3, we have

pi(ϕS∪{i,j}(p)− ϕS∪{j}(p)) = I
S∪{j}
S∪{i,j}(p) ≥ I

S∪{j}
S∪{m,j}(p) (28)

Putting together (26), (27), and (28), we get

pi(ϕS∪{i}(p)− ϕS(p)) ≤ pi(ϕS∪{i,j}(p)− ϕS∪{j}(p))

and since pi > 0,

ϕS∪{i}(p) + ϕS∪{j}(p) ≤ ϕS∪{i,j}(p) + ϕS(p)

as required.

26

	1 Introduction
	2 Preliminaries and Techniques
	2.1 Potential functions
	2.2 A Linear Program and a choice of an Extreme Point
	2.3 Checking Feasibility: The Gauss-Seidel Trick

	3 Proof of the Upper Bound
	3.1 Defining the Potentials
	3.2 Proving Feasibility
	3.3 Bounding the Objective Function
	3.4 Proof of Theorem ??

	4 Proof of the Lower Bound
	4.1 Constructing Adversaries
	4.2 Proof of Theorem ??

	5 Concluding Remarks
	A Proof of Lemma ??
	B Proof of Lemma ??
	C Proof of Lemma ??

