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Abstract—A frustration-free local Hamiltonian has the prop-
erty that its ground state minimises the energy of all local
terms simultaneously. In general, even deciding whether a
Hamiltonian is frustration-free is a hard task, as it is closely
related to the QMA1-complete quantum satisfiability problem
(QSAT) – the quantum analogue of SAT, which is the archety-
pal NP-complete problem in classical computer science. This
connection shows that the frustration-free property is not only
relevant to physics but also to computer science.

The Quantum Lovász Local Lemma (QLLL) provides a
sufficient condition for frustration-freeness. Is there an efficient
way to prepare a frustration-free state under the conditions
of the QLLL? Previous results showed that the answer is
positive if all local terms commute. These works were based
on Moser’s “compression argument” which was the original
analysis technique of the celebrated resampling algorithm. We
generalise and simplify the “compression argument”, so that it
provides a simplified version of the previous quantum results,
and improves on some classical results as well.

More importantly, we improve on the previous constructive
results by designing an algorithm that works efficiently for
non-commuting terms as well, assuming that the system is
“uniformly” gapped, by which we mean that the system and all
its subsystems have an inverse polynomial energy gap. Similarly
to the previous results, our algorithm has the charming feature
that it uses only local measurement operations corresponding
to the local Hamiltonian terms.

I. INTRODUCTION

Frustration-free Hamiltonians and quantum satisfiabil-
ity: Most physical systems and models are described by

a local Hamiltonian H =
∑

iHi where each k-local term

Hi acts non-trivially only on at most k of its subsystems.

Such a Hamiltonian is called frustration-free if its ground

state is also the ground state of each of the local terms

Hi. Frustration-free Hamiltonians appear in various areas,

for example: quantum error correcting codes [1], parent

Hamiltonians for PEPS (a 2-D generalisation of matrix-

product-states) [2], and various models in many-body quan-

tum physics.
An equivalent way to ask whether a Hamiltonian H is

frustration-free is whether H ′ =
∑

iΠi is frustration-free,

∗Supported by ERC Consolidator Grant 615307-QPROGRESS.
†Supported by ERC Grant 030-8301.

where Πi is the projector on the excited states of Hi.

The quantum satisfiability problem1 (QSAT) is to determine

whether H ′ in the above form is frustration-free. QSAT

is QMA1-complete [3], and therefore intractable in general

even for quantum computers (unless BQP = QMA1). In

this work we tackle the search problem – finding a state of

a frustration-free Hamiltonian – which is, in general, even a

harder task than the deciding frustration freeness.2

The Classical and Quantum Lovász Local Lemma: We

would like to understand the QSAT problem, so it is natural

to first look at the classical SAT and the techniques that were

useful in studying it. A “local” version of SAT is called k-

SAT. It asks whether a Boolean formula of the following

form can be satisfied:
∧

i∈[m] ci, where each ci is a clause
containing the or (

∨
) of exactly k distinct Boolean variables

or their negation.

A natural question is, when can we be sure that a

satisfying assignment exists? Since each k-SAT constraint

excludes a p = 2−k fraction of assignments, pm < 1 is a

sufficient condition (by the union bound). If we have the

additional information that none of the constraints share

variables, then it is clearly satisfiable. What can we say

in the intermediate regime, where each constraint shares

variables with at most d constraints (including itself)? The

(symmetric) Lovász Local Lemma [5], [6], [7], [8], applied

to this setting, implies that the (symmetric) Lovász condition

pde ≤ 1 (1)

is a sufficient condition for satisfiability.3 Shearer gener-

alised the Lovász Local Lemma and showed the weakest

possible sufficient condition in this framework [9].

How hard is it to find such a satisfying assignment? A

series of works [10], [11], [12], [13] have culminated in an

efficient constructive algorithm.

1For technical reasons that would not be relevant for this work, there is
a promise that if H′ is not frustration-free, the minimal energy of H′ is at
least inverse-polynomial in the number of qubits.

2SAT (as well as any other NP-Complete problem) has a search-to-
decision reduction [4]. No such reduction is known for QSAT.

3The constant e in Eq. (1) is 2.71 . . ., the base of the natural logarithm.
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It is natural to ask the analogous questions in the quan-

tum setting, where the Boolean variables are replaced by

qubits and the clauses by rank-1 k-local projectors. The

resemblance between a k-SAT clause and a rank-1 projector

is the following: a k-SAT clause excludes one out of the

2k possible configurations of the relevant variables, while

a rank-1 k-local projector excludes one dimension out of

the 2k relevant dimensions. So given a set of k-local rank-1
projectors acting on n qubits4, under what conditions can we

guarantee that the system is frustration-free? A “dimension-

counting” argument can be used to show that the Lovász

condition (pde ≤ 1) [15] is indeed sufficient, as is Shearer’s

condition [16].

Is there an algorithm which efficiently prepares a ground

state under these conditions? In the past, such constructions

have been achieved only for commuting Hamiltonians, i.e.

[Πi,Πj ] = 0 for all i, j. Commuting Hamiltonians are

somewhat “half-way” between classical and quantum. For

example, the commuting 2-local Hamiltonian problem is

in (the purely classical class) NP for qudits of all dimen-

sions [17], whereas 2-local QSAT is QMA1-complete if the

dimension of the qudits is large enough [18]. Yet commuting

Hamiltonians, such as the toric code, can have the striking

quantum property of topological order [19]. In this work

we extend the previous results to non-commuting projectors,

thereby entering the fully quantum regime.

Moser-Tardos type resampling algorithm: Following

the seminal work of Moser and Tardos [12], a variety of

algorithms and analysis techniques were introduced for prov-

ing efficient versions of the Lovász Local Lemma based on

their resampling algorithm. The resampling algorithm starts

with a random state, and repeatedly checks the constraints

that we want to satisfy. If a constraint c is violated, then

it performs a “resampling”, which is some random “local”

change to the current state only affecting c and a few other

constraints, hopefully fixing c. Once all constraints are fixed,

the algorithm returns a satisfying state. The main challenge

is the analysis of the algorithm: proving a bound on the

expected number of resamplings needed. In Algorithm 1 we

present a meta-algorithm sketching this procedure, which

captures the basic structure of most related algorithms.

The algorithm can be interpreted both as a classical and

quantum algorithm. For example, in the case of SAT, the

initial state is n uniformly random Boolean variables, and a

constraint is simply a clause, which is simple to check by

looking at the corresponding Boolean variables. In the quan-

tum setting of QSAT, the initial state is similarly n uniformly

randomly initialised 0/1 qubits (which is the maximally

mixed state). A constraint c corresponds to an orthogonal

projector Πc. We say that |ψ〉 satisfies the constraint c if the

quantum state is in the kernel of Πc, and that c is unsatisfied

4The uniform k-locality and rank-1 constraints are only for convenience,
for a general treatment see the full version [14].

if |ψ〉 is not in the kernel. Finally we say that |ψ〉 violates
c if it is in the image of Πc.

Algorithm 1 Moser-Tardos resampling meta-algorithm

1: input set of constraints C
2: initialise system to a uniformly random starting state

3: F ← ∅ (F will stand for the set of fixed clauses)

4: while F �= C do
5: pick c ∈ C \F and check if constraint c is satisfied

6: if “Satisfied”

7: update F ← F ∪ {c}
8: else if “Violated”

9: resample c (and thereby hopefully fix it)

10: update F ← F \Γ+(c) (� Γ+(c) denotes the

constraints possibly affected by resampling c �)

11: end while

In Algorithm 1, pick and check in line 5 and resample
in line 9 need to be specified in order to get a well-

defined algorithm. In this paper, all the results apply for

any deterministic strategy for executing pick, see Def. 2.

In order to get improved bounds, up to the optimal Shearer

bound [9], we need to be more careful regarding pick, for

more details see the full version [14]. In this article we

mostly work in the so-called variable framework [11], [12],

[13], which is sufficient for the SAT and QSAT applications.

In this setting each constraint depends on some (qu)bits of

the system. (For simplicity we will only consider systems of

n qubits, but all the results generalise trivially to qudits.) In

this binary variable framework we simply define resample
as reinitialising the specific constraint’s (qu)bits to uniformly

random true-false (0-1) values. We define Γ+(c) as the set

of constraints c′ such that c and c′ both act non-trivially on

some shared (qu)bit, and d = maxc∈C |Γ+(c)|. In general

one could also work with other models, as described in [20].

The checking step in line 5 should be performed using

some measurement operator, corresponding to Πc. The al-

gorithm implicitly assumes, that all the constraints in F are

fixed (satisfied). This loop invariant is easy to maintain in

the classical and commuting quantum case by implementing

check using the two-outcome measurement {Πc, Id− Πc}.
But, in the non-commuting setting, using this two-outcome

measurement can break the loop invariant: suppose that all

the constraints in F are fixed, and then another constraint

Πc is checked (i.e., measured) and is found to be satisfied.

A constraint which was fixed before, and shares a qubit with

Πc, may become unsatisfied because of the collapse caused

by the measurement. Because of this caveat the analysis of

the previous quantum algorithms [21], [22] worked only in

the commuting case. Next, we explain how to maintain this

loop invariant also in the non-commuting case.

The progressive measurement channel: We first need

one more notation. We denote by ΠF the projection onto
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ker(
∑

c∈F Πc). Note that for c the image of Πc is violated,

whereas for F the image of ΠF is satisfied for any c′ ∈ F ,

e.g., Π{c} = I − Πc. We changed from sub- to superscript

to help avoiding confusion caused by this difference.

Suppose that |ψ〉 satisfies all the constraints in F , i.e.,

|ψ〉 = ΠF |ψ〉, and {ΠF∪{c}, Id − ΠF∪{c}} is measured.

The unnormalised post-measurement state associated with

outcome ΠF∪{c} is ΠF∪{c}|ψ〉, which we obtain with prob-

ability 〈ψ|ΠF∪{c}|ψ〉.5 If instead {Πc, Id−Πc} is measured,

the post-measurement state |ϕ〉 associated with outcome Πc

has the property that |ϕ〉 = Πc|ϕ〉, and due to locality also

|ϕ〉 = ΠF\Γ+(c)|ϕ〉. One of our key observations is, that the

outcomes ΠF∪{c} and Πc are in some sense complementary

to each other.

We call a quantum channel a progressive measurement

channel, if it combines these two properties6: for an input

state |ψ〉 ∈ im(ΠF ), it has two classically labelled outputs

(corresponding to measurement labels): the “Satisfied” out-

put is ΠF∪{c}|ψ〉, and the “Violated” output is ρ such that

ρ = Πcρ = ΠF\Γ+(c)ρ and Tr[ρ] = 1 − ∥∥ΠF∪{c}|ψ〉∥∥2.

Here, the name progressive is used to emphasize that for a

state which satisfies F , the channel either adds c to the set

of fixed constraints, or provides a state in which c is violated

(but the state ρ keeps at least F \ Γ+(c) satisfied).

We show two different but closely related constructions,

which satisfy the requirements of a progressive measurement

channel. In Section II-C we show an explicit (but inefficient)

procedure and prove that it is a progressive measurement

channel. The construction itself and its analysis is fairly

simple. In Section III we show how to efficiently construct

an approximate progressive measurement channel. The proof

that this efficient construction satisfies the requirements

needed for a progressive measurement channel is more

complicated, and some of the details are deferred to the full

version.

The main idea of the efficient variant is to use weak

measurements coupled with a quantum Zeno effect7. This

variant uses only Πc and ΠF measurements, and the number

of measurements it performs depends on the spectral gap of∑
c′∈F∪{c}Πc′ . It repeats the following T times: (strongly)

measure ΠF , followed by a weak measurement of Πc. If

Πc is found to be violated, we immediately return with

the classical “Violated” label. If we ever get measurement

outcome I − ΠF , we immediately abort, otherwise we

return “Satisfied”. We show that by choosing the weak

5This measurement could be approximated by measuring the energy of
the Hamiltonian H′ =

∑
c′∈F∪{c} Πc′ (by applying phase estimation to

the unitary eiH
′
, see, e.g. [23]), and checking whether the energy is 0.

However, we will use a different approach for such measurements.
6The formal definition is slightly different, and is adapted for our needs,

see Def. 7. The progressive measurement channels that we discuss in
Sections II-C and III satisfy these two properties.

7The quantum Zeno effect is a quantum technique which uses frequently
repeated measurements to prevent unwanted changes in the quantum state
of some quantum system [24].

measurement parameter to be weak enough, the probability

of abort becomes proportionally small. Also if we choose T
to be large enough, then the procedure closely approximates

a progressive measurement channel. Finally we show how to

appropriately approximate a ΠF measurement by repeated

Πc′ measurements for c′ ∈ F .

We think that the definition and efficient construction of

a progressive measurement channel could be of independent

interest, and might find applications in other quantum algo-

rithms.

New existential proof: Our work does not require any

of the previous existential proofs, and therefore provides an

alternative proof for the main results in [15] and [16].

Our contributions: We present three main results in

this paper.

Our first contribution is the adaptation of the “forward-

looking” analysis technique of [20] to the quantum setting,

which enables the generalization for the non-commuting

case, and makes it possible to extend the previous commut-

ing results up to Sherarer’s bound (see the full version [14]).

This is done via our Key Lemma 8, which borrows ideas

from [20], [25]. It is proved using semi-definite inequalities

which introduce quantum analogues of uniform probability

bounds.

Our second contribution is the generalisation and simplifi-

cation of Moser’s “entropy compression argument” [11] that

was originally used for proving efficiency of the resampling

algorithm. This generalisation simplifies the proof of the

previous commuting quantum results from [21], [22]. On

top of the quantum implications, it also improves the runtime

analysis of some classical algorithms, see the discussion in

Section II-A. Last, but not least, it gives valuable insight

through the “Log compression” Lemma 3 showing that the

core of the “entropy compression argument” can be distilled

to a straightforward counting argument.

Our third and most important contribution is that we

prove a constructive Quantum Lovász Local Lemma for

non-commuting projectors. We construct the appropriate

progressive measurement channel which can handle the non-

commuting case in a way suggested by our Key Lemma 8.

The algorithm’s running time is polynomial in the number

of the constraints and qubits, but also depends inverse-

polynomially on the uniform gap, see Eq. (14) and the

discussion there. The main open question left is whether this

dependency on the uniform gap is necessary. Specifically,

given a Hamiltonian H which satisfies the Lovász condition,

and an energy bound ε, is there a quantum algorithm

which can output a state with energy at most ε in time

poly(n, |C|, 1/ε)? (The running time should neither depend

on the uniform gap, nor on the gap of the Hamiltonian.)
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II. THE IDEAL ALGORITHM

A. Generalised compression argument.

Our generalisation starts form key insights of both clas-

sical [20], [25] and quantum [21], [22] literature. The gen-

eralised approach we present makes the proof significantly

simpler than in the original work of Moser [11], probably

providing the simplest known proof of any Moser-Tardos

type algorithm. It works for any deterministic constraint-

selection rule, and can be applied beyond the variable

framework [20].

Definition 1 (Logs): The log of the first T steps of Al-

gorithm 1 is a string L ∈ {S, V }T containing the first T
outcomes of check where S stands for “Satisfied”, and V
for “Violated”).

Let L(r) denote the the set of all valid logs which contain

exactly r V ’s, and ends with a V .

Definition 2: (Constraint-selection Strategy) A determin-

istic constraint-selection strategy is a function s, which given

the current log L, determines which next constraint to pick
at line 5 of Algorithm 1.

Lemma 3: (Log compression) Suppose we run Algo-

rithm 1 using a deterministic constraint-selection strategy.

Then the log uniquely encodes the sequence of resamples

that happened during the algorithm. Moreover, if Γ+(c) ≤ d
for all c ∈ C, then for all r ∈ N we have |L(r)| ≤ (|C|+rd

r

)
.

Proof: Since the constraint-selection strategy is deter-

ministic and initially F = ∅, we can recover the content of

the set F after each execution of the main loop at line 4

by only looking at the binary log telling us whether a

resampling happened or not. Therefore the log compresses

the whole resample history into a binary string.

Now observe, that any log L ∈ L(r) contains at most

|C| + rd entries: Suppose the algorithm performed k − 1
steps before the r-th resampling. At this step 0 < |C \ F |
since a resampling is performed at the k-th step. On the

other hand F starts with 0 elements, and gains one element

with the k − r successful checks, and looses at most d− 1
elements after each resampling. Therefore |C \ F | ≤ |C| −
(k−r)+(r−1)(d−1) ≤ |C|+rd−k and so k < |C|+rd.

Finally we map each L ∈ L(r) to a binary string of length

|C|+ rd by extending it with “S”s. Note that this mapping

is injective, and observe that the number of length |C|+ dr
binary sequences containing r “V ”s is

(|C|+dr
r

)
, which by

injectivity proves the desired upper bound on |L(r)|.
Theorem 4: Let d = maxc∈C |Γ+(c)|. Suppose we run

Algorithm 1 using a deterministic constraint-selection strat-

egy, and in each step we log the constraint that we checked

and whether it was satisfied or not. Let Lk = �1, �2, . . . , �k
denote the log obtained during the first k steps. Let r = 4|C|,
if

(i) pde ≤ 1, and

(ii) Pr(seeing a specific log Lk ∈ L(r) during a run)≤ pr

then Algorithm 1 terminates with constant probability mak-

ing less than 4|C| resamplings. If also

(iii) during the algorithm the constraints in F remain fixed8,

then upon termination Algorithm 1 provides a satisfying

state.

Proof: Suppose we set a bound r = 4|C| on the number

of resamplings, such that we terminate with “timeout” upon

the r-th resampling. The “Log compression” Lemma 3

shows that the number of logs that we might obtain at

“timeout” is at most
(|C|+rd

r

)
. Using the bound(

n

k

)
≤

(en
k
− e

2

)k

(2)

from the Appendix, we upper bound
(|C|+rd

r

)
by (d −

1/4)rer. Combining this with (ii) using the union bound, we

can see that the probability of termination with “timeout” is

at most

pr
(
d− 1

4

)r
er

(i)

≤
(
p(d− 1/4)e

pde

)r
=

(
1− 1

4d

)r
≤ e− r

4d ≤ 1

e
.

Finally, note that if Algorithm 1 terminates normally

(without “timeout”) then F = C, and by (iii) it means that

the final state is a satisfying state.

Remark 5: Since every randomised strategy is a convex

combination of deterministic strategies, the above theorem

implies that for any randomised constraint-selection strategy

the probability of performing at least 4|C| resamplings is

also at most 1/e.
Theorem 4 gives a fast algorithm whenever the conditions

(i)-(iii) are met. It is easy to show that properties (ii)-

(iii) hold for the classical variable setting for p which is

the maximal probability of encountering a constraint in the

uniformly random distribution (so, for example, in a k-SAT

formula, p = 2−k), and even for more general settings

if an appropriate resampling procedure is used, e.g., as in

[20]. This improvement partially answers an open question

posed in [20], by providing an improved upper bound on

the number of resamplings for the case of the symmetric

Lovász condition.

In the quantum case, we can choose p to be the maximal

probability of measuring any particular constraint in a max-

imally mixed state (so, for example, in a k-QSAT formula,

p = 2−k). In the commuting case, if check is performed

using standard projective measurements of the constraint

projectors, then (ii) and (iii) hold (see Proposition 13), and

therefore Theorem 4 implies the results of [21], [22]. Our

proof is not only simpler, but due to the use of our optimised

bound (2), our result do not require a slack in the condition

pde ≤ 1. (As shown above, we require slack in the condition

8This requirement is mostly trivial in the classical case, since constraints
can only appear after resamplings, which is handled by Algorithm 1. But
in the non-commutative quantum case it becomes problematic, as was
discussed in the introduction.
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p(d − 1/4)e ≤ 1, which can actually be pushed to be a

slack in p(d − 1/2)e ≤ 1.) Since property (ii) holds even

in the non-commuting case, the algorithm is guaranteed to

terminate under the Lovász condition (i.e., when property

(i) is satisfied), but the problem is that the output may not

be satisfying for all constraints.

B. The progressive measurement channel and the key lemma

To adapt the algorithm to the quantum setting we intro-

duce a quantum channel MF
c , which performs some quan-

tum operation on the n-qubit quantum register determined

by the classical input (F, c), where F is the set of already

“fixed” constraints, and c is the next constraint to address.

In the case of commuting projectors MF
c will be simply

the application of a projective measurement (Πc, Id − Πc)
where the classical measurement outcomes are labelled with

(V, S) standing for (“Violated”,“Satisfied”) respectively.

Definition 6: (Quantum-classical states) For the descrip-

tion of quantum-classical states consisting of an N di-

mensional quantum system and a k dimensional classical

system we are going to use elements of C
N×N ⊗ R

k. We

can interpret these as quantum states of restricted form

via defining an embedding of R
k to C

k×k using diagonal

matrices.

For c ∈ C let b(c) ⊆ [n] be the set of qubits on which

Πc acts non-trivially. Let Πloc
c denote Πc restricted to b(c),

so that we can write Πc = Πloc
c ⊗ Id[n]\b(c).

Definition 7: We say that M is a progressive mea-
surement channel if the following holds: Conditional on

receiving classical information F ⊆ C and c ∈ C, the

quantum channel MF
c performs the quantum operation

MF
c : C

N×N → C
N×N ⊗ R

2, satisfying the following

properties:

(i) The quantum channel labels its output with the classical

labels (S, V ) corresponding to (“Satisfied”,“Violated”)
outcomes, so that for input ρ the output state is written

as:

MF
c (ρ) =MF

c,S(ρ)⊗ S +MF
c,V (ρ)⊗ V .

(ii) For the (unnormalised) input state ΠF , the output state

labelled as “Satisfied” is upper bounded by ΠF∪{c}:
MF

c,S(Π
F ) 
 ΠF∪{c}.

(iii) For the input state ΠF , the output state labelled as

“Violated” is upper bounded by a state of tensor product

form:

MF
c,V (Π

F ) 
 Πloc
c ⊗ Π̃F\Γ+(c), where ΠF\Γ+(c) =

Idb(c) ⊗ Π̃F\Γ+(c).

One might be puzzled why is it important to transform

states to the “Violated” image of Πc. (The weaker alternative

to property (iii) would beMF
c,V (Π

F ) 
 ΠF\Γ+(c). Since the

qubits in c are resampled after c is found to be unsatisfied, it

might not be immediately clear why we set any conditions

on these qubits.) The reason is that it ensures that the

resampling operation uniformly mixes quantum states, for

more details see the proof of Lemma 8. The resampling
operation on ρ in line 9 can be formally described as

Rc(ρ) = Trb(c)[ρ]⊗
Idb(c)

2k
. (3)

In order to state and prove the Key Lemma, we need

to define several concepts. For a log L, let ρL denote the

unnormalised quantum state after having seen and processed

all measurement results in L, i.e., including the resampling

step in line 9 if the last result was “V ”. Let FL denote

the inner variables F of Algorithm 1 after it has seen

and processed all the measurement results described by L.

Moreover, for X ∈ {S, V } let (L,X) ∈ {S, V }T+1 be the

log obtained by appending X to the end of log L. If the

algorithm did not terminate after L, then let cL denote the

next constraint Algorithm 1 will address.

Lemma 8: (Key lemma) If we run Algorithm 1 using a

progressive measurement channel M, then for every log L
which contains r occurrences of V ,

ρL 
 pr · Π
FL

N
, (4)

where N = 2n.

Proof: We prove (4) for a log L ∈ {S, V }T by induc-

tion on T . For T = 0 we have ρL = ρ0 = Id/N , ΠFL = Id
and pr = p0 = 1 so the relation holds with equality. Now

suppose that (4) holds for all logs L ∈ {S, V }T . For the

induction step it is enough to show that (4) also holds for

(L, S) and (L, V ), whenever (L, S) and (L, V ) are valid

logs. Let us denote by r the number of “V”s in L, F = FL,

FS = FL ∪ {cL}, FV = FL \ Γ+(cL) and c = cL. Observe

F(L,S) = FS and F(L,V ) = FV . First we show the inductive

step for (L, S):

ρ(L,S) =MF
c,S(ρL) (by definition)


MF
c,S

(
pr · Π

F

N

)
(by the inductive hypothesis)


pr · Π
FS

N
(by property (ii))

=pr · Π
F(L,S)

N
(F(L,S) = FL)

Indeed, the number of violations in (L, S) remains r. Now
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we show the inductive step for (L, V ):

ρ(L,V ) =Rc

(MF
c,V (ρL)

)
(by definition)


Rc

(
MF

c,V

(
pr · Π

F

N

))
(induction hypothesis)


p
r

N
·Rc

(
Πloc

c ⊗ Π̃FV

)
(by property (iii))

=
pr

N
Tr[Πloc

c ] · Idb(c)
2k
⊗ Π̃FV (Eq. (3) )

=
pr+1

N
· Idb(c) ⊗ Π̃FV (Tr(Πloc

c ) = 1, p =
1

2k
)

=
pr+1

N
·ΠFV (by property (iii))

=
pr+1

N
·ΠF(L,V ) (FL,V = FV )

Note that the number of violations in (L, V ) is r + 1, as

required.

Taking the trace of Eq. (9) shows property (ii) in Theorem 4

for a progressive measurement channel, and property (iii)

in Theorem 4 follows from Def. 7-(iii). Therefore, the

only missing ingredient for an efficient algorithm is to

efficiently implement a progressive measurement channel.

This is done in two steps: we next show an exact (but

inefficient) progressive measurement channel (Def. 9), and

later, in Section III show a closely related efficient variant

of it.

C. The exact measurement channel – ideal non-commuting
generalisation

We are now ready to provide the first explicit construction

of a progressive measurement channel, which we call the

exact measurement channel. We argue that this is probably

the most faithful generalisation of the commuting algorithm

for the non-commuting case. The proposed quantum op-

eration applies a measurement conditionally followed by

a unitary operation. The combined procedure respects the

loop-invariant, and handles new constraints in a way which

seems essential for the resampling algorithm.

Definition 9: We define the exact measurement channel,
denoted here by M, in the following way: conditional on

receiving classical information F ⊆ C and c ∈ C, the

quantum channel MF
c : CN×N → C

N×N ⊗ R
2 performs

the projective measurement
(
ΠF∪{c}, Id−ΠF∪{c}). If the

outcome is ΠF∪{c} it labels its output with S standing

for “Satisfied”. If the outcome is Id − ΠF∪{c} it labels

its output with V standing for “Violated”, and applies

the unitary operation Rot = WU†, where WΣU † is a

singular value decomposition of ΠcΠ
F .9 For the output

state corresponding to pure input state |ψ〉 we use notation

9There is a choice of W and U† in the SVD decomposition, for which
ΠF∪{c} = RotΠF∪{c}Rot†. In this case, the unitary Rot can be applied
in both cases – when the outcome is “Satisfied” or “Violated”. We apply it
only in the “Violated” outcome purely for the convenience in the analysis.

MF
c (|ψ〉) = |ψS〉⊗S+|ψV 〉⊗V , where |ψS〉 = ΠF∪{c}|ψ〉

and |ψV 〉 =WU†
(
Id−ΠF∪{c})|ψ〉.

In the above definition we have some ambiguity about the

map WU†, since the singular value decomposition is not

unique; this is not an issue as shown in the full version.

We want to emphasize that the progressive measurement

channel is meaningful on its own, and might find applica-

tions outside the QLLL framework. For this reason, and

to keep the things conceptually simple, in the following

we present an example where we calculate some of the

important maps explicitly, although it diverges from some

of the conditions and assumptions we had before, namely

the Lovász condition does not hold, one of the projectors is

not rank-1, and it uses a qudit (not a qubit).

Example 10: Consider a qudit of of dimension 4, and the

following 2 projectors: Π1 = |0〉〈0|, Π2 = 1
2 (|0〉+|1〉)(〈0|+〈1|) + |2〉〈2|. Let F = {1}, c = 2. In this case, ΠcΠ

F =
Π2Π

{1} = 1
2 (|0〉 + |1〉)〈1| + |2〉〈2|. A possible choice for

W and U† yields WU† = 1√
2
(|0〉 + |1〉)〈1| + 1√

2
(|0〉 −

|1〉)〈0|+|2〉〈2|+|3〉〈3|. ΠF∪{c} = Π{1,2} = |3〉〈3|. The state

|ψ〉 = 1√
3
(|1〉 + |2〉 + |3〉) satisfies F : ΠF |ψ〉 = |ψ〉. The

“Satisfied” post-measurement state is |ψS〉 = 1√
3
|3〉, which

occurs with probability 1
3 . The “Violated” post-measurement

state is

|ψV 〉 =WU†(Id−ΠF∪{c}|ψ〉) =WU†
1√
3
(|1〉+ |2〉)

=
1√
3

(
1√
2
(|0〉+ |1〉) + |2〉

)
(5)

which occurs with probability 2
3 .

In the rest of this subsection, we show in Lemma 12 that

the exact measurement channel is a progressive measurement

channel (and therefore respects the loop invariant), and in

Proposition 13 that in the commuting case, the exact mea-

surement channel can be implemented by simply measuring

{Id − Πc,Πc}. This shows that the exact measurement

channel is a generalization of the simple projective mea-

surement that is performed in the classical and commuting

algorithms [12], [21], [22]. Before we prove these results,

we need some identities of the relevant subspaces.

Proposition 11: Suppose WΣU † is a singular value de-

composition of ΠcΠ
F (i.e., ΠcΠ

F = WΣU † with W † =
W−1, U † = U−1 and Σ non-negative real and diagonal),

then the following identities hold:

Πim(ΠcΠF ) = W sgn(Σ)W † (6)

ΠF −ΠF∪{c} =Usgn(Σ)U† (7)

Πim(ΠcΠF ) 
ΠcΠ
F\Γ+(c) (8)

In the above, sgn(Σ) uses the natural extension of the

sign function to diagonal (and in this case, non-negative)

matrices, moreover for a subspace S we denote by ΠS the

orthogonal projector to S.
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Proof:
(6):

(
W sgn(Σ)W †)ΠcΠ

F =
(
W sgn(Σ)W †)WΣU † =

WΣU † = ΠcΠ
F , since W sgn(Σ)W † is an orthogonal pro-

jector it implies that Πim(ΠcΠF ) 
 W sgn(Σ)W †. But also

rank
(
Πim(ΠcΠF )

)
= rank

(
ΠcΠ

F
)
= rank

(
W sgn(Σ)W †),

thus Πim(ΠcΠF ) = W sgn(Σ)W †.
(7): Similarly to (6) Πim(ΠFΠc) = Usgn(Σ)U†, so it

is enough to show that ΠF − ΠF∪{c} = Πim(ΠFΠc). Again

Πim(ΠFΠc) 
 ΠF−ΠF∪{c}, since
(
ΠF −ΠF∪{c})ΠFΠc =

ΠFΠc −ΠF∪{c}Πc = ΠFΠc.

But

rank
(
Πim(ΠFΠc)

)
= rank

(
ΠFΠc

)
= rank

(
ΠcΠ

F
)

= rank
(
ΠF

)− dim(ker(Πc) ∩ im(ΠF )

= rank
(
ΠF

)− rank(ΠF∪{c}
)

= rank
(
ΠF −ΠF∪{c}

)
.

Here, the second equality is justified by rank(A) =
rank

(
A†

)
, and the third equality by rank(AB) =

rank(B)− dim(ker(A) ∩ im(B)) (see, e.g. [26, p. 210]).

So ΠF −ΠF∪{c} = Πim(ΠFΠc) and thus ΠF −ΠF∪{c} =
Usgn(Σ)U†.

(8): The proof follows form the following line of

(in)equalities which are justified below:

Πim(ΠcΠF ) = ΠcΠim(ΠcΠF )Πc


 ΠcΠ
F\Γ+(c)Πc

= Π2cΠ
F\Γ+(c)

= ΠcΠ
F\Γ+(c).

First observe that Πc

(
ΠcΠ

F
)
= ΠcΠ

F so ΠcΠim(ΠcΠF ) =
Πim(ΠcΠF ), implying the first equality. The penultimate

equality is due to ΠcΠ
F\Γ+(c) = ΠF\Γ+(c)Πc, which

follows from the fact that these operators act on dis-

joint qubits. Finally note that ΠF\Γ+(c)ΠF = ΠF . There-

fore, ΠF\Γ+(c)
(
ΠcΠ

F
)
= ΠcΠ

F\Γ+(c)ΠF = ΠcΠ
F so

Πim(ΠcΠF ) 
 ΠF\Γ+(c), which justifies the inequality.

Using the above proposition we can easily show in the

following lemma that the exact measurement channel is

indeed progressive (see Def. 7).

Lemma 12: Suppose |ψ〉 = ΠF |ψ〉. If we apply the exact

measurement channel MF
c on |ψ〉, then

(i) |ψS〉 = ΠF∪{c}|ψ〉, and the outcome “S” happens with

probability Tr(ΠF∪{c}|ψ〉〈ψ|).
(ii) |ψV 〉 = Πloc

c ⊗ Π̃F\Γ+(c)|ψV 〉
(where ΠF\Γ+(c) = Idb(c) ⊗ Π̃F\Γ+(c)).

(iii) MF
c,V (Π

F ) 
 Πloc
c ⊗ Π̃F\Γ+(c).

Proof: Property (i) is trivial by Definition 9.

By Definition 9 |ψV 〉 = WU†
(
Id−ΠF∪{c})|ψ〉. Note

that by |ψ〉 = ΠF |ψ〉 we have(
Id−ΠF∪{c}

)
|ψ〉 =

(
ΠF −ΠF∪{c}

)
|ψ〉. (9)

Using (7) we can see WU†
(
ΠF −ΠF∪{c}) =

WU†Usgn(Σ)U† = W sgn(Σ)U †. Considering

(sgn(Σ))
2

= sgn(Σ) and U†U = Id we get

W sgn(Σ)U † = W sgn(Σ)W †WU†Usgn(Σ)U† and

by (6)-(7) we get W sgn(Σ)W †WU†Usgn(Σ)U† =
Πim(ΠcΠF )WU†

(
ΠF −ΠF∪{c}). Therefore, we proved

WU †
(
ΠF −ΠF∪{c}) = Πim(ΠcΠF )WU†

(
ΠF −ΠF∪{c}).

By (8) we have Πim(ΠcΠF ) 
 ΠcΠ
F\Γ+(c) =

Πloc
c ⊗Π̃F\Γ+(c) which implies that WU†

(
ΠF −ΠF∪{c}) =(

Πloc
c ⊗ Π̃F\Γ+(c)

)
WU †

(
ΠF −ΠF∪{c}) proving

|ψV 〉 = Πloc
c ⊗ Π̃F\Γ+(c)|ψV 〉 via (9).

For the proof of property (iii) note that MF
c,V (I) 
 I ,

which implies that MF
c,V (Π

F ) 
 MF
c,V (I) 
 I . This

together with property (ii) implies thatMF
c,V (Π

F ) 
 Πloc
c ⊗

Π̃F\Γ+(c).

For completeness we show that Definition 9 is indeed a

generalisation of the commuting case.

Proposition 13: Suppose that all local projectors com-

mute, and that the input state |ψ〉 is such that |ψ〉 = ΠF |ψ〉,
then the output of the exact quantum channelMF

c coincides

with the output of the projective measurement (Id−Πc,Πc),
i.e., |ψS〉 = (Id−Πc)|ψ〉 and |ψV 〉 = Πc|ψ〉.

Proof: Since all local projectors commute we have

ΠF =
∏

c′∈F (Id−Πc′). By Definition 9 |ψS〉 =
ΠF∪{c}|ψ〉 and due to commutation we have ΠF∪{c} =
(Id−Πc)Π

F , so |ψS〉 = (Id−Πc)Π
F |ψ〉 = (Id−Πc)|ψ〉.

By Definition 9 |ψV 〉 = WU†
(
Id−ΠF∪{c})|ψ〉,

furthermore similarly to the proof of Lemma 12(
Id−ΠF∪{c})|ψ〉 =

(
Id−ΠF∪{c})ΠF |ψ〉 =(

ΠF −ΠF∪{c})|ψ〉 by our assumption on |ψ〉. Using (7) we

get that |ψV 〉 = WU†Usgn(Σ)U†|ψ〉 = W sgn(Σ)U †|ψ〉.
By commutation we have that ΠcΠ

F = ΠFΠc is

an orthogonal projector and thus Σ = sgn(Σ).
Therefore, W sgn(Σ)U † = WΣU † = ΠcΠ

F and thus

|ψV 〉 = ΠcΠ
F |ψ〉 = Πc|ψ〉.

If we could implement the exact measurement channel,

then as Lemma 12 and Lemma 8 together with Theorem 4

show we would get an efficient algorithm for preparing

frustration-free states.

Unfortunately we do not know how to implement the exact

measurement channel efficiently for non-commuting projec-

tors. However, in Section III we show how to efficiently

implement a closely related quantum channel. Combined

with our generalised compression argument of Theorem 4

this finally yields an efficient algorithm for uniformly gapped

Hamiltonians under the Lovász condition (1). Our approxi-

mate channel has the drawback that even if the input is a pure
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quantum sate its outputs can in general only be described

by a probabilistic mixture of pure states.

III. EFFICIENT IMPLEMENTATION

In this subsection we describe and analyse on a high

level how the efficient algorithm works. The analysis will

be hand-wavy, but the approximations that we use can be

made precise, providing a fully rigorous proof. A detailed

analysis can be found in the full version [14].

A. Weak measurements.

We next show an efficient construction for a progressive

mesaurement channel, which is closely related to the exact

measurement channel introduced before. It uses weak mea-
surements combined with a quantum Zeno-like effect. This

approach is somewhat similar to the ideas described in [27].

Instead of directly measuring Πc, we repeat the following

many times: we perform a weak measurement (as explained

below) on Πc. If the weak measurement finds that c is

violated, we just apply the usual resampling step. If the

outcome is that c is satisfied, we (strongly) measure all

constraints in F simultaneously. If they are not simultane-

ously satisfied, we abort, and repeat otherwise. When the

loop ends, we measure whether all constraints in F ∪ {c}
are simultaneously satisfied, and abort if not. The fully

rigorous analysis which carefully bounds all the abort errors

is deferred to the full version.

Algorithm 2 An Approximate Progressive Measurement

Channel

1: input ρ, F, c such that ρ = ΠF ρΠF

2: repeat T times do
3: measure Πc weakly

4: if violated then
5: return ρ′, “Violated” with c
6: end if
7: measure ΠF if violated then terminate with

“ABORT: MEASURE WEAKER”

8: end repeat
9: measure ΠF∪{c} if violated then terminate with

“ABORT: USE LARGER T”

10: return ρ′, “Satisfied” for F ∪ {c}

For now we assume, that we can measure the projector

ΠF
(
or ΠF∪{c}), which is an orthogonal projector to the

subspace where all the constraint in F (or F ∪ {c}) are

satisfied, see Algorithm 2. Later we will implement an

approximation to this measurement operator.

By tuning the weak measurement parameter and the num-

ber of repetitions, we can control and reduce the probability

of aborting in this procedure. Therefore, the two probable

outcomes are that we either end up with adding c to F , the

set of fixed constraints, or we find the state violating c and

therefore resample c.

One may wonder: if the probability of abort is kept small,

are these strong measurements of ΠF really necessary? Yes

– similarly to the “hot pot never boils” phenomenon, and the

quantum Zeno effect, even though the outcome of the mea-

surement is known with very high probability in advance,

the measurement changes the overall state dramatically when

applied frequently.

Now we explain what we mean by a weak measurement,

and how it can be combined with the quantum Zeno effect.

Consider the two-outcome measurement {Πc, Id−Πc}. We

can implement a weak measurement on |ψ〉 with intensity

parameter θ using an ancilla qubit and a Πc-controlled

rotation Uθ
c defined via

Rθ :=

(√
1− θ −√θ√
θ
√
1− θ

)
, Uθ

c := Πc⊗Rθ+(Id−Πc)⊗Id.
(10)

We apply the unitary Uθ
c on |ψ〉 ⊗ |0〉 and do a projec-

tive measurement on the ancilla qubit. Let us denote by

|ψ1〉 =
√
θΠc|ψ〉 the (unnormalised) state corresponding to

measurement outcome 1. So |ψ1〉 ∝ Πc|ψ〉 just as we expect

from a projective (strong) measurement. Similarly, let

|ψ0〉 := (Id−Πc)|ψ〉+
√
1− θΠc|ψ〉 ≈ |ψ〉 − (θ/2)Πc|ψ〉

(11)

denote the (unnormalised) state corresponding to outcome

0.

Suppose |ψ〉 satisfies F , i.e., |ψ〉 = ΠF |ψ〉 for the

orthogonal projector ΠF which projects to the subspace

where all the constraints in F are satisfied. The prob-

ability of measuring 0 on the ancilla qubit and find-

ing the state outside the support of ΠF has probability∥∥(Id−ΠF
)|ψ0〉∥∥2 ≈ ∥∥(Id−ΠF

)
(|ψ〉−(θ/2)Πc|ψ〉)

∥∥2 =∥∥(Id−ΠF
)
(θ/2)Πc|ψ〉

∥∥2 ≤ θ2‖Πc|ψ〉‖2. The main mes-

sage is the following: the probability of measuring a vi-

olation of ΠF is a θ factor less, than the probability of

finding a violation to the constraint Πc. Whenever we find

c violated we exit the loop, therefore the expected number

of times we find a violation of c is at most 1, throughout

the whole procedure. Since in every step the probability of

finding a violation of ΠF is a θ factor smaller, the aggregate

probability of violating ΠF is bounded by θ. Analogously

to the quantum Zeno effect, by setting θ small enough we

can go below any desired error probability. This argument

lies at the heart of the proof.

In some sense our error bound is even stronger than in

the usual quantum Zeno effect: the probability of moving

out of the support of ΠF is proportional to ‖Πc|ψ〉‖2, so

the smaller the overlap with Πc gets, the smaller the error

probability becomes. This is the reason why in the full

version [14] we can show that the overall probability of

abort at line 7 is bounded by θ independently of T - the

number of repetitions.
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B. Correctness and complexity of Algorithm 2

Now we describe a hand-wavy argument showing that

for small enough θ and large enough T our Algorithm 2

closely approximates a progressive measurement channel,

and argue how big we should choose the parameter T in

order to achieve low probability of aborting on line 9. (The

arguments are made precise in the full version [14].)

Let WΣU† be a singular value decomposition of ΠcΠ
F .

Let σi := Σii, and let ui := U.i be the i-th column of

U , similarly let wi := W.i be the i-th column of W . For

simplicity assume, that we apply the procedure to a pure

initial state |ψ0〉, and let |ψt〉 denote the unnormalised state

after t weak and strong measurements, corresponding to the

case when no positive Πc nor negative ΠF measurement

outcomes were observed. Let

|ψt〉 :=
∑
j

atj |uj〉,

where atj is the amplitude of |uj〉 in |ψt〉. Using Eq. (11),

|ψt+1〉 ≈ ΠF |ψt〉 − (θ/2)ΠFΠc|ψt〉. Assuming that

ΠF |ψ0〉 = |ψ0〉, we get that ΠF |ψt〉 = |ψt〉 for all t ≥ 0,

and so∑
j

at+1j |uj〉 = |ψt+1〉 ≈ ΠF |ψt〉 − θ/2ΠFΠc|ψt〉

= |ψt〉 − θ

2
ΠFΠcΠ

F |ψt〉,
which is further equal to

=

(
I − θ

2
ΠFΠcΠ

F

)
|ψt〉 =

(
I − θ

2
UΣ2U†

)
|ψt〉

=
∑
j

(
1− θ

2
σ2j

)
atj |uj〉.

For small θ we can move to a continuous-time approxima-

tion, and use the differential equation ȧj ≈ − θ
2σ

2
jaj , which

yields the solution

atj ≈ e−
θ
2σ

2
j ta0j . (12)

Observe that atj remains constant whenever σj = 0;

similarly it is easy to see that if |ψ0〉 ∈ im(
ΠF∪{c}), then

|ψT 〉 = |ψ0〉. Thus the quantum states that are supported

on the image of ΠF∪{c} remain undisturbed during Algo-

rithm 2.

We want to ensure that the probability of finding the

quantum state |ψT 〉 in the kernel of ΠF∪{c} is low, in order

to keep the probability of aborting at line 9 small. That is we

want
∥∥(I −ΠF∪{c})|ψT 〉∥∥2 to becomes small. Now observe

that

(I −ΠF∪{c})|ψT 〉 = (I −ΠF∪{c})ΠF |ψT 〉
=(ΠF −ΠF∪{c})|ψT 〉 (7)

= Usgn(Σ)U†|ψT 〉,
and therefore it is enough to ensure that atj gets close to 0
for all j such that σj > 0. Let σmin denote the minimal

non-zero σj value. By choosing T ≈ log(1/θ)/(θσ2min)
we can show that the probability of abort is less than

≈ θ. As we show in the full version, σ2min can be lower

bounded by λ �=0min
(
Πc +

∑
c′∈F Πc′

)
, the smallest non-zero

eigenvalue of Πc+
∑

c′∈F Πc′ , therefore we will choose T =

Ω(1/(θλ �=0min
(
Πc +

∑
c′∈F Πc′

)
)). Thus with this choice of

T Algorithm 2 satisfies property (ii) with ∼ θ slack.

Let ρV,t denote the unnormalised density operator corre-

sponding to a “Violated” outcome obtained via the weak Πc

measurement in the t-th iteration. Note that after observing

such an outcome Algorithm 2 terminates. Then

ρV,t+1 =
√
θΠc|ψt〉〈ψt|Πc

√
θ = θΠcΠ

F |ψt〉〈ψt|ΠFΠc

=θWΣU†|ψt〉〈ψt|UΣW †,

and so

ρV,t+1ij :=〈wi|ρV,t+1|wj〉 = θ
(
σia

t
i

) · (σjatj)∗
≈θσiσje− θ

2 (σ
2
i+σ2

j )ta0i ·
(
a0j

)∗
.

We can approximate the aggregate “Violated” outcomes as

ρV,out
ij :=

∞∑
t=1

ρtij

≈
∫ ∞

0

θσiσje
− θ

2 (σ
2
i+σ2

j )ta0i ·
(
a0j

)∗
dt =

2σiσj
σ2i + σ2j

ρin
ij ,

where we defined ρin
ij = 〈ui|ρin|uj〉 with ρin = |ψ0〉〈ψ0|.

The change of basis ui → wj in ρin → ρout corresponds

to the unitary map WU†, which we described in the ex-

act quantum channel. Note that due to linearity this also

describes the behaviour of Algorithm 2 for any, potentially

mixed input state, in the infinitesimal limit. Thus it is easy to

see that in this limit Algorithm 2 satisfies property (iii). More

careful analysis shows that property (iii) actually holds for

any choice of θ and T . But we need to choose small enough

θ and large enough T values in order to keep the probability

of abort small. For more details see the full version [14].

This little calculation also explains, that for infinitesimally

small θ the procedure is always successful, and projects

out the complete overlap with Πc if repeated indefinitely.

Also it is converging exponentially to its infinite version

with respect to T - the number of iterations. The limiting

quantum channel is just the exact measurement channel with

an additional decoherence channel applied on the “Violated”

branch, therefore it is actually a progressive measurement

channel. The additional decoherence channel decreases the

coherence terms between subspaces of different singular

values by a multiplicative factor of
2σiσj

σ2
i+σ2

j
. Thus, the strength

of the decoherence depends on the (multiplicative) difference

between the singular values, and does not happen at all

if the singular values equal. Note that this phenomenon

is only present for non-commuting projectors, since in the

commuting case σi ∈ {0, 1}.
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Applying this formula to Example 10, the output asso-

ciated with the “Violated” outcome becomes the (impure)

mixed state:

ρV =

⎛⎜⎜⎜⎝
1
6

1
6

2
9 ≈ 0.22 0

1
6

1
6

2
9 0

2
9

2
9

1
3 0

0 0 0 0

⎞⎟⎟⎟⎠.
This should be compared to the exact measurement chan-

nel, where the output is the following pure state (see Eq. (5)):

ρV =

⎛⎜⎜⎜⎝
1
6

1
6

1
3
√
2
≈ 0.24 0

1
6

1
6

1
3
√
2

0
1

3
√
2

1
3
√
2

1
3 0

0 0 0 0

⎞⎟⎟⎟⎠.
We want to stress that in the infinitesimal limit the ap-

proximate progressive measurement channel converges to

a progressive measurement channel (and in particular, the

probability of aborting vanishes), but it does not converge

to the exact measurement channel. Indeed our definition of

a progressive measurement channel leaves quite some room

for different instantiations.

Since in general the projector ΠF can be hard to handle,

we need to establish an efficient way to perform the ΠF

measurement. Fortunately we only use this measurement

when we are almost certain about its outcome. This makes it

possible to approximate this complex measurement operator

by repeatedly measuring Πc′ for uniformly randomly chosen

c′ ∈ F – see Algorithm 3. As we show in the full

version, roughly10 Õ
(
|F |

/
λ�=0min

(∑
c′∈F Πc′

))
repetitions

achieve a good approximation. (We can proceed similarly

for the projector ΠF∪{c}.) Using this trick the complexity

of implementing Algorithm 2 with θ-approximation error is

Õ
(
|F |
θ

/
λ �=0min

(
Πc +

∑
c′∈F

Πc′

)
λ�=0min

(∑
c′∈F

Πc′

))
.

(13)

Algorithm 3 Π̃F,τ - an approximate projection on ΠF

1: input quantum state ρ
2: repeat τ times do
3: choose c ∈ F uniformly at random

4: measure Πc

5: if result “c is violated” then
6: return “VIOLATED”

7: end repeat
8: return “APPROXIMATELY SATISFIED”

The gap constraint: The gap of a Hamiltonian – the

energy difference between its (distinct) two11 lowest energy

10By Õ(t) we mean O(t · polylog(t)).
11In case there is a single energy level, we define the gap to be ∞.

levels – denoted Δ(H), plays an important role both in

physics and computer science, particularly in Hamiltonian

complexity theory, see for example [28], [29], [30], [31].

Suppose H =
∑

c∈Πc, then we define the uniform gap of

H as

γ(H) := min
S⊆C

Δ

(∑
c∈S

Πc

)
. (14)

We use our algorithm under conditions which guaran-

tee that the minimal eigenvalue of H is 0, therefore

λ �=0min
(∑

c′∈S Πc′
)
= Δ

(∑
c′∈S Πc′

)
for all S ⊆ C. Thus

we can upper bound the runtime expression of (13) by

Õ(|C|/(θγ2(H))), (15)

giving inverse quadratic dependence on the uniform gap.

This notion of uniform gap plays an important role in

another recent state preparation algorithm [32], since it

seems a natural requirement for algorithms that gradually

build up a quantum state.

C. The final algorithm.

To obtain a working quantum algorithm we just need

to run Algorithm 1 performing the checking step using

the approximate Progressive Measurement Channel of Al-

gorithm 2. We need to set the weakness parameter small

enough, so that no abort error should happen throughout

the whole algorithm. It turns out, that if we set the weak

measurement parameter θ = O(1/|C|), then with high

probability we avoid any abort branch in Algorithm 2, since

the expected number of resamplings is O(|C|), for more

details see the full version [14]. Note that this way, the only

quantum operations that our algorithm uses are (weak and

strong) measurements of the projectors Πc : c ∈ C, and of

course resampling of qubits.

As Theorem 4 shows under the Lovász condition (pde ≤
1), the expected number of resamplings is O(|C|), and

therefore as the proof of Lemma 3 shows the expected

number of check operations performed by Algorithm 1 is

O(|C|d). Thus we use the progressive measurement channel

at most O(|C|d) times in expectation, with weakness param-

eter θ = O(|C|). Using the expression in Eq. (15) and some

standard boosting techniques we get a final algorithm that

in the non-commuting case performs a total number of

Õ
( |C|3 · d

γ2
· log2

(
1

δ

))
,

(weak and strong) Πc : c ∈ C measurements12, where γ
is the uniform gap, and δ is an upper bound on the trace

distance of the output state from a density operator which

is supported on the ground space.

In the full version of this paper [14] we also analyse

our algorithm’s runtime under Shearer’s condition. The

12The log factors are actually at most quadratic.
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exact formula for the runtime bound we prove is more

complicated, but it is easy to compare to classical results.

Let Rc be the upper bound of [13] on the expected number

of resamplings of the classical Moser-Tardos algorithm. The

number of (weak and strong) measurements performed by

our quantum algorithm is

Õ
(
R2c |C|2n2

γ2
log2

(
1

δ

))
,

where n is the number of qubits and the other parameters

are as before.
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APPENDIX

Lemma 14: If 0 < k < n are positive integers, then(
n

k

)
<

(en
k
− e

2

)k
(
<

(en
k

)k
)

(16)

Proof: We use the following upper bound [33, Cor.

22.9] on binomial coefficients

∀ 0 < k < n :

(
n

k

)
≤ 2n·H(k/n)

= 2n(−
k
n log2( k

n )−n−k
n log2(n−k

n ))

= e(k ln(
n
k )+(n−k) ln( n

n−k )).

(In the statement above, H(p) = −p log2(p) − (1 −
p) log2(1 − p) denotes the binary entropy.) We use this

inequality to prove (16). It remains is to show, that

e(k ln(
n
k )+(n−k) ln( n

n−k )) <
(en
k
− e

2

)k

�
ln
(n
k

)
+

(n
k
− 1

)
ln

(
n

n− k
)
< 1 + ln

(
n

k
− 1

2

)
�

0 < 1 + ln

(
1− 1

2

k

n

)
+
(n
k
− 1

)
ln

(
1− k

n

)
.

(17)

For x = k/n let f(x) := 1+ln(1−x/2)+(1/x−1) ln(1−x)
denote the right hand side of (17). In order to prove that

f(x) > 0 for all x ∈ (0, 1), we first observe that

lim
x→0

f(x) = 1 + lim
x→0

ln(1− x)
x

= 0.

Finally we prove f(x) > 0 by showing that f ′(x) > 0 for

all x ∈ (0, 1):

f ′(x) = − 1

2− x −
1

x2
ln

(
1

1− x
)
− (1/x− 1) 1

1− x
= − 1

2− x +
1

x2
ln

(
1

1− x
)
+
1

x

=
1

x
− 1

2− x +
1

x2
ln

(
1 + x/(2− x)
1− x/(2− x)

)
(18)
>

1

x
− 1

2− x +
1

x2
2x

2− x = 0.

The last inequality can be deduced using the Taylor series

∀y ∈ (−1, 1) ln(1 + y) =
∑∞

�=1
(−y)�

−� :

∀z ∈ (0, 1) : ln
(
1 + z

1− z
)
= ln(1 + z)− ln(1− z)

= 2z
∞∑
k=0

z2k

2k + 1
> 2z. (18)

Note, that by using one more term in (18) one can strengthen

(16) to
(
n
k

)
<

(
en
k − e

2 − ek
42n

)k
.
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