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Abstract

In this paper we study the problem of minimizing a submodular function f : 2V → R that
is guaranteed to have a k-sparse minimizer. We give a deterministic algorithm that computes
an additive ǫ-approximate minimizer of such f in Õ(poly(k) log(|f |/ǫ)) parallel depth using
a polynomial number of queries to an evaluation oracle of f , where |f | = maxS⊆V |f(S)|.
Further, we give a randomized algorithm that computes an exact minimizer of f with high
probability using Õ(|V | · poly(k)) queries and polynomial time. When k = Õ(1), our algorithms
use either nearly-constant parallel depth or a nearly-linear number of evaluation oracle queries.
All previous algorithms for this problem either use Ω(|V |) parallel depth or Ω(|V |2) queries.

In contrast to state-of-the-art weakly-polynomial and strongly-polynomial time algorithms
for SFM, our algorithms use first-order optimization methods, e.g., mirror descent and follow the
regularized leader. We introduce what we call sparse dual certificates, which encode information
on the structure of sparse minimizers, and both our parallel and sequential algorithms provide
new algorithmic tools for allowing first-order optimization methods to efficiently compute them.
Correspondingly, our algorithm does not invoke fast matrix multiplication or general linear
system solvers and in this sense is more combinatorial than previous state-of-the-art methods.

http://arxiv.org/abs/2309.16632v2
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1 Introduction

Submodular function minimization (SFM) is a foundational problem in combinatorial optimization.
Submodular functions encompass a wide range of functions that appear naturally in practical
applications, including graph cut functions, matroid rank functions, set coverage functions, and
utility functions from economics. Since seminal work of Edmonds in 1970 [Edm70], SFM has
served as a central tool in many areas such as theoretical computer science, operations research,
game theory, and recently, machine learning. We refer interested readers to surveys [McC05, Iwa08]
for a more comprehensive account of the rich history of SFM.

Throughout this paper we consider a standard setting for SFM. We are given a set function
f : 2V → R, where V is an n-element finite set, known as the ground set, and f is submodular, i.e.,

f(S ∪ {i}) − f(S) ≥ f(T ∪ {i}) − f(T ) for all S ⊆ T ⊆ V with i /∈ T.

Furthermore, we assume that f is accessed only through an evaluation oracle which when queried
at any S ⊆ V outputs f(S) in time EO. We let |f | def= maxS⊆V |f(S)| and f∗

def
= minS⊆V f(S) and

consider the problem of computing an ǫ-approximate minimizer, i.e., S ⊆ V with f(S) ≤ f∗ + ǫ.
Since seminal work of Grötschel, Lovász, and Schrijver [GLS81] showed that SFM can be

solved in polynomial time, there have been multiple advances in SFM over the last few decades
[Sch00, IFF01, FI03, Iwa03, Vyg03, Orl09, IO09, CJK14, LJJ15, CLSW17]. In this paper, we fo-
cus on algorithms that solve SFM to high accuracy with a polynomial query complexity, meaning
that they solve the problem with a number of queries to an evaluation oracle that scale weakly-
polynomially (poly(n, log(|f |/ǫ))) [GLS81] or strongly-polynomially (poly(n)) [GLS84, GLS88].1

Current state-of-the-art SFM algorithms in these regimes are weakly-polynomial Õ(n2 log(n|f |/ǫ))-
query, polynomial-time algorithms [KTE88, NN89, Vai89, BV04, LSW15, JLSW20], strongly-
polynomial Õ(n3)-query, polynomial-time algorithms [LSW15, DVZ21, Jia22], and a strongly-
polynomial Õ(n2)-query, exponential-time algorithm [Jia22] (see Section 1.3 for more details)2.

On the hardness side, however, the current state-of-the-art lower bounds exclude algorithms
making fewer than Ω(n log n) queries in the strongly-polynomial regimes [CGJS22] and fewer than
Ω(n) queries in the weakly-polynomial regime [Har08, CLSW17]. Consequently, there are large,
Ω(n) gaps, between these lower bounds and the best known upper bounds. Unfortunately, obtaining
nearly-linear (or provably near-optimal) query complexity algorithms for SFM has been elusive.

In light of these developments, it is natural to ask, what additional structural assumptions may
be needed to enable faster algorithms? One recent line of work has explored the complexity of
decomposable SFM [JBS13, NJJ14, EN15, ENV17, KBP19, AKM+21, DJL+22], that is the special
case where f(S) =

∑
i fi(S ∩ Ti) for submodular fi and sparse Ti given an oracle for evaluating

the individual fi over Ti. A different line of work [CLSW17, ALS20] considers the complexity of
approximate SFM when the minimizer is k-sparse, which we refer to as k-sparse SFM for brevity.3

We refer to an SFM algorithm as approximate, if its query complexity is pseudo-polynomial, i.e.,
O(poly(n, |f |/ǫ)). The state-of-the-art approximate k-sparse SFM algorithm has a query complexity
of Õ(k(|f |/ǫ)2), when f is integer valued and ǫ < 1.

1When f is integer valued, any ǫ < 1 approximate solution is optimal; a variety of the prior work consider only
this setting. Throughout the paper we do not distinguish between prior work which consider exactly solving SFM
integer valued f (with a dependence on |f |) and those that work in the more general setting we consider in this paper.

2Throughout the paper we use Õ(·) to hide O(poly(log n)) factors.
3This problem is distinct from that of computing the minimum value k-sparse set for a submodular function.
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In both of these cases, sparsity plays a prominent role. In the specific context of SFM, while
various polyhedral and geometric properties of submodular functions have been extensively studied
and heavily exploited since the 1970s [Edm70], these properties are mostly global, involving the
entire set V altogether. On the other hand, assuming k-sparsity of the minimizer allows one to
take a glimpse into local properties of submodularity, e.g., to understand the role a small number
of elements play for the minimization of the function.

Moreover, sparsity of the minimizer is a natural assumption in convex optimization and sub-
modular function minimization problems. In particular, sparsity arises in signal processing, feature
selection, compressed sensing, etc. where the solution is often expected to be sparse, i.e., have a
small number of non-zero elements [Don06, MAH+12, LWR20]. Sparsity is also common in cases
where a regularizer is added to the objective function to encourage sparsity. One example of such a
setup is the problem of finding an optimal dataset for speech recognition tasks [LB11]. This prob-
lem can be written as f(S) + λ|S|, where f is a submodular objective, and therefore it is expected
that the size of the minimizing set is much smaller than the ground set for large values of the reg-
ularization coefficient λ. Consequently, understanding how the complexity of algorithms depends
on the sparsity leads to better insight into more refined combinatorial and geometric structures of
the problems. Therefore, the central question we ask in this paper is:

Can we leverage sparsity to improve upon state-of-the-art polynomial query complexities?

k-sparse SFM is also interesting in light of recent work [BS20] seeking to clarify the parallel
depth of SFM, i.e., the number of parallel rounds of queries to the evaluation oracle required for a
query-efficient algorithm. The state-of-the-art parallel depth lower bounds are Ω(n/ log n) in the
strongly-polynomial regime [CGJS22], which matches the upper bound in [Jia22] up to a factor of
log2 n, and Ω̃(n1/3) in the weakly-polynomial regime [CCK21]. These polynomial parallel depth
lower bounds crucially rely on the minimizers being dense for the constructed submodular functions,
and highly parallel algorithms might be possible when the submodular function admits a sparse
minimizer. Therefore, we also ask: Can we improve the parallel complexities for k-sparse SFM?
Besides being interesting from an algorithmic perspective, obtaining improved parallel algorithms
for k-sparse SFM could aid lower bound development by showing how hard-instances for lower
bounds must have dense minimizers.

1.1 Challenges and Additional Motivations

Beyond intrinsic interest in improving the complexity of k-sparse SFM, this problem is also an
interesting testbed for new techniques and a number of larger open problems on SFM. Here we
briefly elaborate on these challenges and motivations for studying k-sparse SFM.

State-of-the-art SFM algorithms typically leverage the Lovász extension [Lov83] of f , a convex
function f̂ : [0, 1]V → R that agrees with f on the hypercube’s vertices, i.e., f̂(~1S) = f(S) for all
S ⊆ V . It is known that f̂ can be evaluated efficiently and minimizing f̂ suffices for SFM (see
Section 3). Consquently, SFM algorithms can be readily obtained by applying convex optimization
methods to the Lovász extension. Indeed, state-of-the-art weakly-polynomial SFM algorithms
[LSW15, JLSW20] follow this approach by using cutting plane methods, a class of weakly-polynomial
convex optimization methods, to obtain ǫ-approximate minimizers in Õ(n log(1/ǫ)) parallel rounds
of Õ(n) queries per round. State-of-the-art strongly-polynomial SFM algorithms [LSW15, DVZ21,
Jia22] carefully apply these weakly-polynomial cutting plane methods iteratively.
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With the k-sparsity assumption on the solutions, a natural approach would be to apply these
continuous optimization methods to minimize f̂ over SV

k
def
= ∆V

k ∩ [0, 1]V , where ∆V
k

def
= {x ∈

R
V
≥0| ‖x‖1 ≤ k} is the interior of the simplex scaled up by k; this suffices for k-sparse SFM since

~1S∗ ∈ SV
k for the k-sparse minimizer S∗ ⊆ V . Unfortunately, while changing the domain from [0, 1]V

to SV
k is known to improve the performance of certain pseudo-polynomial convex optimization meth-

ods (as in [CLSW17, ALS20]), it is not known to improve the performance of weakly-polynomial
convex optimization algorithms (e.g., state-of-the-art cutting plane method [JLSW20]) by more
than logarithmic factors. Furthermore, without using more of the structure f̂ it seems unlikely
that this change of domain would affect the weakly-polynomial complexity by more than logarith-
mic factors, since one could scale a hard convex optimization problem to fit inside SV

k without
changing problem parameters by more than a polynomial factor.

These challenges call for the development of new optimization techniques that better utilize
structures of the Lovász extension and sparsity of the domain, which might lead to applications for
a broader range of open problems on SFM. We note several of these additional motivations below.

Strongly-polynomial time O(n3−c)-query algorithm for SFM. One of the most important
motivations is towards improving strongly-polynomial time SFM algorithms. The current best
query complexity here is O(n3 log log n/ log n) given in [Jia22], but this approach seems unlikely to
provide further improvement given the stagnation of progress on obtaining a better approximation
factor for the shortest vector problem, on which the algorithm in [Jia22] crucially relies.

Other state-of-the-art strongly-polynomial time SFM algorithms with Õ(n3) query complexities
in [LSW15, DVZ21] learn precedence constraints of the form, if p ∈ V is in a minimizer then so is q
(e.g., [IFF01, IO09, LSW15, DVZ21]). In the worst case, these algorithms might make Õ(n2) queries
to learn only a single coordinate that must be in a minimizer (or not), or for many coordinates
p ∈ V a single q ∈ V that must be in any minimizer containing p. This worst-case behavior is a key
barrier towards obtaining strongly-polynomial time algorithms with O(n3−c) query complexities
for constant c > 0. However, this worst-case behavior is sparse, and k-sparse SFM algorithms
which better exploit local properties of submodular functions might be useful to get around the
aforementioned barrier in this case and lead to a smaller query complexity.

SFM versus continuous optimization. Given the challenges of adapting weakly-polynomial
convex optimization algorithms to leverage sparsity, obtaining weakly- and strongly-polynomial
algorithms for k-sparse SFM could highlight differences between general convex optimization and
SFM. Consequently, k-sparse SFM is a natural proving grounds for designing SFM algorithms that
go beyond using the boundedness and convexity of the Lovász extension.

Combinatorial algorithms and iteration costs. The use of cutting plane methods in state-
of-the-art SFM algorithms comes with certain inherent costs. Key among them is that all known
cutting plane methods apply general linear system solvers or matrix multiplication methods, mak-
ing these methods somewhat intrinsically non-combinatorial. This is inherent as ultimately the
problems they solve are more general than that of solving arbitrary linear systems.

Since, as argued above, obtaining better query complexities for weakly- and strongly-polynomial
k-sparse SFM suggests departing from cutting plane methods, the problem could be an interesting
one to see where more combinatorial methods or ones with lower iteration costs can shine. State-
of-the-art pseudo-polynomial SFM algorithms leverage optimization machinery which does not use
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linear system solves and correspondingly have runtimes that are within polylogarithmic factors of
their query complexity [CLSW17, ALS20]. Though there have been efforts in using alternative
optimization methods to solve SFM, e.g., [DVZ21], the query complexities of such methods are
much higher than the state-of-the-art. Correspondingly, k-sparse SFM is an interesting setting to
see whether such methods can outperform cutting plane methods.

1.2 Our Results

Our main results include two algorithms which improve, respectively, the parallel depth and query
complexities of polynomial-time k-sparse SFM algorithms.

Parallel depth for k-sparse SFM. In the parallel model for SFM (in the weakly-polynomial
regime), the algorithm can submit up to poly(n, log(|f |/ǫ)) parallel queries to the evaluation oracle
in each round, and its parallel depth is defined to be the number of rounds needed to find the
minimizer in the worst case. Our main result for this model is the following theorem.

Theorem 1.1 (Parallel k-sparse SFM). There is a deterministic parallel algorithm for k-sparse
SFM with parallel depth Õ(k7 · log(|f |/ǫ)) and runtime Õ(n2 ·k7 log(|f |/ǫ) ·EO+poly(n) · log(|f |/ǫ)).

When the sparsity k = Õ(1), the parallel depth in Theorem 1.1 is Õ(1). To the best of our
knowledge, this is the first nearly-constant parallel depth result for SFM, beyond the trivial nk-
query algorithm that queries all k-sparse sets in a single round (which does not have polynomial
query complexity whenever k = ω(1)).

Our result is in stark contrast to the best known weakly-polynomial parallel depth of Õ(n)
for general SFM [LSW15]. It is important to emphasize here that Õ(1)-sparsity is also necessary
for obtaining a nearly-constant parallel depth. The work of [CCK21] implies that Ω̃(k1/3) parallel
depth is required for any weakly-polynomial algorithm for k-sparse SFM.

Query complexity for k-sparse SFM. While the algorithm in Theorem 1.1 achieves a nearly-
constant parallel depth when the sparsity is nearly-constant, even in this setting its query com-
plexity is Ω(n2). In light of the question of designing SFM algorithms with nearly-linear query
complexity, our second main result is a pair of algorithms which improve the weakly- and strongly-
polynomial query complexities for k-sparse SFM. (It remains open as to whether the parallel depth
of strongly-polynomial k-sparse SFM can be similarly improved.)

Theorem 1.2 (Weakly-polynomial k-sparse SFM). There is a randomized algorithm that outputs
an ǫ-approximate minimizer for k-sparse SFM whp. in Õ((n ·poly(k) ·EO+poly(n)) log(|f |/ǫ)) time.

Theorem 1.3 (Strongly-polynomial k-sparse SFM). There is a randomized algorithm that outputs
an exact minimizer for k-sparse SFM whp. in Õ(n · poly(k) · EO+ poly(n)) time.

We include both theorems above because the poly(k) in Theorem 1.2 is slightly better than
that in Theorem 1.3 (see Section 6.4). The algorithms in Theorems 1.2 and 1.3 have nearly-
linear query complexities when the sparsity k = Õ(1). Previously, the only nearly-linear weakly-
polynomial query complexity results for SFM were obtained when the submodular function f can be
decomposed as f(S) =

∑
i fi(S) and each fi depends only on Õ(1) coordinates [AKM+21, DJL+22].

However, this is different and the techniques for solving it seem tailored to its structure.
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Our algorithms for Theorems 1.1-1.3 depart from the use of cutting plane methods and do
not rely on linear system solves as a sub-procedure. In this sense, they are more combinato-
rial than state-of-the-art weakly-polynomial time [LSW15, JLSW20] and strongly-polynomial time
SFM algorithms [LSW15, DVZ21, Jia22]. Somewhat surprisingly, our algorithms combine first-
order methods, which have been primarily used for pseudo-polynomial SFM algorithms (e.g.,
[CLSW17, ALS20]), and arc finding, a technique central to many strongly-polynomial SFM al-
gorithms (e.g., [LSW15, DVZ21]), to obtain very efficient weakly- and strongly-polynomial time
algorithms. Previous combination of these two techniques only appeared in [DVZ21], but the re-
sulting algorithm has query complexity and parallel depth at least a factor of n2 larger than the
state-of-the-art algorithms based on cutting plane methods. The proofs of Theorems 1.2 and 1.3
additionally invoke various sampling techniques, which crucially allows us to save the additional
factor of n from querying an entire subgradient of the Lovász extension in each iteration.

1.3 Related Work

SFM is a central combinatorial optimization problem with extensive applications. The problem
of maximizing a submodular function has also been widely studied, but is very different and has
seemingly different structure, algorithms, and history (see, e.g., [KG14] for a survey on this topic).

Strongly-, weakly-, and pseudo- polynomial algorithms for SFM. As discussed in the
intro, a fundamental result for SFM is that it can be solved efficiently, in all three regimes of weakly-,
strongly-, and pseudo-polynomial. The first weakly- and strongly-polynomial time SFM algorithms
were given in the seminal work of Grötschel, Lovász, and Schrijver [GLS81, GLS84, GLS88]. The
first pseudo-polynomial algorithm for SFM was given in a seminal work of Cunningham [Cun85].
Since then, there has been a long line of work on designing better algorithms for SFM in all three
regimes [Sch00, IFF01, FI03, Iwa03, Vyg03, Orl09, IO09, CJK14, LJJ15, LSW15, CLSW17, DVZ21].
The state-of-the-art algorithms for these regimes are shown in Table 1.

Paper Year Running Times Remarks

[JLSW20] 2020
O(n2 log nM · EO+ n3 log nM) current best weakly &

O(n3 log2 n · EO+ n4 log2 n) strongly runtime

[ALS20] 2020
Õ(nM2 · EO+ poly(n)) current best pseudo-poly

Õ(kM2 · EO+ poly(n)) current best sparse pseudo-poly

[Jia22] 2021
O(n3 log log n/ log n · EO+ poly(n)) current best strongly

O(n2 log n · EO+ exp(n)) query complexity

Table 1: State-of-the-art weakly-, strongly-, and pseudo-polynomial algorithms for submodular
function minimization. k is the sparsity and parameter M = |f |/ǫ.

Parallel SFM. For the parallel complexity of SFM discussed earlier in the intro, the current
best weakly-polynomial algorithm has parallel depth O(n log nM) [LSW15] and the current best
strongly-polynomial algorithms [Jia22] have parallel depth O(n log n) (with exponential runtime)
or O(n2 log log n/ log n) (with polynomial runtime). In concurrent work [CGJS23], a superset of
the authors give a Õ(n1/3/ǫ2/3)-round poly(n)-time algorithm for obtaining an ǫ-approximate min-
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imizer, and a 2-round nO(M)-time algorithm for computing an exact minimizer. As discussed in
the intro, lower bounds for parallel SFM have also been studied recently (see Table 2).

Paper Year Parallel Depth Accuracy

[BS20] 2020 Ω(log n/ log log n) exact

[CCK21] 2021 Ω̃(n1/3) |f |/poly(n)
[CGJS22] 2022 Ω(n/ log n) exact

Table 2: Parallel depth lower bounds for query-efficient SFM. In the “Accuracy” column, “exact”
means the algorithm is required to compute an exact minimizer, and “|f |/poly(n)” means the
algorithm is allowed to output any approximate minimizer with an additive accuracy of |f |/poly(n).

Structured SFM. Given the aforementioned nearly n-factor gap between the state-of-the-art
query complexity upper and lower bounds for SFM, there have been exciting recent results on
improving the query complexity of SFM assuming more fine-grained structures of the submodular
functions. In particular, for the problem of decomposable SFM discussed prior to Section 1.1,
it is known that f can be minimized in weakly-polynomial time using Õ(n) total queries to the
evaluation oracles of each individual fi [AKM+21, DJL+22].

1.4 Paper Organization

We start by providing an overview of our approach to obtaining our results in Section 2, followed
by preliminaries in Section 3. Our unified algorithmic framework and key algorithmic tools for
obtaining both our parallel and sequential results are introduced in Section 4. Our parallel results
are presented in Section 5 and our sequential results are obtained in Section 6.

2 Our Approach

Here we provide an overview of our approach towards proving Theorems 1.1-1.3. We first give some
context and motivation, and then we cover the key components of our approach in Sections 2.1-2.3.

To situate our approach, recall that previous state-of-the-art weakly- and strongly-polynomial
time SFM algorithms all apply the general continuous optimization tool of cutting plane methods
[Lev65, New65, Sho77, YN76, Kha80, KTE88, NN89, Vai89, BV04, LSW15, JLSW20]. Cutting
plane methods are known to compute ǫ-approximate minimizers of bounded convex functions on
R
n in Õ(n log(1/ǫ)) iterations where each iteration consists of a subgradient computation, which

typically takes Õ(1) depth, O(n) queries to the evaluation oracle of f , and Ω(n2) additional work
[JLSW20] involving linear algebraic operations such as a linear system solve.

In this paper we seek to improve upon these methods for k-sparse SFM both in terms of
performance and to avoid general linear algebraic primitives (to obtain, in some sense, a more
combinatorial algorithm). However, as discussed in Section 1.1, it is unclear how to substantially
improve cutting plane methods just using the assumption that their is a sparse optimal solution.

Consequently, we depart from previous state-of-the-art weakly- and strongly-polynomial SFM
algorithms and instead use first-order methods4 such as mirror descent (Algorithm 2) and (stochas-

4Technically speaking, cutting-plane methods also only use first-order information. However, following the con-
ventions of the optimization literature, we do not refer to cutting plane methods as first-order methods.
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tic) follow-the-regularized-leader (Algorithm 12) to minimize the Lovász extension. These methods
have performance depending more on problem geometry, e.g., the domains BV

∞ versus SV
k , than

cutting plane methods. Also, implementing them often does not require linear system solves and
therefore they typically have much smaller iteration costs.

Unfortunately, these desirable features of first-order methods have a cost. In contrast to cutting
plane methods, when applied to non-smooth convex objectives like the Lovász extension, their
convergence rate depends polynomially on the accuracy rather than polylogarithmically. Therefore,
it is natural to use such methods for pseudo-polynomial SFM algorithms [CLSW17, ALS20], but less
clear how to leverage them to obtain improved weakly- or strongly- polynomial SFM algorithms.

Fortunately, recent advances in weakly- and strongly-polynomial SFM algorithms provide hope
for overcoming this limitation. Work of [LSW15, DVZ21] provide different ways to incorporate
learned precedence constraints, i.e., if an element is in a minimizer then what other elements must
also be in that minimizer, to reduce the scale of the problem. For example, [DVZ21] showed that
it suffices to solve SFM approximately to a relative accuracy of O(1/n3), in a primal-dual sense,
repeatedly to obtain a strongly-polynomial algorithm for SFM.

Despite the above hope for improving k-sparse SFM via first-order methods, there are a num-
ber of natural hurdles in the way. For example, the O(1/n3)-error requirement in [DVZ21] is
prohibitively expensive for first-order methods to outperform cutting plane methods. Additionally,
learning and updating precedence constraints need to be made sufficiently efficient.

Nevertheless, we are able to follow this broad approach by introducing and leveraging a central
concept of this paper we call sparse dual certificates (see Section 4.3). In particular, we demonstrate
how to carefully apply first-order methods to 1/poly(k)-accuracy to compute sparse dual certificates
and, building upon [DVZ21], how these certificates can be used to efficiently deduce precedence
constraints. Our parallel and sequential algorithms differ in their specific implementations of these
strategies (see Sections 5 and 6 respectively). We believe the notion of sparse dual certificates and
our algorithmic techniques for computing and using them for k-sparse SFM might have broader
applications to improving weakly- or strongly- polynomial time SFM algorithms.

Section organization. To illustrate our approach and our key insights, we subdivide the re-
mainder of this section. In Section 2.1, we provide the general framework we use to iteratively
decrease the scale of the k-sparse SFM problem. Section 2.2 and Section 2.3, we provide the key
ideas in our parallel and sequential algorithms respectively.

2.1 Framework

Building on a long line of work [IFF01, IO09, LSW15] (and in particular, [DVZ21]), our algorithms
for minimizing a submodular function f : 2V → R works by maintaining a set of precedence
constraints indicating elements that must or must not be in any k-sparse minimizer, as well as for
each p ∈ V a set of elements Sp that must be in any k-sparse minimizer S∗ containing p. We call
these precedence constraints arc constraints5 and their collection a ring family.

Given these arc constraints, we consider an induced submodular extension f ♯R consistent with
the ring family. f ♯R is essentially the complement of a submodular extension studied in [DVZ21]; it
is crucial that we work with f ♯R since sparsity is not preserved under complements. The extension

5Our definition of arc constraints is only with respect to k-sparse minimizers and is therefore different from the
standard one in the literature. See Section 4.1 for more details.

8



f ♯R has many desirable properties. For example, minimizing f ♯R suffices for minimizing f and
any arc constraints learned for f ♯R apply to f . Beyond consistency and submodularity, the key
property we use about f ♯R is that the marginal vector6 u ∈ R

V defined as up
def
= f ♯R({p})− f ♯R(∅)

for any coordinate p ∈ V does not increase as we add arc constraints. (See Section 4.1 for more
details.)

By maintaining the ring family and the extension f ♯R, and leveraging their properties, k-sparse
SFM reduces to the problem of learning new arc constraints so that we can either

1. decrease the scale of ‖u‖∞ by more than a constant factor, or

2. learn enough arc constraints so that the k-sparse minimizer is clear.

In particular, if ‖u‖∞ ≤ ε/|V |, then due to submodularity the largest set consistent with every arc
constraint will be an ε-approximate minimizer for the original submodular function (see Claim 4.4).
Note how k-sparsity helps for our purposes: if the set of elements Sp that must be in every k-sparse
minimizer containing p has more than k elements, then p cannot be in any k-sparse minimizer
and can therefore be discarded. This allows us to maintain at most k arc constraints from any
element p ∈ V , which significantly decreases the cost of manipulating the arc constraints and the
submodular extension f ♯R.

In both our parallel and sequential settings, we use ‖u‖∞ as a potential function and design
efficient parallel and sequential subprocedures to find arc constraints to decrease ‖u‖∞ by a constant
factor. Each setting has its distinct challenges and our techniques differ correspondingly. However,
there is one common technique underlying these two different implementations, based on the notion
of a sparse dual certificate (see Section 4.3 for details).

Sparse dual certificates. Sparse dual certificates are generalizations of standard dual solutions
to SFM [Edm70] that better capture the sparsity assumptions on the minimizers of the submodular
function (see Definition 4.6 for definition). In our framework, sparse dual certificates bridge the
gap between the task of finding arc constraints and the pseudo-polynomial convergence rate of first-
order methods. In particular, we show how to use sparse dual certificates to deduce arc constraints
(see Section 4.3). We also develop various algorithmic techniques to compute these certificates by
running first-order methods up to only 1/poly(k) accuracy (see Sections 5.2 and 6.1 respectively
for our parallel and sequential algorithms for computing sparse dual certificates).

2.2 Parallel Algorithm

To motivate our parallel algorithm, consider minimizing the Lovász extension f̂ of the induced
function f ♯R : 2V → R with a k-sparse minimizer and let f∗

def
= minS⊆V f ♯R(S) = minS⊆V f(S).

As discussed above, it suffices to learn arc constraints so that we can decrease ‖u‖∞ by a constant
factor after updating the ring family. We may assume that minp∈V up ≥ 0 as by submodularity
adding any p with up < 0 to any set decreases its value and therefore p must be in every minimizer.

As a warm-up for this goal, perhaps the first natural question is: under these assumptions
how efficiently can we compute a δ ‖u‖∞-approximate minimizer for a given δ = 1/poly(k)? The
question of deducing arc constraints seems harder than this problem since it involves proving
something about all k-sparse minimizers at that accuracy threshold. For this warm-up question,

6The formal notation we define and use for the marginal vector in Section 3 and the rest of this paper is uf♯R .
Here we drop the subscript and use u instead for simplicity.
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let us even assume for now that f∗ ≥ −Ω(‖u‖∞), as the problem is in some sense easier otherwise
and will be addressed towards the end of this subsection.

A natural approach to this warm-up problem, as alluded to earlier, is to apply standard first-
order methods such as mirror descent to the Lovász extension f̂ of f ♯R over the domain SV

k . By

submodularity, u entrywise upper bounds the subgradients of f̂ . If somehow the subgradients
were also entrywise lower bounded by −‖u‖∞, then standard analysis of mirror descent with an

entropy regularizer (see Theorem 4.2 of [B+15]) applied to f̂ over SV
k would compute an δ ‖u‖∞-

approximate minimizer in Õ(δ−2) iterations. Furthermore, since each iteration of this method can
be implemented in O(1) depth, this would yield a Õ(δ−2) depth algorithm as desired.

Unfortunately, it is not necessarily the case that every subgradient of f̂ is entrywise lower
bounded in magnitude by −‖u‖∞. In fact, its most negative entry can be as negative as f∗− (n−
1) ‖u‖∞, ruling out showing that mirror descent converges in Õ(poly(k, δ−1)) iterations.

To overcome this issue, we show that the structure of k-sparse solutions allows us to truncate
subgradients. We prove that if we run mirror descent methods with every subgradient coordinate of
value ≤ f∗−k ‖u‖∞ set to f∗−k ‖u‖∞, then this still approximately minimizes the Lovász extension

f̂ and computes sparse dual certificates (see Section 5.2). Running mirror descent with these
truncated subgradients yields a deterministic algorithm which computes a δ ‖u‖∞-approximate

minimizer in Õ(poly(k)/δ2) depth and Õ(n · poly(k)/δ2) evaluation oracle queries.
The solution to this warm-up problem is the key ingredient in our parallel algorithm. In

particular, assuming f∗ ≤ −‖u‖∞, we show that the sparse dual certificate obtained by running
the warm-up algorithm over Sk+1

V with accuracy O(‖u‖∞/k) suffices to conclude an element that
must be in every k-sparse minimizer, i.e., a dimensionality reduction. As dimensionality reduction
can occur at most k times, this gives a Õ(poly(k))-depth Õ(n · poly(k))-query algorithm.

On the other hand, when f∗ ≥ −‖u‖∞, then we consider each of the induced submodular
functions fp where an element p is always included and run the same algorithm on each such
function. Note that each fp, once shifted to evaluate 0 at the new emptyset (or the singleton
{p}), has minimum value −Ω(up). Consequently, when this is done for p with up near ‖u‖∞, the
procedure finds an element which must be in any k-sparse minimizer containing p. Importantly,
this can be done in parallel for each individual p! This conveys the main ideas behind the parallel
algorithm. See Section 5 for details.

2.3 Sequential Algorithm

In the previous section we outlined the main ideas of our parallel algorithm in Theorem 1.1. Un-
fortunately, that algorithm has a rather high query complexity. In every round of decreasing ‖u‖∞,
the algorithm might solve n different induced SFM problems, corresponding to the inclusion of each
element p ∈ V , causing the query complexity to scale quadratic in n instead of linear.

In the literature on using ring families for weakly- and strongly-polynomial SFM, there is a
standard technique for alleviating the need to apply the algorithm to n different SFM problems
to deduce arcs. In [LSW15, DVZ21] and early SFM algorithms (see [LSW15] for a discussion of
the history), the algorithm obtains a suitable dual certificate for the original function. This dual
certificate is then modified by moving individual elements to the start of each permutation, and it
is argued that this modification can be used to deduce arcs. In other words, rather than running n
optimization methods to deduce n dual certificates, these methods deduce one set of dual certificates
and consider n different modifications of it.
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In our sequential algorithm we follow a similar approach, but it brings about a variety of
challenges, each of which requires algorithmic and analytic insights to overcome. The first challenge
is that truncated subgradients, which are used in our parallel algorithm, do not seem amenable
to this technique; it is unclear how to deduce arcs just by moving elements to the front after the
truncation, which may lose critical information that makes this work. [LSW15, DVZ21] consider
the elements of the dual certificate that decrease significantly when moving a certain element to
the start of each permutation. However, truncation does not seem to allow for a similar approach,
as all components that are negative past a threshold are truncated to the same value.

To overcome this challenge, we provide a first-order method for computing ǫ-approximate min-
imizers (and their associated sparse dual certificates) using true (rather than truncated) subgra-
dients. As discussed in Section 2.2, this is difficult as the entries of the subgradient can vary by
Ω(n ‖u‖∞). Correspondingly, standard analysis of iterative first-order methods, e.g., mirror descent
and FTRL (Follow-the-Regularized-Leader), require Ω(n2) iterations, which would naively make
a prohibitive Ω(n3) queries! It is therefore imperative that we use a different technique (other
than truncation as in the parallel setting) to either reduce the number of iterations or the cost
per iteration; we do both. In particular, we use stochastic FTRL7 (Follow-the-Regularized-Leader)
where in each iteration we sample a random 1-sparse unbiased estimator of the subgradient. We
show how this can be implemented using Õ(1) evaluation queries per iteration and that the total
number of iterations is suitably bounded.

Making the above approach work requires a number of insights. First, the number of iterations
of stochastic FTRL is straightforwardly boundable in terms of the square of the ℓ∞ norm of the
stochastic estimates of the subgradient (analogous to as it was done for mirror descent in the
parallel setting). However, unfortunately any sampling scheme in the worst case could have an
ℓ∞-norm of Ω(n ‖u‖∞), again leading to Ω(n2) iterations. To get around this, we instead perform
a more fine-grained analysis of the convergence of FTRL in terms of “local norms” (see Section 6.1
for details). This is a known optimization method analysis technique and our analysis is inspired
from and perhaps most closely resembles [CJST19]; this technique was not used in previous work
on SFM that uses sampling [CLSW17, HRRS19, ALS20].

The next challenge is to actually implement sampling using Õ(1) queries per iteration so that
the local norms of the samples are suitably small. Sampling i ∈ V with probability proportional
to |(gxt)i| and then outputting sign(gxt)i · ‖gxt‖1 would have the desired local norm bound. Addi-
tionally, sampling by this is essentially what is done in some of the sampling-based SFM methods
[CLSW17, HRRS19, ALS20] (albeit for a different norm analysis particularly relevant for pseu-
dopolynomial SFM algorithms). However, these papers implement this sampling by somewhat
complex dynamic data structure which could be challenging to analyze in our setting. Instead,
we provide a simple straightforward sampling procedure which we call vSampling. This sampling
scheme picks i ∈ V proportional to an upper bound vi for |(gxt)i| so that

∑
i∈I vi for consecutive

coordinates I can be evaluated using only O(1) queries. This sampling can be implemented using
O(log n) queries by a simple (static) binary tree data structure and we prove it has the desired
expected local-norm bounds.

Another challenge we face is that our stochastic FTRL analysis merely yields a subgradient y
that is a suitable dual certificate in expectation, whereas we need the guarantee to hold with high
probability in order to correctly deduce arc-constraints. To this end, we show that ‖y‖∞ is small

7We choose stochastic FTRL rather than stochastic mirror descent to facilitate the attainment of with high
probability success guarantees.
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with high probability8, and apply the Azuma-Hoeffding concentration inequality for martingales
to show that averaging over poly(k) such subgradients yields a suitable dual certificate with high
probability. Showing that no entry of y is too negative carries much of the difficulty in the analysis.
For this step, we apply a novel analysis of our optimization method, which uses submodularity
structure and couples the iterates of FTRL with iterates of an instantiation of the multiplicative
weights algorithm. For details see Section 6.1.

The above method computes an implicit representation of Õ(n · poly(k)) permutations such
that the average of the subgradients they induce is a dual certificate of SFM from which either
arcs or coordinates in the minimizer can be deduced. However, naively writing down the gradients
that average out to the certificate would require Ω(n2)-queries. Furthermore, deducing an arc for
a single coordinate, through the operation of moving a set of elements to the beginning of each
permutation (which we often refer to as move-to-front for simplicity), would also naively require
Ω(n2)-queries, which is prohibitively expensive. To overcome this limitation, we provide efficient
methods to sample from these permutations and their associated subgradients. More specifically, we
design a method which first draws Õ(n · poly(k)) samples from the subgradients as a preprocessing
step, and then uses the samples to deduce several arcs. The preprocessing step enables an efficient
implementation of the move-to-front operations due through an importance sampling technique.
Each arc deduced requires Õ(poly(k)) additional samples. For more details, see Section 6.3.

This summarizes the main ingredients for obtaining our Õ(n · poly(k) log(|f |/ǫ))-query result.
Somewhat surprisingly, a more careful amortized cost analysis reveals that this algorithm is in fact
a strongly-polynomial time algorithm that makes Õ(n ·poly(k)) queries. This stems, partially, from
a more fine-grained analysis of the size of subgradients and how many arcs are deduced each time
we compute an ǫ-approximate minimizer (and its corresponding dual certificate). See Section 6 for
details.

This discussion omits a variety of details which are deferred to Section 6. The use of randomness
and the loss of parallelism in this sequential algorithm is interesting and we leave it as an open
problem to see to what degree a deterministic Õ(poly(k) log(1/ǫ))-depth and Õ(n ·poly(k) log(1/ǫ))-
work weakly-polynomial time algorithm (and a strongly-polynomial time analog) can be achieved.

3 Preliminaries

3.1 Notation

We often use V to denote a finite set of n elements. For any real number p ≥ 1, we use ‖ · ‖p to

denote the ℓp-norm in R
V . We denote the unit cube by BV

∞
def
= [0, 1]V . For any integer k > 0, we

denote the interior of the simplex scaled by k as ∆V
k

def
= {x ∈ R

V
≥0 : ‖x‖1 ≤ k}. In particular, define

the standard simplex ∆V def
= ∆V

1 . Further, we use S
V
k

def
= BV

∞∩∆V
k to denote the truncated (interior

of the) k-simplex. For every S ⊆ V , we use ~1S to denote the indicator vector for the set S (i.e.
(~1S)i = 1,∀i ∈ S and (~1S)i = 0,∀i ∈ V \ S). For simplicity, for every i ∈ V , we write ~1i to denote
the vector with a single 1 in the ith coordinate and zero elsewhere. For any vector v ∈ R

V , we use
|v| to denote the vector obtained by taking the coordinate-wise absolute value of v.

For any x ∈ R
V
≥0 and y ∈ R

V , we define ‖y‖x
def
=
√∑

i∈V xiy2i . For any y ∈ R
V , ℓ ∈ Z>0, and

P ⊆ V , we let y(P )
def
=
∑

p∈P yp be the sum of the coordinates of y in P and yℓ−(P )
def
= minw∈SP

ℓ
y⊤w

8Throughout this paper, with high probability means that the probability is 1− n−C for some constant C > 0.

12



be the sum of the most negative ℓ coordinates of min{y, 0} in P . We denote y−(V )
def
= yn−(V ).

We denote the entropy regularizer (or entropy mirror map) as r(x)
def
=
∑

i∈V xi log xi for any

x ∈ R
V
≥0 (where we define 0 log 0

def
= 0). We let Vx(y)

def
= r(y)−

(
r(x) +▽r(x)⊤(y − x)

)
the Bregman

divergence of r. Note that

Vx(y) =
∑

i∈V
yi log yi −

∑

i∈V
xi log xi −

∑

i∈V
(1 + log xi)(yi − xi)

=
∑

i∈V
yi log(yi/xi) +

∑

i∈V
(xi − yi) = 〈y, log(y/x)〉+ 〈x− y,~1〉. (1)

3.2 Submodular Functions and Lovász Extension

Let f : 2V → R be a set function defined on subsets of the n-element finite set V . We use f∗ to
denote the minimum value of f over 2V . A set function f is submodular if it satisfies the following
property of diminishing marginal differences:

Definition 3.1 (Submodularity). A function f : 2V → R is submodular if f(T ∪ {i}) − f(T ) ≤
f(S ∪ {i})− f(S), for any S ⊆ T ⊆ V and i ∈ V \ T .

In this section, the set function f we work with is assumed to be submodular even without
stated explicitly. We may assume without loss of generality that f(∅) = 0 by replacing f(S) by
f(S) − f(∅). We make the following two assumptions about the submodular functions we work
with throughout this paper even when it is not explicitly stated: (1) f(∅) = 0, and (2) f is accessed
through an evaluation oracle, and use EO to denote the time to compute f(S) for any S ⊆ V .

Throughout, we use Smin to denote the unique minimum minimizer9 of the given submodular
function f . We also define the vector uf ∈ R

V as (uf )p
def
= f({p}) for all p ∈ V . In particular,

by submodularity, (uf )p is an upper bound on the marginal of p for any S ⊆ V \ {p}, i.e., f(S ∪
{p})−f(S) ≤ (uf )p. Given a submodular function f and P ⊆ V , we define the contracted function
fP : 2V \P → R as

fP (S)
def
= f(S ∪ P )− f(P ).

Note that fP is also a submodular function with fP (∅) = 0.

Lovász Extension and Subgradients. Our algorithm for SFM is based on a standard convex
relaxation of a submodular function, known as the Lovász extension [Lov83].

Definition 3.2 (Lovász Extension). The Lovász extension, f̂ : BV
∞ → R, of a submodular function

f is defined as f̂(x)
def
= Et∼[0,1][f({i : xi ≥ t})], where t ∼ [0, 1] is drawn uniformly at random.

We often overload notation and also use f : BV
∞ → R to denote the Lovász extension f̂ of f .

The Lovász extension f̂ of a submodular function f has many desirable properties. In particular,
f̂ is a convex relaxation of f and it can be evaluated efficiently.

Theorem 3.3 (Properties of Lovász Extension, Theorem 6.3 in [Jia22]). Let f : 2V → R be a
submodular function and f̂ be its Lovász extension. Then,

(a) f̂ is convex and minx∈BV
∞
f̂(x) = minS⊆V f(S);

9Such a minimal minimizer exists because for any two minimizers S∗1 , S
∗
2 of f , their intersection S∗1 ∩S∗2 and union

S∗1 ∪ S∗2 must also be minimizers since by submodularity, 2f∗ = f(S∗1 ) + f(S∗2 ) ≥ f(S∗1 ∪ S∗2 ) + f(S∗1 ∩ S∗2 ).
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(b) f(S) = f̂(IS) for any S ⊆ V , where IS is the indicator vector for S;

(c) Suppose x ∈ BV
∞ satisfies 1 ≥ xπ(1) ≥ . . . ≥ xπ(n) ≥ 0 for a permutation π : [n] → V , then

f̂(x) =
∑

i∈[n](f(π[i])− f(π[i− 1]))xπ(i) where π[j]
def
= {π(1), · · · , π(j)};

(d) The set of minimizers of f̂ is the convex hull of the set of minimizers of f .

In particular, Theorem 3.3 (c) implies that a subgradient of f̂ at x ∈ R
V is given by

(gx)πx(i)
def
= f(πx[i])− f(πx[i− 1]),

where πx : [n] → V is the permutation corresponding to decreasing order of the coordinates of
x as in Theorem 3.3 (c). Moreover, given x ∈ R

V , the subgradient gx can be computed in time
O(n·EO+n log n) by sorting the coordinates of x in decreasing order and applying the formula above.
Note that gx only depends on the permutation πx. Therefore, given a permutation π : [n]→ V , we
also define gπ as the subgradient induced, i.e., (gπ)π(i) = f(π[i])− f(π[i− 1]).

For P ⊆ V , we define π←P to be the permutation where the set P is moved to the front
of the permutation π (with the relative order of elements in P preserved). Formally, if P =
{π(i1), · · · , π(iℓ)} for indices i1 < · · · < iℓ and the remaining indices are j1 < · · · < jn−ℓ, then

π←P (k)
def
=

{
π(ik) if k ∈ [ℓ],

π(jk−ℓ) if k > ℓ.

In particular, denote π←i
def
= π←{i}. For a permutation π : [n]→ V and P ⊆ V , we use ∆π,P ∈ R

V
≥0

to denote the decrease of coordinates V \ P in gπ when we move P to front, i.e.,

(∆π,P )q
def
=

{
0 if q ∈ P ,

(gπ)q − (gπ←P
)q if q ∈ V \ P .

The base polytope of a submodular function f is defined as B(f)
def
= {y ∈ R

V : y(S) ≤ f(S),∀S ⊆
V and y(V ) = f(V )}. Any vector y ∈ B(f) can be represented as y =

∑
t∈[m] αtgπt , where πt

are permutations and the coefficients α ∈ ∆[m]. For any P ⊆ V , and y ∈ B(f) represented as
y =

∑
t∈[m] αtgπt , we define the vector y←P ∈ R

V \P by restricting the vector
∑

t∈[m] αtg(πt)←P
to

the coordinates in V \ P , i.e., y←P is obtained from y by moving P to the front. In other words,
y←P is obtained by moving P to front in every permutation πt. Note that this operation depends
on the permutations {πt}t∈[m] in y’s representation. Whenever we write y←P , it will be clear from
the context what representation we are referring to when performing the move-to-front operation.

4 Our Framework

In this section, we describe our general framework for k-sparse SFM. This framework essentially re-
duces the problem of k-sparse SFM to “robustly” minimizing the Lovász extension to ‖uf‖∞/poly(k)
accuracy. Our framework bears resemblance to one in [DVZ21]; we build upon [DVZ21] and intro-
duce several new concepts and techniques in the following subsections.

In Section 4.1, we discuss arc constraints and a natural extension of a submodular function
(in accord with a given set of arc constraints), which is encapsulated through a general data
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structure we call the extension maintainer (Algorithm 11); then in Section 4.2, we describe our meta
algorithm behind our parallel and sequential algorithms (presented in Section 5 and 6 respectively)
for k-sparse SFM. Our meta algorithm contains two critical procedures, Dimensionality-Reduction

and Arc-Finding, whose implementations differ for our parallel and sequential algorithms. Both
implementions leverage a common concept we introduce, called a sparse dual certificate, which
might have broader SFM applications. We define sparse dual certificates and discuss its relationship
to dimensionality reduction and arc finding in Section 4.3. Henceforth, we whenever we use the
word “algorithm” in this section, we refer to our meta algorithm, unless specified otherwise.

4.1 Arc Information and Extension Maintainer

Arc Information and Extension. Our algorithm proceeds by finding elements p, q ∈ V such
that any k-sparse minimizer of f that contains p must also contain q. We call such a constraint
an arc, denoted as (p, q). Using arc information10 for SFM was introduced by Iwata, Fleischer,
and Fujishige [IFF01] and is used in many SFM algorithms, e.g., [IO09, LSW15, DVZ21]. For any
element p, the set of all endpoints of arcs from p is denoted as p↓ , where we adopt the convention
that p ∈ p↓. Our algorithm maintains the set E all arcs (p, q) at a given state, as well as a set
of contracted elements W and a set of discarded elements D. E,W,D naturally induce a ring
family (a set closed under complement and introduction), which we denote by R(E,W,D) ⊆ 2V .
R(E,W,D)11 consists of all the sets S so that W ⊆ S ⊆ V \D, with the property that S respects
the arcs in E (i.e. if (p, q) ∈ E, then p ∈ S implies q ∈ S). Since our algorithms only maintain ring
families through explicit E,W,D we overload notation and sometimes use call R to refer to a ring
family R(E,D,W ), where the (E,D,W ) is dropped when clear from context.

We make the convention that are arcs in E are only for elements in V \ (W ∪ D). We say a
ring family R is k-consistent with submodular f if the arcs it captures are indeed valid (i.e., they
preserve the structure of its k-sparse minimizers). The precise definition is as follows.

Definition 4.1 (k-consistent ring family). A ring family R(E,W,D) for finite set V is determined
by a set W ⊆ V of contracted elements, a set D ⊆ V of discarded elements (with D ∩W = ∅), and
a set E of arcs (p, q) between elements of V \ (W ∪D). We say that S ⊆ V is consistent with R if
W ⊆ S, D ∩ S = ∅, and if p ∈ S and (p, q) is a arc in E, then q ∈ S. Additionally, we say that R
is k-consistent (with f) if every k-sparse minimizer of f is consistent with R.

Given a k-consistent ring family R, to optimize f it suffices to optimize the Lovász extension
over certain restrictions of the hypercube, see, e.g., [LSW15]. However, to simplify algorithm
development, following [DVZ21], we instead provide a new submodular function f ♯R : 2V → R

(see Definition 7.1) which encapsulates ring family constraints in a way that facilitates algorithm
development. Our algorithms only require certain properties of f ♯R, described in Lemma 4.2 below
(and proved in Section 7), along with the extension maintainer, which is our data structure for
accessing the extension.

Lemma 4.2 (Properties of Extension f ♯R). Let f : 2V → R be a submodular function with a
k-sparse minimizer and let R(E,W,D) a ring family k-consistent with f . Then, the following
properties hold for the extension f ♯R : 2V \(W∪D) → R:

10 The arc definition we use here is slightly different from the standard definition in the literature [IFF01, IO09,
LSW15, DVZ21]. In the literature, an arc (p, q) means that any minimizer of f containing p must contain q, while
we only require that this holds for k-sparse minimizers. See Section 7 for more details.

11Our inclusion ofW andD in the definition of R is perhaps non-standard but facilitates notation and explanations.
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1. Submodularity: f ♯R is a submodular function.

2. Extension: f ♯R(S) ≥ f(W ∪ S♯R) for any set S ⊆ V \ W , where S♯R ⊆ S is defined
so that S♯R ∪W is the unique maximal subset of S ∪W consistent with all the arcs in E;
f ♯R(S) = f(W ∪ S) for any set S ⊆ V \W with S ∪W consistent with R.

3. k-Consistency: For any k-sparse minimizer S of f , S\W is also a k−|W |-sparse minimizer
of f ♯R; for any minimizer S∗ of f ♯R, (S∗)♯R ∪W is a minimizer of f .

4. Marginals: For any p ∈ V , (uf♯R)p = f(W ∪ p↓) − f(W ∪ p↓ \ {p}) if either f(W ∪ p↓) −
f(W ∪ p↓ \ {p}) ≥ 0 or p↓ = {p}, and (uf♯R)p = 0 otherwise. Consequently, (uf♯R)p < 0 if

and only if p↓ = {p} and f(W ∪ {p}) < f(W ). Additionally, when new arcs are added or
elements are added to W or D, the value of (uf♯R)p does not increase for any p ∈ V .

Note that the second half of k-consistency in Lemma 4.2 implies that in order to find a min-
imizer of the submodular function f that is consistent with all the arcs, it suffices to minimize
the submodular extension f ♯R. In particular, any element that belongs to every minimizer of f ♯R

must also belong to every minimizer of f . Moreover, by our definition of arcs, the first half of
k-consistency in Lemma 4.2 shows that any arc for the submodular extension f ♯R is also an arc
for f . Therefore, to deduce either arcs or dimensionality reduction, it suffices for our algorithm to
find new arcs or dimensionality reduction for the submodular extension f ♯R.

Maintaining the Extension. A core component of our framework, which is used in our main
algorithm, as well as in our dimensionality reduction and arc-finding subroutines, is a data structure
that maintains the parameters E,W,D determining the ring family R(E,W,D), the marginals
(uf♯R)p, as well as access to the submodular extension f ♯R of f . We call this data structure the
extension maintainer and give the main theorem we use about it here.

Note that the maintainer itself may discover new elements of W or new elements to discard (i.e.
add to D). For instance, if |p↓| > k, then p cannot belong to any k-sparse minimizer of f and thus
can be discarded. Additionally, when an element p has an arc to any discarded element q ∈ D,
then p can also be discarded.

The extension maintainer supports an operation UpdateSpace which allows for augmenting sets
W and D, and ensures that the ring family is k-consistent and the end of its call. Every call to the
extension maintainer that can change quantities the parameters of the ring family ends with a call
to UpdateSpace. Through a call to UpdateSpace, the maintainer first updates set D, then set W to
W ∪W add, computes all marginals (uf♯R)p for p ∈ V , and then adds to W every element p with
(uf♯R)p < 0. Adding such an element p to any set S ∈ V \ (W ∪ {p}) decreases its value thanks to
submodularity, so it must lie inside every minimizer. It then repeats the process of computing all
marginals (uf♯R)p = f(W ∪ {p}) − f(W ) for p ∈ V \W , and adding elements p with (uf♯R)p < 0,
until no such element exists. Hence, the call eventually reaches a state where all marginals are
non-negative (see property 1 of Theorem 4.3).

The following theorem summarizes the operations and costs for the extension maintainer data
structure. We defer the details and proofs to Section 7.

Theorem 4.3 (Extension Maintainer). Given a submodular function f : 2V → R with n = |V | and
minimal minimizer S∗min with |S∗min| ≤ k, accessed through an evaluation oracle EO, there is a data
structure that maintains the set of elements that must be in every minimizer W , the set of discarded
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elements D (with D ∩W = ∅), the set E of all the arcs for elements in V \ (D ∪W ), the values
(uf♯R)p for all p ∈ V \ (D∪W ), and the corresponding submodular extension f ♯R : 2V \(D∪W ) → R.
Access to the extension is through the following operations.

1. Init(V, k, f) initializes the data structure with W = D = ∅ and then calls UpdateSpace(∅, ∅)
defined below. The operation takes O(n) time plus the time to call to UpdateSpace(∅, ∅).

2. UpdateSpace(W add,Dadd) updates the set of contracted elements W to W ∪W add, as well as
the set of discarded elements D to D ∪Dadd for Dadd and W add such that the resulting ring
family is k-consistent. The procedure then adds elements p with (uf♯R)p < 0 to W until the
ring-family is k-consistent and that each coordinate of uf♯R is non-negative. During a call of

UpdateSpace, if the set W changes its value from W begin to W end, the depth and runtime of
that call are O(|W end \W begin|) and O(n|W end \W begin| · EO+n|W end \W begin|) respectively.

3. UpdateArcs({Sp}p∈V ) updates the data structure by adding, for each p, a set of new arcs
Sp The procedure may then add additional arcs, augment W or D. This takes O(k)-depth,
O(m · EO+ nk) time, where m is the number of elements p ∈ V \ (D ∪W ) (after the update)
that acquire new arcs, plus one call of UpdateSpace.

4. Subgrad(π) outputs the subgradient of f ♯R restricted to V \(D∪W ) in O(1)-depth, O(n·EO+n)
time.

5. Partial(i, π) outputs the ith coordinate of the subgradient of f ♯R in O(1)-depth, O(EO + n)
time.

6. f ♯R(S) outputs the value of f ♯R at set S in constant depth and and O(EO + |S|) time. If
S = p↓ for some p ∈ V \ (W ∪D), the runtime is O(EO+ 1).

7. Sets W,D, {p↓}p∈V \(W∪D), as well as vector uf♯R , are explicitly stored and accessible.

During each of call of Init, UpdateArcs and UpdateSpace, additional elements may be added to to W
and D. However, after the operations the data structure ensures that the ring-family is k-consistent
and that each coordinate of uf♯R is non-negative.

4.2 Meta Algorithm

In this section, we present our meta algorithm in Algorithm 1, which is common to both our
parallel and sequential algorithms for Theorems 1.1 - 1.3. As mentioned earlier, the difference be-
tween our parallel and sequential algorithms lie in their different implementations of the procedures
Dimensionality-Reduction and Arc-Finding in Algorithm 1. The guarantees of these two procedures
are summarized as follows.

• Dimensionality-Reduction(f, k): this procedure takes as input an integer k > 0 and a submodu-
lar function f with a k-sparse minimizer. If f∗ ≤ −‖uf‖∞/6k (i.e., f∗ is sufficiently negative),
then Dimensionality-Reduction(f, k) returns a set T 6= ∅ that belongs to every minimizer of f
with high probability, i.e., what we call a dimensionality reduction.

• Arc-Finding(f, k,Scale): this procedure takes as input an integer k > 0, a submodular function
f with a k-sparse minimizer, and a parameter Scale > 0. If f∗ ≥ −‖uf‖∞/6k (i.e., f∗ is
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not too negative) and Scale ≥ ‖uf‖∞, then, with high probability, Arc-Finding(f, k,Scale)
returns a non-empty set Sp of endpoints of arcs from p for every element p ∈ V such that
(uf )p ≥ Scale/2 and p belongs to a k-sparse minimizer. (Consequently, if (uf )p ≥ Scale/2
and Sp = ∅, then p is not in any k-sparse minimizer.)

The parallel and sequential implementations of Dimensionality-Reduction are given in Section 5.3
and Section 6.2 respectively. The parallel and sequential implementations of Arc-Finding are given
in Section 5.4 and Section 6.3 respectively.

The Meta Algorithm. We now describe our meta Algorithm 1. Like the extension maintainer
(Algorithm 11), the algorithm maintains its own copy of sets W and D, the set E of all the arcs for
elements in V \ (W ∪D), and the marginals (uf♯R)p. It works with extension function f ♯R which
encodes the arc constraints, to which it has query, subgradient, and subgradient coordinate access
via the extension maintainer (Theorem 4.3). Every time there is a change in any of E,W,D, or
the uf♯R vector, due to a function call to the extension maintainer, the meta algorithm’s copies of
these quantities are also dynamically updated to match these values.

We now describe the steps of our meta-algorithm. First, through the call Init(V, k, f), the
extension maintainer (Algorithm 11) first initializes E,W,D and the uf♯R vector so that the ring-
family is k-consistent and that each coordinate of uf♯R is non-negative (meaning (uf♯R)q ≥ 0,∀q ∈
V \ (W ∪D)).

In each iteration of the while loop Line 11, the algorithm attempts to either find a dimensionality
reduction (i.e., an element that is in every minimizer), or find arcs, as discussed in Section 2.
Since every marginal is positive after every function call to Algorithm 11, in each iteration of
the while loop, our procedures Dimensionality-Reduction and Arc-Finding always work with uf♯R so
that (uf♯R)q ≥ 0,∀q ∈ V \ (W ∪ D). Inside the while loop in Line 11, we check whether12 f∗ >
−‖f ♯R‖∞/6k or not using the procedure Dimensionality-Reduction. In particular, if the minimum
value f∗ is very negative in the sense that f∗ ≤ −‖f ♯R‖∞/6k, then Dimensionality-Reduction will
find a set of elements T ⊆ V \W with T 6= ∅ that belong to every minimizer. This set of elements
T can then be contracted. Note that whenever |W | ≥ k, or every element in V is either contracted
or discarded (i.e., W ∪D = V ), then W must be a k-sparse minimizer so Algorithm 1 will return
W .

On the other hand, if f∗ is close to 0 in the sense that f∗ > −‖f ♯R‖∞/6k, then Algorithm 1
calls the procedure Arc-Finding to find a set Sp 6= ∅ of endpoints of arcs from any element p with
large marginal (uf♯R)p > ‖uf♯R‖∞/2. Since the value of ‖uf♯R‖∞ does not increase after adding
arcs due to Lemma 4.2, we can continue finding arcs until ‖uf♯R‖∞ drops by more than a constant
factor. Whenever ‖uf♯R‖∞ becomes smaller than ǫ/n, then the set V \D must be an ǫ-approximate

minimizer for f ♯R by applying the following claim to the submodular function f ♯R : 2V \D → R.

Claim 4.4. Let f : 2V → R be a submodular function such that ‖uf‖∞ ≤ ǫ/n, then the set V is
an ǫ-approximate minimizer of f .

Proof. For any S∗ ⊆ V that minimizes f we have that f(V ) ≤ f(S∗)+
∑

p∈V \S∗(uf )p ≤ f∗+ ǫ.

The correctness of the meta algorithm follows from Claim 4.4 and its description above.

12For our parallel algorithm in Section 5 we actually use the threshold
‖u

f♯R‖∞

4
to improve the oracle complexity

by a poly(k) factor. This larger threshold doesn’t work for our sequential algorithm in Section 6.
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Corollary 4.5 (Correctness of Meta Algorithm). Assuming the correctness of the instantiations of
Dimensionality-Reduction and Arc-Finding, Algorithm 1 always outputs an ǫ-approximate minimizer
of f . Additionally, if Algorithm 1 outputs the set W , then it is an exact minimizer of f .

Proof. First, note that after each function call of data structure Algorithm 11, all marginals (uf♯R)p
are non-negative. This holds since each call that could change E,W,D or (uf♯R)p values ends with
a call to UpdateSpace, which by Theorem 4.3, ensures all marginals (uf♯R)p are non-negative at
the end of it. Thus, whenever we call our Dimensionality-Reduction and Arc-Finding methods, the
corresponding vector uf♯R is non-negative.

Next, note that assuming the correctness of Dimensionality-Reduction and Arc-Finding, the ele-
ments added to W (i.e., Line 5) are always in every k-sparse minimizer, and the elements added to
D are not in every k-sparse minimizers. This holds because our Arc-Finding method is guaranteed
to find at least one arc from every p that belongs to a k-sparse minimizer and has (uf )p ≥ Scale/2.
Consequently, each call to UpdateSpace preserves the property that at the end of it, W ⊆ Smin (by
Theorem 4.3).

Finally, having proved that E,W,D are updated correctly, note that when the stopping condi-
tion of the while loop in Line 11 is |W | ≥ k or D∪W = V , then the set W is a k-sparse minimizer.
If the while loop is ended because ‖uf♯R‖∞ ≤ ǫ/n, then by Claim 4.4, the set V \ D is an ǫ-

approximate minimizer of f ♯R, which is also an ǫ-approximate minimizer of f by Lemma 4.2. This
follows because V \D is consistent with the ring family, which implies that f ♯R(V \D) ≥ f(V \D)
by the extension property of Lemma 4.2.

Note how sparsity helps us in our meta algorithm: for Dimensionality-Reduction, the algorithm
can find at most k contracted elements W since f is guaranteed to have a k-sparse minimizer; for
Arc-Finding, we can find at most k arcs from each element p with (uf♯R)p ≥ Scale/2 before concluding
that p does not lie in any k-sparse minimizer and can be safely discarded. This guarantees that
‖uf♯R‖∞ has to go down by a factor of 2 after at most k iterations of the inner while loop in Line 11.

4.3 Sparse Dual Certificate

Both of our Dimensionality-Reduction and Arc-Finding procedures crucially rely on a core notion we
call (δ, k) dual certificate. To motivate this concept, we recall that Edmonds’ minimax theorem
[Edm70] states that

max
y∈B(f)

y−(V ) = min
S⊆V

f(S), (2)

where B(f) is the base polytope, as defined in Section 3.2. In the beautiful framework established
by [DVZ21], dimensionality reduction and arc information are deduced from an approximately
optimal dual solution y ∈ B(f) that satisfies

y−(V ) ≤ f∗ ≤ y−(V ) + δ.

However, in order to find a dimensionality reduction or arc information, the approximation quality
of the dual solution y is required to be δ = ‖uf‖∞/poly(n) in [DVZ21]. To the best of the authors
knowledge, to achieve such a small accuracy, all known gradient descent methods would take at
least a comparable poly(n) number of iterations, which would be prohibitively expensive.
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Algorithm 1: Meta Algorithm

Data: Integer k > 0, submodular function f : 2V → R with a k-sparse minimizer, and
accuracy ǫ > 0

Result: An ǫ-approximate minimizer of f

1 Extension maintainer Ext← Init(V, k, f)
2 W ← Ext.W,D ← Ext.D, uf♯R ← Ext.uf♯R // f ♯R : 2V \(D∪W ) → R

3 while |W | < k,D ∪W 6= V, ‖uf♯R‖∞ > ǫ
n do

4 T ← Dimensionality-Reduction(f ♯R, k) // Find dim reduction T 6= ∅ if f∗ ≤ −‖uf♯R‖∞/6k

5 if T 6= ∅ then // Add T to contracted elements W

6 UpdateSpace(T, ∅)
7 W ← Ext.W,D ← Ext.D, uf♯R ← Ext.uf♯R

8 end

9 else

10 Scale = ‖uf♯R‖∞ // Find arcs if f∗ > −‖uf♯R‖∞/6k

11 while ‖uf♯R‖∞ > Scale
2 do

12 {Sp}p∈V \(D∪W ) ← Arc-Finding(f ♯R, k,Scale) // Find arcs if (uf♯R)p ≥ Scale/2

13 for p ∈ V \ (D ∪W ), (uf♯R)p ≥ Scale/2 and Sp = ∅ do
14 D ← D ∪ {p} // Discard p if (uf♯R)p ≥ Scale/2 and no arcs found

15 end

16 Ext.UpdateSpace(∅,D \ Ext.D)
17 Ext.Update({Sp}p∈V \(D∪W )) // ‖uf♯R‖∞ decreases after adding arcs

18 W ← Ext.W,D ← Ext.D, uf♯R ← Ext.uf♯R

19 end

20 end

21 end

22 return V \D
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In our framework, we relax the quality of the approximate dual solution, and, by exploiting the
sparsity structure of our submodular function, show that for our dimensionality reduction and arc
finding procedures, it is sufficient. More specifically, our procedures only need the approximation

error to be δ =
‖uf‖∞
poly(k) instead of

‖uf‖∞
poly(n) , which allows us to only run poly(k) iterations of gradient

descent methods.

Definition 4.6 ((δ, k) Dual Certificate). y ∈ R
V is a (δ, k) dual certificate for submodular function

f : 2V → R and δ > 0 if

1. f∗ ≤ yk+1
− (V ) + δ and

2. f(S) ≥ y(S) for every k-sparse S ⊆ V .

Note that the approximation to f∗ we use in the above definition is yk+1
− (V ) instead of y−(V )

in (2). This is because if f has a k-sparse minimizer S∗, then any dual solution y ∈ B(f) satisfies
yk−(V ) ≤ f∗. To see this, let gπ ∈ B(f) be the BFS corresponding to permutation π. Then,

(gπ)
k
−(V ) = min

S⊆V,|S|≤k
g⊤π ~1S ≤ g⊤π ~1S∗ ≤ f∗,

where the last inequality follows from Lemma 63 in [LSW15]. Since any y ∈ B(f) is a convex
combination of BFSs, we have yk−(V ) ≤ f∗. This suggests that the quantity yk−(V ) is intuitively a
natural dual characterization of f∗ in the sparse setting.

We will present efficient parallel and sequential algorithms for computing (δ, k) dual certificates
in Section 5.2 and Section 6.1 respectively. For the remainder of this subsection, we discuss how
the notion of (δ, k) dual certificate is useful for dimensionality reduction and arc finding.

Dimensionality Reduction. Here, we show that given a (δ, k) dual certificate for a suitably
chosen δ, we can find an element y ∈ V that is contained in every minimizer of f , i.e., a dimen-
sionality reduction. Before doing so, we first claim that any element that lies in every k-sparse
minimizer of f must also lie in every minimizer of f .

Claim 4.7. Let f : 2V → R be a submodular function with a k-sparse minimizer. If element p ∈ V
lies in every k-sparse minimizer of f , then it must lie in every minimizer of f .

Proof. Let Smin be the unique minimal minimizer of f , which satisfies |Smin| ≤ k by assumption.
It follows that p ∈ Smin ⊆ S∗ for any other minimizer S∗ of f .

The next lemma is key to the development of our implementations of the Dimensionality-

Reduction procedure.

Lemma 4.8. Let f : 2V → R be a submodular function with a k-sparse minimizer such that
f(∅) = 0, and δ > 0. Let y ∈ R

V be a (δ, k) dual certificate for f . Then every p ∈ V of y with

yp < −δ must be in every minimizer of f . In particular, if δ < |f∗|
k , then the index of the most

negative component of y must be in every minimizer of f .

Proof. We start with the first statement. Let p ∈ V be a coordinate with yp < −δ and assume for
the purpose of contradiction that p does not lie in a k-sparse minimizer S∗ of f . Then,

f(S∗) ≥ y(S∗) ≥ yk+1
− (V )− yp ≥ f∗ − δ − yp > f∗,
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contradicting to the assumption that S∗ is a k-sparse minimizer of f . This implies that p belongs
to every k-minimizer of f . Then by Claim 4.7, p must be in every minimizer of f .

For the second statement, let S∗ be any k-sparse minimizer of f . Then y(S∗) ≤ f∗ so there
most negative coordinate p ∈ S∗ of y must satisfies yp ≤ f∗/k < −δ. The second statement then
follows from the first statement.

Thus far, our discussion applied to both the parallel and sequential algorithms. From this
point onward, the arc-finding technique described in the paragraphs that follow, as well as the
corresponding lemma (Lemma 4.9) applies exclusively to the sequential algorithm.

Arc Finding. The next lemma of this subsection is crucial to our Arc-Finding procedure. It states
that given a (δ, k) dual certificate y of f , moving an element p to the front of the permutations
corresponding to y produces a dual certificate for the contracted function fp(·) : 2V \{p} → R. Then
any dimensionality reduction Sp ⊆ V \ {p} for the function fp is a set of arcs from p.

Lemma 4.9. Let f be a submodular function, y ∈ B(f) be a (δ, k) dual certificate, and P ⊆ V be
a subset, then y←P ∈ B(fP ). Moreover, if P ⊆ S∗, where S∗ is a k-sparse minimizer of f , then
y(P ) ≤ δ and y←P is a (δ − y(P ), k) dual certificate for fP .

Proof. Let y =
∑

t∈[m] αtgπt be a representation of y, for coefficients α ∈ ∆[m]. Let y′
def
=∑

t∈[m] αtg(πt)←P
. To prove y←P ∈ B(fP ), we first note that

y←P (V \ P ) = y′(V )− y′(P ) = f(V )− f(P ) = fP (V \ P ).

For every S ⊆ V \ P , we have

y←P (S) = y′(S ∪ P )− y′(P ) ≤ f(S ∪ P )− f(P ) = fP (S).

The above two observations imply that y←P ∈ B(fP ).
Next, we show that y(P ) ≤ δ for any P ⊆ S∗ for k-sparse minimizer S∗ of f . This follows from

f∗ ≥ y(S∗) = y(P ) + y(S∗ \ P ) ≥ y(P ) + yk+1
− (V ) ≥ y(P ) + f∗ − δ,

where the second inequality is because |S∗\P | ≤ |S∗| ≤ k and the last inequality uses the assumption
that y is a (δ, k) dual certificate. The above implies that y(P ) ≤ δ.

Finally, we further show that y←P is a (δ− y(P ), k) dual certificate for fP when P ⊆ S∗. Since
y←P ∈ B(fP ), we have y←P (S) ≤ fP (S) for any S ⊆ V \ P . Hence, we are left to show

(fP )
∗ ≤ (y←P )

k+1
− (V \ P ) + δ − y(P ). (3)

Define T ∗
def
= S∗ \ P . Note that

fP (T
∗) = f(S∗)− f(P ) = f∗ − f(P ).

On the other hand, any set T ′ ⊆ V \ P satisfies

fP (T
′) = f(T ′ ∪ P )− f(P ) ≥ f∗ − f(P ),
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which implies that (fP )
∗ = f∗ − f(P ). Therefore, to prove (3), it suffices to prove that

f∗ − f(P ) ≤ (y←P )
k+1
− (V \ P ) + δ − y(P ) = (y′)k+1

− (V \ P ) + δ − y(P ). (4)

To prove (4), we seek to compare (y′)k+1
− (V \P ) to yk+1

− (V \P ). As we move P to the front for each
permutation in the subgradient gπt to obtain y′ from y, we have y′q ≤ yq for each coordinate q ∈ V \P
due to submodularity. Also note that y′(P ) − y(P ) = f(P ) − y(P ) and y′(V ) = y(V ) = f(V ).
These imply that

∑

q∈V \P
(yq − y′q) = (y(V )− y(P ))− (y′(V )− y′(P )) = f(P )− y(P ),

i.e., the total amount of decrease for coordinates in V \P when changing from y to y′ is f(P )−y(P ).
In particular, the most negative k+1 coordinates of y in V \P can decrease by at most f(P )−y(P ).
Therefore, we have

(y′)k+1
− (V \ P ) ≥ yk+1

− (V \ P )− (f(P )− y(P )) ≥ f∗ − δ − (f(P )− y(P )),

where the last inequality uses the assumption that y is a (δ, k) dual certificate for f . This proves
(4) and completes the proof of the lemma.

5 Poly(k)-Depth Parallel Algorithm for k-sparse SFM

In this section, we present our parallel algorithm for k-sparse SFM and prove Theorem 1.1. We
apply mirror descent with an entropic regularizer to the Lovász extension of f restricted to SV

k , the
subset of vectors in [0, 1]V with ℓ1 norm at most k, up to an accuracy ‖uf‖∞/poly(k) to obtain a
(δ, k) dual certificate for dimensionality reduction or arc finding.

However, naively using mirror descent yields an algorithm whose number of iterations depends
polynomially on the ratio between the ℓ∞-norm of the subgradient and the accuracy we need, which
may be up to n if the ℓ∞-norm of the gradient is large. To get around this large dependence on n,
we employ a novel technique of truncating the subgradient values. We show that we can cap the
negative values at some threshold depending on f∗ and ‖u‖∞ so that running mirror descent up to
the same desired accuracy still allows us to find a contraction or an arc.

The section is organized as follows. We start by presenting the classic mirror descent algo-
rithm and its convergence guarantee in Section 5.1. In Section 5.2, we present our mirror descent
with truncation method for obtaining (δ, k) dual certificates. Then in Section 5.3, we present our
parallel implementation of Dimensionality-Reduction. Our parallel implementation of Arc-Finding is
contained in Section 5.4. Finally in Section 5.5, we provide a proof of Theorem 1.1.

5.1 Mirror Descent

Before detailing our algorithm, we first present the classic mirror descent algorithm (Algorithm 2) of
Nemirovski and Yudin [NY83]. We refer to the excellent monograph [B+15] for more background
and details on mirror descent. The following lemma is the standard performance guarantee of
mirror descent, which is a slight adaptation13 of Theorem 4.2 in [B+15].

13The statement of Lemma 5.1 comes from the RHS of the last inequality in the proof of Theorem 4.2 in [B+15].
Note that the bound on regret

∑m−1
t=0 〈ht, xt − w〉 does not require ht being the subgradient of f at xt.
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Algorithm 2: Mirror Descent

Data: A convex function f on R
n, a convex domain D ⊆ R

n
>0, an initial point x0 ∈ D, a

step size η > 0, and number of iterations m
Result: Sequence of iterates {x0, x1, . . . , xm} ⊆ D which satisfies Lemma 5.1

1 Function MirrorDescent(f,D, x0, η,m):

2 for t = 0, 1, . . . ,m do

3 Compute a vector ht ∈ R
n // Approximate subgradient ht can depend on {xi}

t
i=0

4 xt+1 = argminx∈D ηh⊤t x+ Vxt(x) // Recall Vxt(x)
def
= r(x)−

(
r(xt) +▽r(xt)

⊤(x− xt)
)

5 end

6 return {x0, x1, . . . , xm}

Lemma 5.1 (Mirror Descent, Theorem 4.2 in [B+15]). Let function f be convex on R
n and r :

R
n → R be ρ-strongly convex on D ⊆ R

n with respect to norm ‖ · ‖. If the vectors h0, . . . , hm−1
in Line 3 of Algorithm 2 satisfy ‖ht‖∗ ≤ L with respect to the dual norm ‖ · ‖∗ for all iterations
t = 0, . . . ,m− 1. Then for any point w ∈ D, the iterates of Algorithm 2 satisfy

m−1∑

t=0

〈ht, xt − w〉 ≤ η
L2m

2ρ
+

Vx0(w)

η
.

5.2 Dual Certificate via Mirror Descent with Truncation

In this subsection, we show how to efficiently compute a dual certificate as in Definition 4.6 using
mirror descent with truncation. We start with the formal definition of truncation.

Definition 5.2 (Truncation). Given s > 0, we define the function truncs(·) : RV → R
V as

(truncs(g))p
def
= max{−s, gp}, ∀p ∈ V.

Note that for any permutation π : [n] → V , the subgradient gπ satisfies f(S) ≥ gπ(S) for any
S ⊆ V . Unfortunately, applying truncation to gπ doesn’t preserve this property. However, the
following claim shows that truncation does preserve a sparse counterpart of this property, i.e. the
the second condition in Definition 4.6.

Claim 5.3. Let f : 2V → R be a submodular function, π : [n]→ V a permutation, and s > 0. Let

h
def
= truncs(gπ) be the truncated subgradient. If f∗ ≥ −s + (k − 1) ·maxp(gπ)p, then f(S) ≥ h(S)

for any k-sparse S ⊆ V .

Proof. Fix any S ⊆ V and consider two cases. The first case is when no q ∈ S was truncated to
get h. In this case h(S) = gπ(S) ≤ f(S) for any S ⊆ V .

The second case is when there exists q ∈ S so that (gπ)q is truncated to get h. In this case we
must have hq = −s, and therefore

h(S) ≤ −s+ (k − 1)max
p

(gπ)p ≤ f∗ ≤ f(S),

where the second inequality follows from the assumed lower bound on f∗.
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Algorithm 3: Mirror Descent with Truncation for Parallel Algorithm

Data: A submodular function f , a sparsity parameter k ∈ Z>0, a lower bound φ, and an
accuracy parameter δ > 0 // Lower bound −φ ≤ f∗

Result: A (δ, k) dual certificate y for f
1 Function DualCertificate(f, k, φ, δ):
2 s← k‖uf‖∞ + φ // Truncation threshold

3 x0 ← k
n ·~1V // Initial point

4 m← s2k(k+1) logn
δ2 // Number of iterations

5 η ← 2
√
k logn

s
√

m(k+1)
// Step size

6 Run MirrorDescent(f, SV
k+1, x0, η,m) with ht ← truncs(gxt) for each iteration

t = 0, . . . ,m− 1 in Line 3 of Algorithm 2

7 y = 1
m

∑m−1
t=0 ht

8 return y

Claim 5.3 allows us to use truncated subgradients of the Lovász extension in Algorithm 2 to
compute a (δ, k) dual certificate. A formal description of this procedure is given in Algorithm 3.
The correctness and parallel depth guarantee of Algorithm 3 is given in the following Lemma 5.4.

Lemma 5.4 (Mirror Descent with Truncation). Given a sparsity parameter k ∈ Z>0, a submodular
function f : 2V → R, a lower bound −φ ≤ f∗, and an accuracy parameter δ > 0, Algorithm 3
outputs a (δ, k) dual certificate y in Õ(k2(k ‖uf‖∞ + φ)2/δ2) parallel depth and Õ(nk2(k ‖uf‖∞ +
φ)2/δ2 · EO+ poly(n, (k‖uf‖∞ + φ)/δ))) time.

Proof. Since ht = truncs(gxt), we have (ht)p ≥ −s for each coordinate p ∈ V . Also note that
for each coordinate p such that (ht)p ≥ 0, we have (ht)p ≤ (gxt)p ≤ ‖uf‖∞. These imply that
‖ht‖∞ ≤ s in every iteration t of MirrorDescent in Line 6 of Algorithm 3.

Next, we note that the negative entropy function r(x) =
∑

i∈V xi log xi is 1/(k + 1)-strongly
convex14 on SV

k+1. Thus we can apply Lemma 5.1, with ‖ · ‖ being the ℓ1-norm ‖ · ‖1 and the

parameters ρ = 1/(k + 1) and L = s, to obtain that for every point w ∈ SV
k+1,

m−1∑

t=0

h⊤t (xt − w) ≤ ηs2m(k + 1)

2
+

Vx0(w)

η
≤ ηs2m(k + 1)

2
+

2k log n

η
.

Here, the last inequality follows because x0 =
k
n ·~1V in Algorithm 3, w ∈ SV

k , and by (1) that

Vx0(w) =
∑

i∈V
wi log(win/k) +

∑

i∈V
(k/n− wi)

≤ k ·
∑

i∈V
(wi/k) log(wi/k) +

∑

i∈V
wi · (log n− 1) + k ≤ 2k log n.

14This standard fact can be obtained by showing that whenever x ∈ SV
k+1, the Hessian ∇2r(x) =

diag(1/x1, . . . , 1/x|V |) satisfies v⊤∇2r(x)v ≥ ‖v‖21/(k + 1) for all v ∈ R
n.
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The best choice of η above is η = 2
√
k logn

s
√

m(k+1)
, as in Algorithm 3. Since we have also set m =

s2k(k + 1) log n/δ2. the above bound becomes

1

m

m−1∑

t=0

h⊤t (xt − w) ≤ s
√
k(k + 1) log n√

m
≤ δ. (5)

Now we consider the output y = 1
m

∑m−1
t=0 ht of Algorithm 3. Note that ht ≥ gxt for every iteration

t, which implies that h⊤t xt ≥ g⊤xt
xt since xt ∈ [0, 1]V . It follows that

f∗ ≤ 1

m

m−1∑

t=0

f(xt) =
1

m

m−1∑

t=0

g⊤xt
xt ≤

1

m

m−1∑

t=0

h⊤t xt,

where the equality above is due to Theorem 3.3. Now, pick w = ~1T , where T is the set of the k+1
most negative coordinates of y, which achieves the minimum value of y⊤w = yk+1

− (V ). Plugging
this choice of w into (5), we obtain

f∗ ≤ 1

m

m−1∑

t=0

h⊤t xt ≤ y⊤w + δ ≤ yk+1
− (V ) + δ,

which gives the first condition in Definition 4.6. To obtain the second condition, note that since
f∗ ≥ −φ, the choice of s = k‖uf‖∞ + φ satisfies

f∗ ≥ −φ = −s+ k‖uf‖∞ ≥ −s+ (k − 1) ·max
p

(gxt)p.

It then follows from Claim 5.3 that f(S) ≥ ht(S) for all k-sparse S ⊆ V . This implies y(S) =
1
mht(S) ≤ f(S) for all k-sparse S and proves that y is a (δ, k) dual certificate.

Finally, note that Algorithm 3 takes m = Õ(k2(k ‖uf‖∞ + φ)2/δ2) iterations and that each ht
can be computed using one round of n parallel EO queries to f . This implies that the parallel
depth of Algorithm 3 is Õ(k2(k ‖uf‖∞+φ)2/δ2) and its runtime is Õ(nk2(k ‖uf‖∞+φ)2/δ2 ·EO+
poly(n, (k‖uf‖∞ + φ)/δ)).

5.3 Dimensionality Reduction for Parallel Algorithm

In this subsection, using the algorithm for computing (δ, k) dual certificates given in Section 5.2,
we give an implementation of the procedure Dimensionality-Reduction for our parallel algorithm in
Algorithm 4. Recall from Section 4.2 that assuming f has a k-sparse minimizer, the procedure
Dimensionality-Reduction(f, k) either outputs a subset T 6= ∅ that belongs to every minimizer of f ,
or certify that f∗ > ‖uf‖∞/4.

Algorithm 4 aims at finding a value φ > 0 such that −φ ≤ f∗ ≤ −φ/2. Since f∗ > −(‖uf‖1 −
f(V )) by submodularity, Algorithm 4 starts by guessing φ = φ(0) def

= ‖uf‖1 − f(V ) in Line 2 and
keeps decreasing the value of φ by a factor of 2 in each iteration of the while loop in Line 3 until
φ falls under the threshold ‖uf‖∞/4. In the case where f∗ ≤ −‖uf‖∞/4, then along this halving
process there must be an iteration i where the value φ = φ(i) satisfies −φ(i) ≤ f∗ ≤ −φ(i)/2. The
following claim shows that in such an iteration, the set T in Line 6 is a non-emtpy dimensionality
reduction.
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Claim 5.5 (Correctness of Algorithm 4). In any iteration of the while loop of Algorithm 4, the set
T in Line 6 lies in every minimizer of f . Moreover, if the value φ = φ(i) in an iteration i satisfies
−φ(i) ≤ f∗ ≤ −φ(i)/2, then the set T in Line 6 is non-empty in that iteration.

Proof. Since y is a (δ, k) dual certificate in each iteration of the while loop, and the set T in Line 6 is
consisted of all the element p ∈ V with yp < −δ, the first statement of the claim immediately follows
from Lemma 4.8. For the second statement, note that if −φ(i) ≤ f∗ ≤ −φ(i)/2 and δ = φ(i)/3k, it
follows that δ < |f∗|/k. So the second part of Lemma 4.8 implies that T 6= ∅.

Claim 5.5 implies that each non-empty set T in Line 6 found in the while loop lies in every
k-sparse minimizer of f . If no such non-empty set T is found throughout the while loop, then by
Claim 5.5 this means f∗ > ‖uf‖∞/4, so Algorithm 4 will simply output ∅.

Algorithm 4: Dimensionality Reduction for Parallel Algorithm

Data: A sparsity parameter k, and a submodular function f with a k-sparse minimizer
Result: A subset T ⊆ V that must be in every minimizer of f , or T = ∅ certifying that

f∗ > −‖uf‖∞/4
1 Function Dimensionality-Reduction(f, k):
2 φ← ‖uf‖1 − f(V ) // Lower bound f∗ ≥ −(‖uf‖1 − f(V ))

3 while φ ≥ ‖uf‖∞/4 do // Implement while loop in parallel

4 δ = φ
3k

5 y ← DualCertificate(f, k, φ, δ) // y is a (δ, k) dual certificate

6 T ← {p : yp < −δ}
7 if T 6= ∅ then return T // When −φ ≤ f∗ ≤ −φ/2 then T 6= ∅

8 φ← φ/2 // T = ∅ indicates f∗ > −φ/2

9 end

10 return ∅

The correctness and runtime guarantees of Algorithm 4 is formally given in the following lemma.

Lemma 5.6 (Dimensionality-Reduction for Parallel Algorithm). Let k ∈ Z>0 and f : 2V → R be a
submodular function with a k-sparse minimizer. Then Algorithm 4 outputs a set T ⊆ V that lies
in any minimizer such that T = ∅ implies f∗ > −‖uf‖∞/4. Moreover, the algorithm uses Õ(k6)
parallel depth and runs in time Õ(nk6 · EO+ poly(n)).

Proof. The correctness of Algorithm 4 follows immediately from Claim 5.5, so we only need to
prove the bound on depth and runtime.

By Lemma 5.4, the number of parallel rounds due to DualCertificate calls is

Õ(k2(k ‖uf‖∞ + φ)2/δ2) = Õ

(
k4
(
k ‖uf‖∞ + φ

φ

)2
)
≤ Õ(k6),

where the last inequality is because we always have φ ≥ ‖uf‖∞/4 and we always run with accuracy

parameter δ = φ
3k . Note that there are at most log((‖uf‖1 − f(V ))/‖uf‖∞) = Õ(1) iterations of

the while loop and these can be implemented in parallel. It follows that Lemma 5.4 also only uses
Õ(k6) parallel depth, Õ(nk6) queries to EO, and poly(n) runtime.
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5.4 Arc Finding for Parallel Algorithm

In this subsection, we describe the procedure Arc-Finding for the parallel algorithm (formally
given in Algorithm 5), which is based on the procedure Dimensionality-Reduction from the pre-
vious Section 5.3. For each element p ∈ V such that f(p↓) ≥ Scale/2, Algorithm 5 simply runs

Dimensionality-Reduction in Algorithm 4 with the contracted submodular function f ♯R
p↓

: 2V \p
↓ → R,

which was defined in Section 3.2 as

f ♯R
p↓

(S)
def
= f ♯R(S ∪ p↓)− f ♯R(p↓),

and the remaining sparsity k− |p↓|. This subset Sp returned from Dimensionality-Reduction will be
the set of endpoints of arcs we found for the element p.

Algorithm 5: Arc Finding for Parallel Algorithm

Data: A sparsity parameter k, extension f ♯R of a submodular function f with a k-sparse
minimizer, and parameter Scale ≥ ‖uf♯R‖∞ ≥ −4f∗ // Arcs are input through f ♯R

Result: A non-empty set Sp ⊆ V of endpoints of arcs from every p ∈ V s.t.
f(p↓) ≥ Scale/2

1 Function Arc-Finding(f ♯R, k,Scale):
2 for p ∈ V do // Implement the for loop in parallel

3 if (uf♯R)p ≥ Scale/2 then

4 Sp ← Dimensionality-Reduction(f ♯R
p↓

, k − |p↓|) // Find arcs from p with large

(uf♯R)p

5 end

6 else Sp ← ∅
7 end

8 return {Sp}p∈V

The following lemma summarizes the guarantees and runtime of the procedure Arc-Finding.

Lemma 5.7 (Arc-Finding for Parallel Algorithm). Let k ∈ Z>0, f : 2V → R be a submodular
function with a k-sparse minimizer, f ♯R be its extension w.r.t. a ring family R(E,W,D) that is k-
consistent, and Scale ≥ ‖uf♯R‖∞ ≥ −4f∗. Then Algorithm 5 outputs, for every p ∈ V with f(p↓) ≥
Scale/2 such that p belongs to a k-sparse minimizer, a non-empty set Sp ⊆ V \ p↓ of endpoints of
arcs from p. Moreover, the algorithm uses Õ(k6) parallel depth and Õ(n2k6 · EO+ poly(n)) time.

Proof. We start with the first statement of the lemma. Fix any element p ∈ V that lies in a k-sparse
minimizer S∗ such that (uf♯R)p ≥ Scale/2. By Lemma 4.2, we have

(uf♯R)p = f(W ∪ p↓)− f(W ∪ p↓ \ {p}) = f ♯R(p↓)− f(W ∪ p↓ \ {p}),

where the last equality follows since (p↓)♯R = p↓. Since f∗ ≥ −Scale/4 by assumption, we have
f(W ∪ p↓ \ {p}) ≥ −Scale/4 and therefore,

f ♯R(p↓) = (uf♯R)p + f(p↓ \ {p}) ≥ Scale/4.
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We also have for any element q ∈ V \ p↓,

(u
f♯R

p↓
)q = f ♯R

p↓
({q}) − f ♯R

p↓
(∅) = f ♯R({q} ∪ p↓)− f ♯R(p↓) ≤ (uf♯R)q ≤ Scale,

where the first inequality uses submodularity, and the last inequality is by our assumption that
‖uf♯R‖∞ ≤ Scale. It then follows that assuming u

f♯R

p↓
≥ 0, the contracted function f ♯R

p↓
satisfies

(1) f ♯R
p↓

has a (k − |p↓|)-sparse minimizer S∗ \ p↓, and (2) its minimum value (f ♯R
p↓

)∗ ≤ −Scale/4 ≤
−‖u

f♯R

p↓
‖∞/4. Lemma 5.6 then implies that a non-empty set Sp ⊆ V \ p↓ of endpoints of arcs from

p can be found for such an element p using Õ(k6) parallel depth and Õ(nk6 ·EO+poly(n)) runtime.
The second statement of the lemma follows immediately since for each one of the n elements

p ∈ V , the for loop in Algorithm 5 can be implemented in parallel. This proves the lemma.

5.5 Putting It All Together: Proof of Theorem 1.1

Finally, we are ready to prove Theorem 1.1, which we restate below for convenience.

Theorem 1.1 (Parallel k-sparse SFM). There is a deterministic parallel algorithm for k-sparse
SFM with parallel depth Õ(k7 · log(|f |/ǫ)) and runtime Õ(n2 ·k7 log(|f |/ǫ) ·EO+poly(n) · log(|f |/ǫ)).
Proof of Theorem 1.1. Consider the meta algorithm (Algorithm 1) with procedures Dimensionality-

Reduction and Arc-Finding given in Algorithms 4 and 5. The correctness of Algorithm 1 is already
given in Corollary 4.5 so we only need to analyze its parallel depth and runtime.

Note that in each iteration of the outer while loop in Line 3 of Algorithm 1, one of the fol-
lowing three things will happen: (1) the size of the contracted elements W will increase due to
Dimensionality-Reduction in Line 4 when f∗ ≤ −‖uf♯R‖∞/4, or (2) the size of the contracted el-
ements W will increase because there exists element p ∈ V \ (W ∪ D) such that (uf♯R)p < 0 in
Line 18 of Algorithm 11 (extension maintainer), or (3) ‖uf♯R‖∞ will decrease by a factor of 2, and
a set Sp of endpoints of arcs is found for every element p ∈ V \ (D ∪W ) with (uf♯R)p > Scale/2
in the while loop in Line 11 when f∗ > −‖uf♯R‖∞/4. Note that (1) and (2) can happen at most
k times before |W | ≥ k and Algorithm 1 outputs W ; (3) can happen at most log(|f |n/ǫ) times
before ‖uf♯R‖∞ ≤ ǫ/n. So the total number of iterations of the while loop in Line 3 will be at most
O(k + log(|f |n/ǫ)).

We next bound the parallel depth and runtime due to Dimensionality-Reduction. Note that the
total number of times Dimensionality-Reduction is called in Line 4 is at most k + log(|f |n/ǫ) by
the above. By Lemma 5.6, each Dimensionality-Reduction for (1) can be done in Õ(k6) depth and
runtime Õ(nk6 · EO+ poly(n)). So the total depth and runtime due to Dimensionality-Reduction is
Õ(k7 log(|f |/ǫ)) and Õ(nk7 · EO+ poly(n)) · log(|f |/ǫ) respectively.

Next, we bound the parallel depth and runtime due to Arc-Finding. By Lemma 5.7, each call to
Arc-Finding takes Õ(k6) parallel depth and runtime Õ(n2k6 · EO+ poly(n)). We perform at most k
calls to Arc-Finding before ‖uf♯R‖∞ decreases by a factor of 2, so the total depth and runtime due

to Arc-Finding is Õ(k7 log(|f |/ǫ)) and Õ(nk7 · EO+ poly(n)) · log(|f |/ǫ) respectively.
Finally, note that each update to the RingFamily can be implemented in Õ(k) depth and O(m ·

EO+nk) time where m is the total number of elements p from which arcs are found. Additionally,
each one of Line 2, Line 7 and Line 18 can be implemented in O(1) depth and O(n · EO+ n) time.
Combining everything above, Algorithm 1 finds an ǫ-approximate minimizer for k-sparse SFM in
parallel depth Õ(k7 log(|f |/ǫ)) and runtime Õ(n2k7 log(|f |/ǫ) · EO+ poly(n) · log(|f |/ǫ)).
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6 Õ(n · poly(k))-Query Algorithm for k-sparse SFM

In this section, we present our randomized sequential algorithm and prove Theorems 1.2 and 1.3.
The section is organized as follows. In Section 6.1, we present our optimization method for com-
puting (δ, k) dual certificates via a stochastic version of the follow-the-regularized-leader15 (FTRL)
algorithm (e.g., [Nes03, SSS07]) where the subgradient implementation is tailored to submodu-
lar structure. In Section 6.2 and Section 6.3, we present our sequential implementations of the
subprocedures Dimensionality-Reduction and Arc-Finding in Algorithm 1 respectively. Finally, in
Section 6.4, we present the proofs of Theorems 1.2 and 1.3.

6.1 Dual Certificate via Stochastic Follow-the-Regularized-Leader

In this subsection, we present our sequential algorithm (see Algorithms 6 and 7) that efficiently
computes a (δ, k) dual certificate. The main result of this subsection is the following theorem.

Theorem 6.1 (Stochastic Dual Certificate). Let f be a submodular function, k ∈ Z>0 a sparsity
parameter, φ ≥ |f∗| and 0 < δ ≤ φ an accuracy parameter. Assuming φ = Ω(‖uf‖∞/k), then

Algorithm 6 outputs a set of permutations {π(t)}t∈[m] in time Õ(m) · (EO+ poly(n)), where

m = Õ(k6δ−4φ2(‖uf‖∞ + φ)(‖uf‖1 + φ)),

such that y
def
= 1

m

∑
t∈[m] gπ(t) is a (δ, k) dual certificate for f with high probability.

The idea behind Theorem 6.1 is to run a variant of stochastic follow-the-regularized-leader
(stochastic FTRL) with an entropy regularizer whose process of generating stochastic subgradients
is tailored to submodular structure (without subgradient truncation). While such a method, with-
out controlling the ℓ∞-norm of the subgradient via truncation as was done in the previous section,
might seem too slow, a more careful local norm analysis of the variance (Lemma 6.3) shows how
this can be made to work. In particular, one of the main novelties of our algorithm is a sampling
method we call vSampling (Definition 6.2), which helps us sample low-variance unbiased stochastic
subgradients in only Õ(1) queries.

We emphasize that while Algorithm 3 in Section 5 returns a (δ, k) dual certificate explicitly,
Algorithm 6 only returns a dual certificate implicitly as a set of permutations {π(t)}t∈[m] with the

property that y
def
= 1

m

∑
t∈[m] gπ(t) is a (δ, k) dual certificate with high probability. This is because

computing the dual certificate y from the set of permutations {π(t)}t∈[m] takes Õ(mn) evaluation
oracle queries, where m can be bigger than n. Nevertheless, as we show later (see Section 6.3), it
suffices to sample coordinates of each gπ(t) to access the dual certificate much more efficiently.

Now we formally describe Algorithm 6. This algorithm repeatedly runs Algorithm 7 on the
Lovász extension and outputs the union of all permutations correponding to the iterates generated.
As discussed earlier, Algorithm 7 is a variant of the stochastic FTRL algorithm (Algorithm 12),
with the stochastic approximate subgradients generated via the vSampling method (Definition 6.2)
in Lines 7-8. The convergence guarantee for executing Algorithm 7 once is a statement that holds
in expectation (Lemma 6.4). The reason behind calling Algorithm 7 repeatedly in Algorithm 6 is
to obtain an analogous guarantee with high probability, which is crucial to proving that the average
of the subgradients output by Algorithm 6 is a sparse dual certificate.

15The FTRL algorithm is also referred to as lazy mirror descent or dual averaging in the literature.
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Algorithm 6: Stochastic Dual Certificate for Sequential Algorithm

Data: A sparsity parameter k ∈ Z>0, a submodular function f with uf ∈ R
V
≥0, a

parameter φ ≥ |f∗|, and an accuracy parameter 0 < δ ≤ φ
Result: A set of m = Õ(k6δ−4φ2(‖uf‖∞ + φ)(‖uf‖1 + φ)) permutations {π(t)}t∈[m] s.t.

y = 1
m

∑
t∈[m] gπ(t) is a (δ, k) dual certificate whp.

1 Function StochDualCertificate(f, k, φ, δ):

2 N ← Õ(δ−2k5φ2)
3 for ℓ = 1, . . . , N do

4 Cℓ ←SubmodularFTRL(f, k, φ, δ/2) // Cℓ is a collection of permutations

5 end

6 return
⋃

ℓ∈[N ] Cℓ

Algorithm 7: Stochastic Submodular Follow-the-Regularized-Leader (FTRL)

Data: A sparsity parameter k ∈ Z>0, a submodular function f with uf ∈ R
V
≥0, a

parameter φ ≥ |f∗|, and an accuracy parameter 0 < δ ≤ φ
Result: A set of M = Õ(δ−2(k‖uf‖∞ + φ)(‖uf‖1 + φ)) permutations {π(t)}t∈[M ]

1 Function SubmodularFTRL(f, k, φ, δ):

2 x0 ← k
n
~1V

3 U∞ ← 2k‖uf‖∞ + φ and U1 ← 2‖uf‖1 + φ // Useful quantities in Lemma 6.3

4 M ← U∞U1 logn
δ2

5 η ←
√

k logn
MU∞U1

= δ
U∞U1

6 for t = 0, 1, . . . ,M − 1 do

7 Sample j ∝ p
(t)
j =

v
(t)
j

‖v(t)‖1 , where v
(t)
i = 2(uf )i − (gxt)i for all i ∈ V

8 ht ← ~1j · (gxt)j
p
(t)
j

// The vSampling(f, xt) method as in Definition 6.2

9 xt+1 = argminx∈SV
k
η
∑t

t′=0 h
⊤
t′ x+ r(x)

10 end

11 return {πxt}M−1t=0
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Now we formally define the vSampling method that is used to generate the stochastic subgradi-
ents ht in Lines 7-8 of Algorithm 7.

Definition 6.2 (The vSampling method). Given a submodular function f : V → R such that

uf ∈ R
V
+ and a point x ∈ SV

k . Define vector v ∈ R
V
+ as vi

def
= 2(uf )i − (gx)i. Then vSampling(f, x)

samples a coordinate j ∈ V with probability proportional to pj
def
=

vj
‖v‖1

and returns the random

vector ~1j · (gx)jp−1j .

Let us briefly mention the motivation behind the vSampling method defined above. It is known
that if one wants to sample a 1-sparse unbiased estimator h of the subgradient vector gx ∈ R

V ,
then sampling a coordinate j ∈ V proportional to |(gx)j| achieves the smallest second moment16

E[‖h‖2∞]. However, this sampling method requires explicitly computing the values of all |(gx)j|,
which takes O(n) queries and is unfortunately too expensive. The main purpose of oversampling
(with probabilities proportional to vi = 2(uf )i − (gx)i in vSampling is to make the sampling pro-
cedure more efficient while not significantly increasing the second moment. In particular, while it
is prohibitively expensive to compute all the |(gx)i|, one can efficiently compute

∑
i∈I(gx)i for a

consecutive block of coordinates I in the permutation πx using O(1) queries. Therefore, leveraging
a binary search idea, one can efficiently sample proportional to vi by computing

∑
i∈I vi for O(log n)

consecutive blocks I, each of which takes only O(1) queries.
Formally, the following lemma provides upper bounds on the local norm of the stochastic sub-

gradients generated by the vSampling method and the runtime of the method.

Lemma 6.3. Let f : 2V → R be a submodular function such that uf ∈ R
V
+, φ > 0 satisfies

|f∗| ≤ φ, and x ∈ SV
k . Then vSampling(f, x) given in Definition 6.2 outputs a 1-sparse random

vector h
def
= ~1j(gx)jp

−1
j that satisfies E[h] = gx and

E[‖h‖2x] ≤ (2k‖uf‖∞ − f∗)(2‖uf‖1 − f(V )) ≤ U∞ · U1 ,

where U∞
def
= 2k‖uf‖∞+φ and U1

def
= 2‖uf‖1+φ. Moreover, given the vector uf explicitly, vSampling

can be implemented in time O(log n · (EO+ n)) time.

Proof of Lemma 6.3. First, note that

E[h] =
∑

j∈V
pj ·~1j(gx)jp−1j = gx.

Hence, it suffices to prove the bound on the variance of the stochastic subgradient h. Note that

E[‖h‖2x] =
∑

i∈V
pixi((gx)ip

−1
i )2 =

∑

i∈V
xi|(gx)i| ·

|(gx)i|
pi

≤ |gx|⊤x ·max
i∈V
|(gx)i|
pi

,

where |gx| is the vector with (|gx|)i def
= |(gx)i| for each coordinate i ∈ V . Let vector v ∈ R

V be given

by vi
def
= 2(uf )i − (gx)i for each i ∈ V , for which pi =

vi
‖v‖1 . Since vi ≥ |(gx)i| for all i ∈ V , we have

maxi∈V
|(gx)i|
pi

= maxi∈V
|(gx)i|·‖v‖1

vi
≤ ‖v‖1. Hence, we obtain

E[‖h‖2x] ≤ |gx|⊤x · ‖v‖1 = |gx|⊤x · (2‖uf‖1 − f(V )) ≤ |gx|⊤x · U1.

16It doesn’t matter which norm we measure h here since it is 1-sparse.
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Let g+
def
= max{gx,~0} and g−

def
= min{gx,~0} entrywise. Since f(x) = g⊤x x, it follows that

|gx|⊤x = g⊤+x− g⊤−x = 2g⊤+x− f(x) ≤ 2u⊤f x− f∗ ≤ 2k‖uf‖∞ − f∗ ≤ U∞, (6)

where the first inequality uses (gx)i ≤ (uf )i and xi ≥ 0 for every i ∈ V and the last step follows
from ‖x‖1 ≤ k. This completes the proof of the first statement of the lemma.

Finally, we describe how to implement the vSampling procedure. For every i ∈ [|V |],
∑

j∈πx[i]

vj =
( ∑

j∈πx[i]

2(uf )j

)
− f(πx[i]),

which can be computed in time EO+O(n) given the vector uf and the set πx[i]. This allows us to
sort the coordinates in V according to πx and use binary search to sample the coordinate j ∼ pj
in O(log n) iterations. The total runtime for vSampling is therefore O(log n · (EO+ n)).

The next lemma gives an expectation bound on the regret for Algorithm 7.

Lemma 6.4 (Expected Regret Bound for SubmodularFTRL). In an execution of Algorithm 7, the
random vector y = 1

M

∑M−1
t=0 gxt satisfies that, for every w ∈ SV

k (independent of the randomness
of the algorithm), E[〈y,w〉] ≥ f∗ − δ.

Proof. Note that Algorithm 7 is an instantiation of Algorithm 12 with Lovász extension f , domain
D = SV

k , step size η, number of iterations M , the entropy regularizer r(x), and the stochastic
subgradient ht generated as in Line 7 - 8. Therefore, as discussed in Section 2.3, the local norm
analysis for stochastic FTRL (see the first statement of Lemma A.1) gives

E

[
M−1∑

t=0

〈gxt , xt − w〉
]
≤

supx∈SV
k
r(x)− infy∈SV

k
r(y)

η
+ η

M−1∑

t=0

E[‖ht‖2xt
].

Since supx∈SV
k
r(x) = 0 and infy∈SV

k
= −k log(n/k), we can bound supx∈SV

k
r(x) − infy∈SV

k
r(y) ≤

k log n. Using Lemma 6.3, we can bound

E[‖ht‖2xt
] ≤ (2k‖uf‖∞ − f∗)(2‖uf ‖1 − f(V )) ≤ (2k‖uf‖∞ + φ)(2‖uf ‖1 + φ),

where we used φ ≥ |f∗|. Dividing by M on both sides, the above bound then becomes

E

[( 1

M

M−1∑

t=0

〈gxt , xt〉
)
− 〈y,w〉

]
≤ k log n

ηM
+ η(2k‖uf‖∞ + φ)(2‖uf‖1 + φ).

By optimally setting η =
√

k logn
M(2k‖uf‖∞+φ)(2‖uf‖1+φ) above, we obtain

E

[( 1

M

M−1∑

t=0

〈gxt , xt〉
)
− 〈y,w〉

]
≤
√

k log n

M
· (2k‖uf‖∞ + φ)(2‖uf‖1 + φ) = δ,

where the last equality is because of our setting M =
k(2k‖uf‖∞+φ)(2‖uf ‖1+φ) logn

δ2 . Then we have

E[〈y,w〉] ≥ E

[
1

M

M−1∑

t=0

〈gxt , xt〉
]
− δ = E

[
1

M

M−1∑

t=0

f(xt)

]
− δ ≥ f∗ − δ,

where the equality uses Theorem 3.3. This completes the proof of the lemma.
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Ideally, we would like to take w to be the indicator vector corresponding to the k most negative
coordinates of y in Lemma 6.4 to argue that y is a (δ, k) dual certificate. Unfortunately, Lemma 6.4
only works when we fix w ahead of time without depending on y. Therefore, to prove Theorem 6.1,
we turn the expectation bound in Lemma 6.4 to a high probability bound, from which we can then
union bound over all k-sparse indicator vectors w. To this end, we start with the following high
probability bound on ‖y‖∞.

Lemma 6.5 (High Probability ℓ∞ Bound for SubmodularFTRL). In an execution of Algorithm 7,
the random vector y = 1

M

∑M−1
t=0 gxt satisfies that

‖y‖∞ ≤ ‖uf‖∞ + Õ
(
φ+

kδ2

U∞

)
,

with probability at least 1− 1
nC , where U∞

def
= 2k‖uf‖∞ + φ and C is a large enough constant.

To prove Lemma 6.5, we will use the following martingale inequality due to Freedman [Fre75].

Theorem 6.6 (Freedman’s Inequality, Theorem 1.6 in [Fre75]). Consider a real-valued martingale
sequence {Yt}t≥0 such that X0 = 0, and E[Yt+1|Ft] = 0 for all t, where {Ft}t≥0 is the filtration
defined by the martingale. Assume that the sequence is uniformly bounded, i.e., |Yt| ≤ R almost
surely for all t. Now define the predictable quadratic variation process of the martingale to be
Wt =

∑t
j=1 E[Y

2
j |Fj−1] for all t ≥ 1. Then for all λ ≥ 0 and σ2 > 0, we have

P

[
∃τ ≥ 0 s.t.

τ∑

j=0

Yj ≥ λ and Wτ ≤ σ2
]
≤ exp

(
− λ2/2

σ2 +Rλ/3

)
.

Proof of Lemma 6.5. For notational convenience let gt
def
= gxt . Note that for every coordinate i ∈ V ,

we have

yi ≤
1

M

M−1∑

t=0

(gt)i ≤ (uf )i ≤ ‖uf‖∞.

So we only need to prove that
∑M−1

t=0 −(gt)i = Õ(M‖uf‖∞) for each i ∈ V , i.e., the coordinates of
y don’t become too negative. We start by bounding the empirically sampled vectors ht.

Bounding the empirical process ht. Note that Algorithm 7 is an instantiation of Algorithm 12
with Lovász extension f , domain D = SV

k , step size η, number of iterations M , the entropy
regularizer r(x), and the stochastic subgradient ht generated as in Line 7 - 8. Therefore, by the
second statement in Lemma A.1, with probability at least 1− ρ, we have

max
i∈V

M−1∑

t=0

−(ht)i ≤
Mv∗

η
+

1

η
log
(n2

ρ

)
. (7)

Here, v∗ is a number such that for every t ∈ {0, . . . ,M − 1},

−η〈p(t), gt〉+ η2Et

[
‖ht‖2p(t)

]
≤ v∗,

where p(t) ∈ R
V is defined as p

(t)
i

def
=

w
(t)
i

‖w(t)‖
1

and w(t) ∈ R
V is given by w

(t)
i

def
= exp(−η∑t−1

t′=0(ht′)i).

These definitions allow us to view xt = argminx∈SV
k
η
∑t−1

t′=0 h
⊤
t′ x+ r(x) in Line 9 of Algorithm 7 as
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a proximal step with the vector η
∑t−1

t′=0 ht′ = − logw
(t)
i in Lemma B.3. The second statement in

Lemma B.3 then implies that the decreasing order of the coordinates in xt and p(t) are the same,
i.e., πxt = πp(t) and thus gxt = gp(t) . It follows that we can bound

−〈p(t), gt〉 = −〈p(t), gp(t)〉 = −f(p(t)) ≤ φ,

and by Lemma 6.3 that

Et

[
‖ht‖2p(t)

]
≤ (2k‖uf‖∞ − f∗)(2‖uf‖1 − f(V )) ≤ U∞ · U1,

where we denote U1
def
= 2‖uf‖1 + φ as before. Therefore, we can set v∗ = ηφ + η2U∞U1 and the

bound in (7) becomes

max
i∈V

M−1∑

t=0

−(ht)i ≤Mφ+MηU∞U1 +
1

η
log
(n2

ρ

)
. (8)

Bounding the difference process (−gt)i− (−ht)i. We have so far upper bounded how negative
the empirical process (ht)i can become. We next seek to bound the difference

∑M−1
t=0 Xt, where

we denote Xt
def
= (−gt)i − (−ht)i for a fixed coordinate i. Note that Et[(ht)i] = (gt)i, so the

stochastic process
∑T−1

t=0 Xt is a martingale. For notational simplicity, we shall also denote GT
def
=∑T−1

t=0 −(gt)i and HT
def
=
∑T−1

t=0 −(ht)i so that
∑T−1

t=0 Xt = GT − HT . For this step, we will make
use of Theorem 6.6.

To apply Freedman’s inequality, we first note that (ht)i either takes value
(gt)i

p
(t)
i

(if i gets sampled)

or 0. Therefore, with probability 1,

|Xt| ≤ max
{
|(gt)i|,

∣∣∣
(gt)i

p
(t)
i

− (gt)i

∣∣∣
}
≤
∣∣∣(gt)i ·

‖v(t)‖1
v
(t)
i

∣∣∣ ≤ U1,

where the last inequality follows from v
(t)
i = 2(uf )i − (gt)i ≥ |(gt)i| and ‖v(t)‖1 = U1. We can also

bound the quadratic variation as

Et[X
2
t ] = p

(t)
i ·

(
− (gt)i +

(gt)i

p
(t)
i

)2
+ (1− p

(t)
i ) · ((gt)i)2

≤ ((gt)i)
2 · 1− p

(t)
i

p
(t)
i

= ((gt)i)
2 · ‖v

(t)‖1 − v
(t)
i

v
(t)
i

≤ |(gt)i| · U1. (9)

Then by Theorem 6.6, we have for all λ, σ2 > 0,

P

[M−1∑

t=0

Xt ≥ λ and
M−1∑

t=0

Et[X
2
t ] ≤ σ2

]
≤ exp

(
− λ2/2

σ2 + U1λ/3

)
. (10)

But as the quadratic variation bound in (9) depends on (gt)i, the quantity we want to control, we
shall use (10) with different values of λ and σ2. Note that by (9), with probability 1,

M−1∑

t=0

Et[X
2
t ] ≤ U1 ·

M−1∑

t=0

|(gt)i| ≤ U1 ·
M−1∑

t=0

‖v(t)‖1 ≤MU2
1 .
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On the other hand, if
∑M−1

t=0 |(gt)i| ≤ ‖uf‖∞, then we would be done in controlling (gt)i already.

Therefore, we define values σ2
i

def
= ‖uf‖∞U1 ·2i, for i = 0, . . . , ℓ, where ℓ

def
= ⌈log( MU1

‖uf‖∞ )⌉ = O(log n),

and the value λi
def
=
√

2σ2
i + U2

1 · log(nρ ). For i ∈ {0, . . . , ℓ}, define events

Ei def
=
{M−1∑

t=0

Xt < λi or

M−1∑

t=0

Et[X
2
t ] > σ2

}
and E∗ def

= {(8) holds}.

Then (8) and (10) together imply that all the events E∗ and {Ei}ℓi=0 hold with probability at least
1− 2ρ. We now argue that conditioning on these events, GM =

∑M−1
t=0 −(gt)i has to be small.

Controlling −(gt)i conditioned on events E∗ and {Ei}ℓi=0. To this end, we let i∗ ∈ {0, . . . , ℓ}
be the smallest index (such an index must exist by our choice of ℓ) such that

M−1∑

t=0

Et[X
2
t ] ≤ U1 ·

M−1∑

t=0

|(gt)i| ≤ σ2
i∗ .

Then as the event Ei∗ hold, we must have

GM −HM ≤ λi∗ =
√

2σ2
i∗ + U2

1 · log(
n

ρ
) ≤

√√√√4U1

M−1∑

t=0

|(gt)i|+ U2
1 · log(

n

ρ
)

≤
√
4U1(2M‖uf‖∞ +GM )) + U2

1 · log(
n

ρ
),

where the second inequality follows from the minimality of i∗ and the last inequality uses

M−1∑

t=0

|(gt)i| ≤
M−1∑

t=0

(2(uf )i − (gt)i) ≤ 2M‖uf‖∞ +GM .

Unraveling the above inequality and using the event E∗ give the bound

GM ≤ HM +
√

8MU1‖uf‖∞ + U2
1 · log(

n

ρ
) + 4U1 log

2(
n

ρ
)

≤Mφ+MηU∞U1 +
1

η
log
(n2

ρ

)
+
√

8MU1‖uf‖∞ + U2
1 · log(

n

ρ
) + 4U1 log

2(
n

ρ
).

Finally, plugging in M = U1U∞ logn
δ2

and η = δ
U1U∞

, and setting ρ
def
= n−C−1/2, we have

1

M

M−1∑

t=0

−(gt)i ≤ φ+ δ +O(δ) +O(k log n) ·
√

U1‖uf‖∞
kU1U∞ log n

· δ +O(k log n) · δ2

U∞

≤ φ+O(
√

log n) · δ +O(log n) · kδ
2

U∞
.

where the last inequality uses the assumption that δ ≤ φ ≤ U∞. Finally, apply the union bound
over all i ∈ V which completes the proof of the lemma.
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Finally, we have gathered enough tools to present the proof of Theorem 6.1, which we first
restate below for convenience.

Theorem 6.1 (Stochastic Dual Certificate). Let f be a submodular function, k ∈ Z>0 a sparsity
parameter, φ ≥ |f∗| and 0 < δ ≤ φ an accuracy parameter. Assuming φ = Ω(‖uf‖∞/k), then

Algorithm 6 outputs a set of permutations {π(t)}t∈[m] in time Õ(m) · (EO+ poly(n)), where

m = Õ(k6δ−4φ2(‖uf‖∞ + φ)(‖uf‖1 + φ)),

such that y
def
= 1

m

∑
t∈[m] gπ(t) is a (δ, k) dual certificate for f with high probability.

Proof of Theorem 6.1. For each iteration ℓ ∈ [N ] in Line 4 of Algorithm 6, we let yℓ
def
= 1

M

∑
π∈Cℓ gπ

denote the average subgradients in the ℓ-th call to SubmodularFTRL (·). Lemma 6.5 implies that
with probability at least 1− n−C where C > 0 is a large constant, for all ℓ ∈ [N ],

‖yℓ‖∞ ≤ ‖uf‖∞ + Õ(1) ·
(
φ+

kδ2

U∞

)
def
= R.

For all ℓ ∈ [N ] define

yℓ
def
=

{
yℓ if ‖yℓ‖∞ ≤ R

uf if ‖yℓ‖∞ > R
.

Since gπ ≤ uf for all permutations π we see that yℓ ≤ yℓ. Additionally, by the early fact regarding
Lemma 6.5 we have that, for every ℓ ∈ [N ], yℓ = yℓ with probability 1 − n−C , which translates to
yℓ = yℓ,∀ℓ ∈ [N ] with high probability, by applying a union bound over ℓ ∈ [N ] and using that
N ≤ n10.

Next, for any fixed w ∈ SV
k , define Xw

ℓ
def
= 〈yℓ, w〉. Note that each iteration of Line 4 is

an independent execution of Algorithm 7 with accuracy δ/2. Consequently, Lemma 6.4 and the
yℓ ≥ yℓ implies that

E[Xw
ℓ ] ≥ E[〈yℓ, w〉] ≥ f∗ − δ

2
.

Additionally, from the definition of y and R we see that ‖y‖∞ ≤ ‖uf‖∞ and therefore

|Xw
ℓ | ≤ k‖yℓ‖∞ ≤ kR .

Consequently, applying Azuma-Hoeffding’s inequality yields that

P

( 1

N

∑

ℓ∈[N ]

(Xw
ℓ − E[Xw

ℓ ]) ≤ −
δ

2

)
≤ exp

(
− Nδ2

8k2R2

)
.

The above probability is smaller than n−10k by our choice of

N = 100δ−2R2k log n = Õ(1) · δ−2k
(
k‖uf‖∞ + Õ(k) ·

(
φ+

kδ2

U∞

))2
≤ Õ(δ−2k5φ),

where we used the assumptions that ‖uf‖∞ ≤ O(kφ) and 0 < δ ≤ φ. This implies that with
probability at least 1− n−9k, we have

1

N

∑

ℓ∈[N ]

〈yℓ, w〉 ≥ f∗ − δ.
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Finally, taking the union bound over all the O(nk) vertices of SV
k for the choice of w, we obtain

that

max
w∈SV

k

1

N

∑

ℓ∈[N ]

〈yℓ, w〉 ≥ f∗ − δ,

with probability 1− n−5k. Since yℓ = yℓ with probability 1− n−C , we obtain that 1
N

∑
ℓ∈[N ] yℓ is a

(δ, k) dual certificate with high probability.
The total number of permutations used is

m = MN = Õ(δ−2k(k‖uf‖∞ + φ)(‖uf‖1 + φ)) · Õ(δ−2k5φ2)

= Õ(k6δ−4φ2(‖uf‖∞ + φ)(‖uf‖1 + φ)).

Since for each permutation, we only sample a single coordinate in Line 7 - 8 in Algorithm 7, the
total runtime is then Õ(m) · (EO+poly(n)) by the second statement of Lemma 6.3. This completes
the proof of the theorem.

6.2 Dimensionality Reduction for Sequential Algorithm

In this subsection, using the algorithm for computing (δ, k) dual certificates in Section 6.1, we give
the implementation of the subprocedure Dimenionality-Reduction for our sequential algorithm in
Algorithm 8. Recall from Section 4.2 that assuming f has a k-sparse minimizer, the subprocedure
Dimensionality-Reduction(f, k) either outputs a dimensionality reduction T 6= ∅ that belongs to

every minimizer of f , or certifies that f∗ > −‖uf‖∞
12k .

Similarly to Algorithm 4, Algorithm 8 aims at finding a value φ > 0 such that −φ ≤ f∗ ≤ −φ/2,
starting from the initial guess φ(0) = ‖uf‖1 − f(V ) and halving the value of φ in each iteration

of the while loop until the threshold
‖uf‖∞
12k is reached. If f∗ ≤ −‖uf‖∞

12k , then along this halving

process there must be an iteration i such that −φ(i) ≤ f∗ ≤ −φ(i)/2 for which we can obtain a
non-empty dimension reduction T 6= ∅.
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Algorithm 8: Dimensionality Reduction for Sequential Algorithm

Data: A sparsity parameter k, and a submodular function f with a k-sparse minimizer
Result: A subset T ⊆ V that must be in every minimizer of f , with T = ∅ certifying that

f∗ > −‖uf‖∞
12k

1 Function Dimensionlity-Reduction(f , k):
2 φ← ‖uf‖1 − f(V ) // Lower bound f∗ ≥ −(‖uf‖1 − f(V ))

3 while φ ≥ ‖uf‖∞
12k do

4 δ ← φ
8k , N ←

100k4‖uf‖1
‖uf‖∞ · log n

5 {π(t)}t∈[m] ← StochDualCertificate(f, k, φ, δ) // 1
m

∑
t gπ(t) is (δ, k) dual cert.

6 for t = 1, . . . , N do

7 z(t) ← vSampling(gπ(it)) for random it ∼ [m] // vSampling for random gπ(it)

8 end

9 z ← 1
N

∑N
t=1 z

(t) // Estimate for (δ, k) dual certificate

10 T ← {p ∈ V : zp ≤ −3φ
8k} // Find dimensionality reduction

11 if T 6= ∅ then return T
12 φ← φ/2

13 end

14 return ∅
The following lemma for Algorithm 8 is the main result of this subsection.

Lemma 6.7 (Dimensionality-Reduction for Sequential Algorithm). Let k ∈ Z>0 and f : 2V → R

be a submodular function with a k-sparse minimizer and uf ≥ 0. Then Algorithm 8 outputs a set
T ⊆ V that must be in every minimizer of f such that T = ∅ implies f∗ > −‖uf‖∞/12k. Moreover,

the algorithm runs in time Õ
(
k12‖uf‖1
‖uf‖∞ · EO+ poly(n)

)
.

In the remainder of this subsection we prove Lemma 6.7. To establish the correctness of Algo-
rithm 8, we start with the following claim that the vSampling for a random permutation gπ(it) in
Line 7 has small variance on each coordinate. This claim differs from Lemma 6.3, as it is a bound
on the variance of one coordinate of z(t), rather than a bound on the local norm of z(t) at xit .

Claim 6.8 (Coordinate Variance Bound for vSampling). Let f : 2V → R be a submodular function
such that f(∅) = 0 and uf ≥ 0. Let {π(t)}t∈[m] be a set of permutations on V and define the vector

y
def
= 1

m

∑
t∈[m] gπ(t) . Define the random vector

w
def
=

(2 ‖uf‖1 − f(V )) · (gπ(i))p

2(uf )p − (gπ(i))p
·~1p,

where i ∈ [m] is sampled uniformly at random and p ∈ V is sampled with probability proportional
to 2(uf )p − (gπ(i))p. Then we have

1. E[w] = y,

2. ‖w‖∞ ≤ 2 ‖uf‖1 − f(V ) with probability 1, and

3. E[w2
q ] ≤ (2 ‖uf‖1 − f(V ))(2(uf )q − yq) for any coordinate q ∈ V .
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Proof. Note that
∑

p∈V (2(uf )p − (gπ(i))p) = 2 ‖uf‖1 − f(V ) and consequently E[w] = y. Further,

‖w‖∞ ≤ (2 ‖uf‖1 − f(V )) · max
i∈[m],p∈V

(gπ(i))p
2(uf )p − (gπ(i))p

≤ 2 ‖uf‖1 − f(V )

with probability 1, where the last inequality follows because (gπ(i))p ≤ (uf )p by submodularity and
(uf )p ≥ 0 by the assumption of the claim. Next we note that

Ei,p[|wq|] = Ei

[
P[p = q] ·

∣∣∣
(2 ‖uf‖1 − f(V )) · (gπ(i))q

2uq − (gπ(i))q

∣∣∣
]

= Ei[|(gπ(i))q|] ≤ (uf )q + Ei[(uf )q − (gπ(i))q] = 2(uf )q − yq.

Consequently, we have

E[w2
q ] ≤ ‖w‖∞ · Ei,p[|wq|] ≤ (2 ‖uf‖1 − f(V ))(2(uf )q − yq).

This completes the proof of the claim.

Using the above variance bound, we next prove that whp. the vector z in Line 9 of Algorithm 8
is an estimate of the (δ, k) dual certificate y

def
= 1

m

∑
t∈[m] gπ(t) with additive accuracy O(φ/k).

Claim 6.9 (Estimate for Dual Certificate). Under the same assumptions as in Claim 6.8, the
random vector z in Line 9 of Algorithm 8 satisfies that E[z] = y, and ‖z − y‖∞ ≤ α with high
probability, where the accuracy

α
def
= 10 ·max

{
(2‖uf‖1 − f(V )) · log n

N
,

√
(2‖uf‖1 − f(V )) · (‖uf‖∞ − f∗) · log n

N

}
.

In particular, if parameter φ ≥ ‖uf‖∞/12k satisfies −φ ≤ f∗, and N = Θ(
k4‖uf‖1
‖uf‖∞ · log n) as in

Algorithm 8, then the accuracy α ≤ φ/8k.

Proof. Note that for every t ∈ [N ], each random vector z(t) is obtained by applying vSampling

to a uniformly random vector in {gπ(t)}t∈[m] exactly as in Claim 6.8. Therefore, it follows from

Claim 6.8 that E[z] = y and ‖z(t)‖∞ ≤M
def
= 2‖uf‖1 − f(V ) with probability 1, and that for every

coordinate q ∈ V , the variance of each sampled vector z(t) satisfies

E[(z(t)q − yq)
2] ≤ E[(z(t)q )2] ≤ (2‖uf‖1 − f(V ))(2(uf )q − yq) ≤ 2(2‖uf‖1 − f(V ))(‖uf‖∞ − f∗).

Next, to prove that ‖z − y‖∞ ≤ α whp., we fix an arbitray coordinate q ∈ V . Since z
(t)
q are i.i.d.

samples with expectation E[z
(t)
q ] = yq, it follows from Bernstein’s inequality that

P




∣∣∣∣∣∣

∑

t∈[N ]

(z(t)q − yq)

∣∣∣∣∣∣
≥ λ


 ≤ 2 · exp


 λ2/2
∑

t∈[N ] E((z
(t)
q − yq)2) + λM/3


 . (11)

where recall that M
def
= 2‖uf‖1 − f(V ) is an upper bound on ‖w(t)

q ‖ almost surely. Now we plug
λ = αN into the bound Equation (11). Note that the definition of α in the claim satisfies that

∑

t∈[N ]

E((z(t)q − yq)
2) ≤ 2N(2‖uf‖1 − f(V ))(‖uf‖∞ − f∗) ≤ 2N · α2N

100 log n
≤ λ2/2 · 1

25 log n
,
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and that

λM/3 ≤ λ(2‖uf‖1 − f(V ))/3 ≤ αN

30 log n
≤ λ/2 · 1

15 log n
.

It thus follows from Equation (11) that

P




∣∣∣∣∣∣

∑

t∈[N ]

(z(t)q − yq)

∣∣∣∣∣∣
≥ αN


 ≤ 2n−9.

The first statement of the claim then follows by applying a union bound to all coordinates q ∈ V .
To prove the second statement of the claim, we can trivially upper bound

2‖uf‖1 − f(V ) ≤ 2‖uf‖1 + φ and (2‖uf‖1 − f(V )) · (‖uf‖∞ − f∗) ≤ (2‖uf‖1 + φ) · (‖uf‖∞ + φ).

Then the bound α ≤ φ/8k follows by plugging in the value of N and using φ ≥ ‖uf‖∞/12k.

The following claim establishes the correctness of Algorithm 8.

Claim 6.10. Let f be a submodular function with a k-sparse minimizer, and φ ≥ ‖uf‖∞/12k
satisfying −φ ≤ f∗ in one iteration of the while loop. Then the subset T ⊆ V in Line 10 of
Algorithm 8 is in every minimizer of f whp. Moreover, if −φ ≤ f∗ ≤ −φ/2, then T 6= ∅ whp.

Proof. Note that by Theorem 6.1, the set of permutations {π(t)}t∈[m] returned by StochDualCertificate

is such that y = 1
m

∑
t∈[m] gπ(t) is a (δ, k) dual certificate whp. Since φ ≥ ‖uf‖∞/12k and −φ ≤ f∗,

Claim 6.9 implies that the vector z in Line 9 of Algorithm 8 satisfies ‖z− y‖∞ ≤ φ/8k whp. In the
following, we condition on the above two events.

In the first part of the claim, for every element p ∈ T defined in Line 10, we have

yp ≤ zp + ‖z − y‖∞ ≤ −
3φ

8k
+

φ

8k
< −δ.

It then follows from Lemma 4.8 that p must be in every minimizer of f . This proves the first
statement of the claim.

To prove the second statement, note that since −φ ≤ f∗ ≤ −φ/2 and y is a (δ, k) dual certificate,
the most negative coordinate p of y satisfies yp ≤ −|f∗|/k. Therefore,

zp ≤ yp + φ/8k ≤ −φ/2k + φ/8k ≤ −3φ/8k,

which implies that p must be inside the subset T considered Line 10. This proves that T 6= ∅ whp.
for such an iteration and completes the proof of the claim.

Finally, we are ready to prove Lemma 6.7 which we restate below for convenience.

Lemma 6.7 (Dimensionality-Reduction for Sequential Algorithm). Let k ∈ Z>0 and f : 2V → R

be a submodular function with a k-sparse minimizer and uf ≥ 0. Then Algorithm 8 outputs a set
T ⊆ V that must be in every minimizer of f such that T = ∅ implies f∗ > −‖uf‖∞/12k. Moreover,

the algorithm runs in time Õ
(
k12‖uf‖1
‖uf‖∞ · EO+ poly(n)

)
.
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Proof of Lemma 6.7. The first statement of the lemma essentially follows from Claim 6.10. Since
Algorithm 8 starts from φ = φ0

def
= ‖uf‖1 − f(V ) ≥ |f∗|, Claim 6.10 implies that the subset T in

Line 10 is in every minimizer of f whp. and that −φ ≤ −f∗ in every iteration of the while loop
executed by Algorithm 8. In particular, if f∗ ≤ −‖uf‖∞/12k, then there must be one iteration of
the while loop in which −φ ≤ f∗ ≤ −φ/2 (assuming T = ∅ in all previous iterations). For such
an iteration, Claim 6.10 states that the subset T 6= ∅ whp. and therefore Algorithm 8 will never
return ∅. This proves the first statement of the lemma.

Next we prove the second statement on the runtime of Algorithm 8. We first note that the total
number of iterations of the while loop is

log
( ‖uf‖1 − f(V )

max{‖uf‖∞/12k, |f∗|}
)
≤ log

( ‖uf‖1 + |f∗|
max{‖uf‖∞/12k, |f∗|}

)
= O(log n).

For each iteration of the while loop, as we have ‖uf‖∞ = Õ(k)(φ+δ) each time we call StochDualCertificate,
by Theorem 6.1, the number of queries to EO made by calling the StochDualCertificate routine is
given by

Õ(k6δ−4φ2(‖uf‖∞ + φ)(‖uf‖1 + φ)) ≤ Õ(k10) · (‖uf‖∞ + φ)(2‖uf ‖1 + φ)

φ2
≤ Õ(k12

‖uf‖1
‖uf‖∞

),

where the first inequality is obtained by plugging in δ = φ/8k and φ ≥ |f∗|, and the second
inequality uses φ ≥ ‖uf‖∞/12k. Next we observe that given the vector uf , each vSampling in
Line 7 can be implemented using only O(log n) additional queries. Thus the total number of
queries due to estimating y in Line 9 is at most Õ(N) ≪ Õ(k12‖uf‖1/‖uf‖∞). Finally, note that
every step of Algorithm 8 uses polynomial additional runtime.

6.3 Arc Finding for Sequential Algorithm

In this section, we present our sequential Arc-Finding subprocedure. As mentioned in Section 2.3,
in prior work [DVZ21, LSW15], finding arcs relies on the “move-to-front” approach. Given a vector
y as the average of subgradients {gπ(t)}t∈[m] and an element p ∈ V , this approach considers the

vector y′ obtained by moving p↓ to the front of every permutation π(t). A coordinate q /∈ p↓ with
negative enough entry y′(q) is then concluded to be in every sparse minimizer containing p, i.e. an
arc from p to q.

Key to our algorithm is the following lemma which shows when the move-to-front procedure
allows us to deduce arcs or dimensionality reductions. Recall from in Section 3 that, for some
permutation π, ‖∆π,.p‖1 measures the total decrease of coordinates of gπ in V \ p↓ after moving p↓

to the front of π. Similarly, ‖∆p‖1 measures the total decrease of coordinates of y in V \ p↓ after
moving p↓ to the front in every permutation. Informally, Lemma 6.11 states that any element p in
some k-sparse minimizer S∗ with large (uf♯R)p must also have large ‖∆p‖1. Moreover, we can find

q ∈ S∗ \ p↓ such that yq decreases significantly after moving p↓ to the front, hence deducing an arc
p→ q.

Lemma 6.11 (Move to Front). Let f be a submodular function with a k-sparse minimizer and f ♯R

be its extension w.r.t. a k-consistent ring family R(E,W,D). Let S∗ be a k-sparse minimizer of f
(and therefore f ♯R), element p ∈ S∗, and y ∈ B(f ♯R) be a (δ, k) dual certificate of f ♯R. Define the
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vector ∆p ∈ R
V
≥0 as

(∆p)i
def
=

{
0 if i ∈ p↓

yi − (y←p↓)i otherwise.

If f ♯R(p↓) > (2k + 1)δ, then the following hold:

• (1) ‖∆p‖1 = f ♯R(p↓)− y(p↓) > 2kδ and y(p↓) ≤ δ,

• (2) There exists q ∈ S∗ \ p↓ so that (∆p)q >
1
k ‖∆p‖1, and

• (3) If an element q ∈ V \ p↓ satisfies (∆p)q ≥ 1
2k ‖∆p‖1, then q ∈ S∗.

In particular, the above hold if (f ♯R)∗ = f∗ ≥ − (u
f♯R

)p

2 and δ ≤ (u
f♯R

)p

6k .

Proof. Statement (1) is an immediate corollary of Lemma 4.9 together with p↓ ∈ F .
To prove the second statement, we observe that

y(S∗ \ p↓) = y(S∗)− y(p↓) ≥ yk+1
− (V )− y(p↓) ≥ f∗ − δ − y(p↓),

where the first inequality is because |S∗| ≤ k and the last inequality uses that y is a (δ, k) dual

certificate for f ♯R and that (f ♯R)∗ = f∗. By Lemma 4.9, we have y←p↓ ∈ B(f ♯R
p↓

). It follows that

y←p↓(S
∗ \ p↓) ≤ f ♯R

p↓
(S∗ \ p↓) = (f ♯R)∗ − f ♯R(p↓) = f∗ − f ♯R(p↓),

where the first equality uses that S∗ \ p↓ is a minimizer of f ♯R
p↓

, and the second equality uses
Lemma 4.2. Subtracting the above two inequalities, we have

∆p(S
∗ \ p↓) = y(S∗ \ p↓)− y←p↓(S

∗ \ p↓) ≥ f ♯R(p↓)− δ − y(p↓) = ‖∆p‖1 − δ. (12)

Since |S∗ \ p↓| ≤ k − 1 and that ‖∆p‖1 > 2kδ by (1), there exists q ∈ S∗ \ p↓ such that

(∆p)q ≥
‖∆p‖1 − δ

k − 1
>
‖∆p‖1

k
.

This completes the proof of (2).

Next, note that by (12) and (1) we have ∆p(V \ S∗) ≤ δ <
‖∆p‖1
2k . Since all entries of ∆p are

non-negative, any coordinate (∆p)q >
‖∆p‖1
2k must satisfy q ∈ S∗ \ p↓. This proves (3).

Finally, for the “in particular” part of the lemma, we note that

f ♯R(p↓) = (uf♯R)p + f(W ∪ p↓ \ {p}) ≥ (uf♯R)p + f∗ ≥ (uf♯R)p

2
> (2k + 1)δ,

where in the last inequality we use f∗ ≥ − (u
f♯R

)p

2 and δ ≤ (u
f♯R

)p

6k .

In light of Lemma 6.11, we define A
def
= {p ∈ V : (uf♯R)p ≥ ‖uf♯R‖∞/2} as the active set

of elements. Then Lemma 6.11 allows us to deduce arcs from any p ∈ A whenever we have

f∗ ≥ −‖uf♯R
‖∞

4 and a (
‖u

f♯R
‖∞

12k , k) dual certificate. For the convenience of our presentation, we
simplify the notation f ♯R as f in the remainder of this section. However, it is important to keep
in mind that our arc finding procedures are always applied to the extension f ♯R.
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Even though Lemma 6.11 shows how the move-to-front approach allows us to deduce arcs
or dimensionality reductions from elements in the active set A, the cost of computing ∆p =
1
m

∑
t∈[m] ∆π(t),p↓ for every p ∈ A is unfortunately too high. In fact, even computing a single

coordinate (∆π(t),p↓)q for all t ∈ [m] and p ∈ A naively takes m · |A| queries to the evaluation oracle.

As m ≈ poly(k) · ‖uf‖1
‖uf‖∞ in Theorem 6.1 and |A| can be as large as n, naively calculating (∆π(t),p↓)q

for all (t, p) ∈ [m]×A requires n2 · poly(k) evaluation queries which we cannot afford.

Estimating large (∆p)q via sampling. Hence, we resort to estimating the large coordinates
of ∆p up to O( 1k‖∆p‖1) error via sampling, which allows us to identify coordinates q ∈ V \ p↓
with ∆p(q) >

1
k‖∆p‖1 or certify that none exists. Before presenting the procedure, let us start by

gathering some intuition.
For every p ∈ A, we consider the matrix Mp ∈ R

m×(V \p↓) where each row t ∈ [m] is exactly
∆π(t),p↓. The quantity we would like to estimate is the vector ∆p = 1

m

∑
t∈[m]∆π(t),p↓, which is

the average of the rows of Mp. To do so, the naive approach would be to uniformly sample a row

t ∈ [m], and then sample q ∝ (∆
π(t),p↓

)q

‖∆
π(t),p↓

‖1 =: βq and outputs ‖∆π(t),p↓‖1 · ~1q. This can easily be

verified to be an unbiased estimator for ∆p:

Et∼[m],q∼βq

[
‖∆π(t),p↓‖1 · 1q

]
= Et∼[m][∆π(t),p↓] = ∆p.

However, the output estimate has entry ‖∆π(t),p↓‖1 that can be on the order of ‖uf‖1, while (∆p)q ≤
‖∆p‖1 is typically on the order of O(k)·‖uf‖∞. Thus using the above sampling procedure to estimate
(∆p)q up to O( 1k‖∆p‖1) error would require too many samples.

A natural fix to the above idea is to sample t ∈ [m] depending on ‖∆π(t),p↓‖1. In particular,
by sampling t ∝ ‖∆π(t),p↓‖1 and q ∝ βq, the random vector ‖∆p‖1 · 1q is an unbiased estimator of

∆p whose non-zero entry now only has range ‖∆p‖1. This allows us to obtain O( 1k‖∆p‖1) error
for large entries (∆p)q using only poly(k) samples. However, the obstacle to this approach is that
computing ‖∆π(t),p↓‖1 for all p ∈ A and t ∈ [m] would again require m|A| = O(n2poly(k)) queries,
which is computationally too expensive for us.

Efficiently estimating ∆p simultaneously for all p ∈ A. To get around the aforementioned
computational bottleneck, we present a novel oversampling technique that allows us to obtain
poly(k) samples of t for all p ∈ A simultaneously. At first thought, this might appear impossible as
the values (∆p)q crucially depends on p ∈ A. Our crucial idea here is to perform an “oversampling”
using the uniform upper bound vector 2uf − gπ(t) ≥ ∆π(t),p↓ for all p ∈ A. In particular, for any

t ∈ [m], by sampling a ∝ 2(uf )a−(gπ(t))a

‖2uf−gπ(t)‖1 , we simultaneously have for all p ∈ A that

P(a ∈ p↓) ∝ B(t)
p

def
= 2uf (p

↓)− gπ(t)(p↓) ≥ ‖∆π(t),p↓‖1.

Therefore, by sampling t ∈ [m] uniformly and a ∝ 2(uf )a−(gπ(t))a

‖2uf−gπ(t)‖1 , and accepting this sample for

each p ∈ A only if a ∈ p↓, we obtain a way to sample t ∈ [m] proportional to B
(t)
p simultaneously

for all p ∈ A. Moreover, as B
(t)
p ≥ ‖∆π(t),p↓‖1, this oversampling still requires only poly(k) samples

Cp to estimate (∆p)q up to error O( 1k‖∆p‖1).
Having obtained samples Cp proportional to B

(t)
p for every p ∈ A, we feed them into the

procedure Negative-Mass-Estimate (given in Algorithm 10) to compute an unbiased estimate ∆̃p for
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all p ∈ A with additive error 1
4k ‖∆p‖1 for every coordinate q ∈ V \ p↓. To do so, as mentioned

earlier, for each t ∈ Cp it samples element q ∝ βq and uses
‖∆

π(t),p↓
‖1

B
(t)
p

· ~1q as the estimate for ∆p.

This estimate satisfies

E
t∝B(t)

p ,q∝βq

[‖∆π(t),p↓‖1
B

(t)
p

·~1q
]
= E

t∝B(t)
p

[∆π(t),p↓

B
(t)
p

]
=

∆p

1
m

∑
t∈[m]B

(t)
p

,

which is a factor of 1
m

∑
t∈[m]B

(t)
p smaller than ∆p. To fix this, while performing the oversampling

described, we also obtain estimates z̃p of the values of 1
m

∑
t∈[m] B

(t) for all p ∈ A and re-weight
properly at the end. See Algorithm 9 and 10 for formal descriptions of our arc-finding procedures.

Algorithm 9: Arc Finding for Sequential Algorithm

Data: A sparsity parameter k, a submodular function f with a k-sparse minimizer,
permutations {π(t)}t∈[m] such that 1

m

∑
t∈[m] gπ(t) is a (δ, k) dual certificate with

δ ≤ ‖uf‖∞
24k , and parameter Scale ≥ ‖uf‖∞ ≥ −12kf∗

Result: A set Sp ⊆ V \ p↓ of arcs from every p ∈ V with (uf )p ≥ Scale/2, where Sp = ∅
certifies that p is not in any k-sparse minimizer

1 Function Arc-Finding(f, k, {π(t)}t∈[m],Scale):

2 A← {p : (uf )p ≥ Scale
2 }

3 Sp, Cp ← ∅ for all p ∈ A // Initialize set of arcs and samples from p to be empty

4 N ← Θ(k4(log n) · ‖uf‖1
‖uf‖∞ ) // Draw N samples in total

5 Np ← Θ(k4 log n) and countp ← 0, ∀p ∈ A // Assign Np samples for each p ∈ A

6 for itr ∈ [N ] do

7 Sample a pair (t, a) ∈ [m]× V with probability
2(uf )a−(gπ(t))a

m·(2‖uf‖1−f(V ))

8 for every p ∈ A with a ∈ p↓ do
9 countp ← countp + 1

10 if |Cp| < Np then Cp ← Cp ∪ {t}
11 end

12 end

13 z̃p ← countp
N · (2 ‖uf‖1 − f(V )) for all p ∈ A // Multiplicative estimate of 1

m

∑
t∈[m] B

(t)
p

14 {∆̃p}p∈A ← NegativeMassEstimate(f, {π(t)}t∈[m], {Cp}p∈A, {z̃p}p∈A)
15 for all p ∈ A and q ∈ V \ p↓ do
16 if ∆̃p(q) ≥ 3

4k‖∆̃p‖1 then Sp ← Sp ∪ {q}
17 end

18 return {Sp}p∈A

The following is our main guarantee for the Negative-Mass-Estimate routine in Algorithm 10.

Lemma 6.12. Given a submodular function f : 2V → R, subset A ⊆ V , and permutations
{π(t)}t∈[m]. For each p ∈ A, let Cp ⊆ [m] be Np = 105k4 log n i.i.d. samples of ti with P(ti =

t) ∝ B
(t)
p and z̃p be a random variable such that E[z̃p] =

1
m

∑
t∈[m]B

(t)
p ≤ 10k‖∆p‖1, and z̃p ∈

1
m

∑
t∈[m] B

(t)
p (1 ± 1

16k ) with high probability. Then, the output of Algorithm 10 satisfies that with
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Algorithm 10: Procedure for Estimating ∆p for Sequential Algorithm

Data: A submodular function f , permutations {π(t)}t∈[m], a collection of samples
Cp = {ti}i∈[Np] ⊆ [m] and estimates z̃p for all p ∈ A

// The samples ti in Cp satisfies P[ti = t] ∝ B
(t)
p and E[z̃p] =

1
m

∑
t∈[m] B

(t)
p

Result: An estimate ∆̃p of ∆p for each p ∈ A
1 Function NegativeMassEstimate(f, {π(t)}t∈[m], {Cp}p∈A, {z̃p}p∈A):
2 for p ∈ A do

3 for t ∈ Cp do

4 Sample q ∝ (∆
π(t),p↓

)q

‖∆
π(t),p↓

‖1 =: βq, set ∆̃
(t)
p ←

‖∆
π(t),p↓

‖1
B

(t)
p

·~1q // B
(t)
p

def
= 2uf (p

↓)− gπ(t)(p↓)

5 end

6 ∆̃p ← 1
|Cp|

∑
t∈Cp

∆̃
(t)
p · z̃p

7 end

8 return {∆̃p}p∈A

high probability, (∆̃p)q ∈ (∆p)q ± 1
8k ‖∆p‖1 and ‖∆̃p‖1 ∈ (1 + 1

8k )‖∆p‖1 for all p ∈ A that belongs

to a k-sparse minimizer and q ∈ V \ p↓. Moreover, Algorithm 10 uses Õ(k
∑

p∈ANp) queries and
poly(n) additional runtime.

Proof. Fix p ∈ A that is in a k-sparse minimizer. For each sample t ∈ Cp and q ∈ V \ p↓, we have

E
t∝B(t)

p ,q∝βq
[∆̃(t)

p · z̃p] = E
t∝B(t)

p ,q∝βq

[‖∆π(t),p↓‖1
B

(t)
p

·~1q · z̃p
]
= E

t∝B(t)
p

[∆π(t),p↓

B
(t)
p

· z̃p
]

=
∆p

1
m

∑
t∈[m]B

(t)
p

· E[z̃p] = ∆p.

This implies E[∆̃p] = ∆p, i.e. Algorithm 10 outputs an unbiased estimator. As z̃p ∈ 1
m

∑
t∈[m] B

(t)
p (1±

1
16k ) with high probability, it suffices to show that 1

Np

∑
ti∈Cp

∆̃
(ti)
p concentrates around its mean.

To this end, fix a coordinate q ∈ V \ p↓. Note that for each sample ti ∈ Cp, we have

0 ≤ (∆̃ti
p )q ≤

∥∥∆πti ,p↓
∥∥
1

B
(ti)
p

≤ 1.

Let µq
def
= E[(∆̃ti

p )q]. Using Hoeffding’s inequality with error γ = 1
100k2

gives that

P

[∣∣∣
1

Np

∑

ti∈Cp

(∆̃(ti)
p )q − µq

∣∣∣ ≥ γ
]
≤ 2 exp

(
−γ2Np/2

)
≤ 1/poly(n).

This shows that with high probability, for all p ∈ A and q ∈ V \ p↓ we have

∣∣∣(∆̃p)q − (∆p)q

∣∣∣ =
∣∣∣
1

Np

∑

ti∈Cp

(∆̃(ti)
p )q · z̃p − (∆p)q

∣∣∣ ≤ 1

16k
(∆p)q + (1 +

1

16k
) · γ

m

∑

t∈[m]

B(t)
p
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≤ ‖∆p‖1
16k

+
17

16
· 1

100k2
· 10k · ‖∆p‖1 ≤

‖∆p‖1
8k

,

where the second inequality uses the assumption that 1
m

∑
t∈[m] B

(t)
p ≤ 10k‖∆p‖1. The proof that

‖∆̃p‖1 ∈ (1 + 1
8k )‖∆p‖1 is similar. This completes the proof of the first statement of the lemma.

Now we prove the “moreover” part of the lemma. Note that the only place where Algorithm 10

queries the evaluation oracle is in Line 4. In this line, computing ‖∆π(t),p↓‖1 and B
(t)
p takes O(k)

queries for each p ∈ A and t ∈ Cp which is a total of O(k
∑

p∈ANp) queries. It therefore suffices

to show that we can sample q proportional to (∆π(t),p↓)q in Õ(k
∑

p∈ANp) queries. Note that

(∆π(t),p↓)q ≥ 0 for all q ∈ V \ p↓ and that for any i ∈ V \ p↓ computing
∑

j∈[i]\p↓(∆π(t),p↓)j takes

only O(k) queries since |p↓| ≤ k. It follows that we can apply binary search as in the proof of
Lemma 6.3 to sample q ∝ βq in O(k log n) queries. For all p ∈ A and q ∈ V \ A, this is a total of

Õ(k
∑

p∈ANp) queries. Finally, note that every operation in Algorithm 10 requires at most poly(n)
additional computational cost. This finishes the proof of the lemma.

Now, we are ready to present our result regarding the arc-finding procedure.

Lemma 6.13 (Arc Finding for Sequential Algorithm). Let f be a submodular function with f∗ ≥
−‖uf‖∞

12k and {π(t)}t∈[m] be permutations such that y = 1
m

∑
t∈[m] gπ(t) is a (δ, k) dual certificate

with δ ≤ ‖uf‖∞
24k . Then with high probability, Algorithm 9 outputs arcs Sp 6= ∅ for each p ∈ A that

belongs to some k-sparse minimizer. Moreover, Algorithm 9 uses Õ(k5
‖uf‖1
‖uf‖∞ ) queries and poly(n)

additional runtime.

Proof of Lemma 6.13. First, we show that the input passed to Algorithm 10 satisfies the conditions
in Lemma 6.12. We begin by proving that, at the end of the for loop in Line 6, we have collected
Np samples (i.e. |Cp| = Np) for all p ∈ A with high probability. To prove this, we fix p ∈ A. In

each iteration of Line 6, if |Cp| < Np, then the probability that Cp is updated is
2uf (p

↓)−g
π(t)(p

↓)

2‖uf‖1−f(V ) .

Since (uf )q − (gπ(t))q ≥ (uf )q for every q ∈ V , and −‖uf‖∞
12k ≤ f(V ) ≤ ‖uf‖1, we have

2uf (p
↓)− gπ(t)(p↓)

2‖uf‖1 − f(V )
≥ uf (p

↓)

3‖uf‖1
≥ ‖uf‖∞

6‖uf‖1
,

where the last inequality follows because p ∈ A satisfies (uf )p ≥ ‖uf‖∞/2. Therefore, in N =

Ω(k4 log n
‖uf‖1
‖uf‖∞ ) iterations, by the multiplicative Chernoff bound, |Cp| will be updated Ω(

N‖uf‖∞
‖uf‖1 ) =

Ω(k4 log n) times with high probability. Moreover, each ti ∈ Cp is indeed picked i.i.d. from [m] with

P(ti = t) ∝ B
(t)
p . This is because as long as |Cp| < Np, Cp gets updated if and only if the sample

(t, a) drawn satisfies a ∈ p↓. Conditioned on the event that a ∈ p↓, the sample t has probability

distribution over [m] proportional to B
(t)
p = 2uf (p

↓)− gπ(t)(p↓).
Next, we show that with high probability, z̃p ∈ (1 ± 1

16k ) · (2uf (p↓) − y(p↓)) = (1 ± 1
16k ) ·

1
m

∑
t∈[m] B

(t)
p for all p ∈ A. This holds since each time we draw a sample (t, a), the probability

that countp gets updated is

Et∼[m]

[2uf (p↓)− gπ(t)(p↓)

2‖uf‖1 − f(V )

]
=

2uf (p
↓)− y(p↓)

2‖uf‖1 − f(V )
≥ ‖uf‖∞

6‖uf‖1
.
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This implies that E[z̃p] = 2uf (p
↓) − y(p↓) = 1

m

∑
t∈[m]B

(t)
p , i.e. z̃p are unbiased estimators. More-

over, since we draw N = Õ(k4
‖uf‖1
‖uf‖∞ ) samples in total, multiplicative Chernoff bound again implies

that z̃p are indeed (1± 1
16k )-multiplicative estimates of 2uf (p

↓)−y(p↓) with high probability. Lastly,
we show that E[z̃p] = O(k) · ‖∆p‖1 for all p ∈ A that belongs to a k-sparse minimizer. To see why
this holds, note that

‖∆p‖1 = f ♯R(p↓)− y(p↓) = (uf )p + f(W ∪ p↓ \ {p}) − y(p↓) ≥ (1− 1

6k
) · (uf )p − δ,

where in the last inequality we used that f∗ ≥ −‖uf‖∞
12k ≥ − (uf )p

6k and y(p↓) ≤ δ by Lemma 6.11.

Using yk+1
− (V ) ≥ f∗ − δ as y is a (δ, k) dual certificate, this further implies that

2uf (p
↓)− y(p↓)

‖∆p‖1
≤ 2k‖uf‖∞ − (f∗ − δ)

(1− 1
6k ) · (uf )p − δ

≤ O(k),

where the last inequality follows from δ = O( 1k‖uf‖∞) and p ∈ A. Hence, the input passed to
Algorithm 10 satisfies the assumptions in Lemma 6.12.

Next, we prove the correctness of our arc finding method. Fix p ∈ A that belongs to some k-
sparse minimizer. By Lemma 6.12, we have (∆̃p)q ∈ (∆p)q ± 1

8k‖∆p‖1 and ‖∆̃p‖1 ∈ (1± 1
8k )‖∆p‖1

with high probability for all q ∈ V \ p↓. Therefore, every q with (∆̃p)q ≥ 3
4k‖∆̃p‖1 must have

(∆p)q ≥ 1
2k‖∆p‖1, implying that p → q is an arc due to Lemma 6.11. Hence, all arcs deduced

are valid. Lastly, note that for each p ∈ A that belongs to some k-sparse minimizer, there must
be at least one such q ∈ V \ p↓, as otherwise we would have (∆p)q ≤ 1

k‖∆p‖1 for all q which is a
contradiction to Lemma 6.11. This implies that we can find valid arcs Sp 6= ∅ for every element
p ∈ A that belongs to some k-sparse minimizer.

Finally, we show that Algorithm 9 can be implemented using Õ(k5 · ( ‖uf‖1
‖uf‖∞ + |A|)) queries.

Note that each sample pair (t, a) in Line 6 can be implemented in O(log n) queries and O(n log n)
additional runtime by first sampling t ∼ [m] uniformly at random, and then use binary search to
sample a ∈ V . Together with the runtime bound in Lemma 6.12, we have that Algorithm 9 can be

implemented using Õ(N + k
∑

p∈ANp) = Õ(k5
‖uf‖1
‖uf‖∞ ) queries and poly(n) additional computation,

where we used that |A| ≤ 2
‖uf‖1
‖uf‖∞ . This completes the proof of the lemma.

6.4 Putting It All Together

We are now ready to prove the correctness, query complexity and runtime guarantees for our
sequential algorithm. We prove Theorem 1.2 and Theorem 1.3 in the following.

Theorem 1.2 (Weakly-polynomial k-sparse SFM). There is a randomized algorithm that outputs
an ǫ-approximate minimizer for k-sparse SFM whp. in Õ((n ·poly(k) ·EO+poly(n)) log(|f |/ǫ)) time.

Proof of Theorem 1.2. We prove that the meta algorithm (Algorithm 1) where the subroutines
Dimensionality-Reduction and Arc-Finding are instantiated by Algorithm 8 and Algorithm 9 respec-
tively has the desired properties. The correctness of these instantiations of Dimensionality-Reduction

and Arc-Finding was established in Lemma 6.7 and Lemma 6.13 respectively. Consequently, the cor-
rectness of this algorithm follows from Corollary 4.5 so we only need to analyze its query complexity
and runtime here.
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In each iteration of the outer while loop in Line 3 of Algorithm 1, one of the following three
conditions occur: (1) f∗ ≤ −‖uf♯R‖∞/12k and the size of the contracted elements W increases due
to Dimensionality-Reduction in Line 4, (2) there exists element p ∈ V \(W ∪D) such that (uf♯R)p < 0
in Line 18 of Algorithm 11 (extension maintainer) and the size of the discarded elementsD increases,
or (3) f∗ > −‖uf♯R‖∞/12k and ‖uf♯R‖∞ decreases by a factor of 2 and a set of arcs Sp are found
for every element p ∈ V \ (D∪W ) with (uf♯R)p > Scale/2 in the while loop in Line 11 (in this case,
the discarded set D might also increase due to Sp = ∅ or an element p having more than k arcs).

(1) and (2) can happen at most k times before |W | ≥ k and Algorithm 1 outputs W . (3)
can happen at most log(|f |n/ǫ) times before ‖uf♯R‖∞ ≤ ǫ/n. Consequently, the total number of
iterations of the while loop in Line 3 is at most O(k+log(|f |n/ǫ)). Moreover, each iteration makes
1 call to Dimensionality-Reduction and at most k calls to Arc-Finding, as otherwise the number of
new arcs found from elements p with (uf♯R)p > Scale/2 would be more than k and such elements
are discarded in our data structure in Line 27.

Each call to Dimensionality-Reduction can be implemented in time Õ(
‖u

f♯R
‖1

‖u
f♯R
‖∞k12 ·EO+ poly(n))

by Lemma 6.7. Additionally, the total number of times Dimensionality-Reduction is called in Line 4
is at most k + log(|f |n/ǫ) by the reasoning in the preceding paragraph. Next, each call to Arc-

Finding, first computes a (δ, k) dual certificate y (implicitly given by the permutations {π(t)}t∈[m]),

where φ =
‖u

f♯R
‖∞

12k , δ =
‖u

f♯R
‖∞

24k = φ/2, which by Theorem 6.1 uses

Õ(k6δ−4φ2(‖uf♯R‖∞ + φ)(‖uf♯R‖1 + φ)) ≤ Õ(k8
‖uf♯R‖1
‖uf♯R‖∞

)

queries to EO and poly(n) additional runtime. Given the (δ, k) dual certificate, Lemma 6.13 states

that each call to Arc-Finding can be done in Õ(
‖u

f♯R
‖1

‖u
f♯R
‖∞k5 ·EO+poly(n)) runtime. Since

‖u
f♯R
‖1

‖u
f♯R
‖∞ ≤ n,

we obtain that the runtime due to Dimensionality-Reduction and Arc-Finding is Õ((nk12 · EO +
poly(n)) log(|f |/ǫ)) in total.

Finally, due to Theorem 4.3, each update to the RingFamily can be implemented in O(m·EO+nk)
time wherem is the total number of elements p from which arcs are found. Additionally, each one of
Line 2, Line 7 and Line 18 can be implemented in O(1) depth and O(n · EO+ n) time. Combining
everything above, Algorithm 1 finds an ǫ-approximate minimizer for k-sparse SFM in runtime
Õ((nk12 · EO+ poly(n)) · log(|f |/ǫ)).

We now prove our strongly-polynomial result for our sequential algorithm.

Theorem 1.3 (Strongly-polynomial k-sparse SFM). There is a randomized algorithm that outputs
an exact minimizer for k-sparse SFM whp. in Õ(n · poly(k) · EO+ poly(n)) time.

Proof of Theorem 1.3. Consider the meta algorithm in Algorithm 1 with subprocedures
Dimensionality-Reduction and Arc-Finding as in Algorithms 8 and 9, where we set ǫ = 0. The
correctness of these instantiations of Dimensionality-Reduction and Arc-Finding was established in
Lemma 6.7 and Lemma 6.13 respectively. Consequently, the correctness of this algorithm follows
from Corollary 4.5 so we only need to analyze its query complexity and runtime here. We show
that this algorithm outputs an exact minimizer and has runtime bound Õ(nk13 · EO+ poly(n)).

First, the runtime due to RingFamily operations can be easily bounded by O(nk ·EO+ poly(n)),
since on average each arc takes at most O(1 · EO + nk) to update, and there can be at most nk
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arcs in total (see Theorem 4.3). Hence, it suffices to reason about the complexity of Dimensionality-

Reduction and Arc-Finding over the course of the algorithm.
We have already argued that in the proof of Theorem 1.2 above that one iteration of the while

loop in Line 3, the number of calls to Dimensionality-Reduction and Arc-Finding is 1 and O(k)

respectively. Hence, each such iteration takes Õ(
‖u

f♯R
‖1

‖u
f♯R
‖∞k12EO + poly(n)) time, since each call of

Arc-Finding takes Õ(k8
‖u

f♯R
‖1

‖u
f♯R
‖∞ ) (as shown in the proof of Theorem 1.2).

To obtain a strongly polynomial runtime, we bound the runtime of the calls to Dimensionality-

Reduction and Arc-Finding in a more fine-grained way than in the proof of Theorem 1.2. We
introduce a charging scheme to argue that the total cost of these calls is Õ(k13) per element p. We
do so by charging the number of queries made during each iteration of the while loop to elements

in V according to the entries of the vector uf♯R . In particular, we charge Õ(
(u

f♯R
)p

‖u
f♯R
‖∞k12) queries

to each p ∈ V . Note that such a charging scheme accounts for the total number of queries used in
one iteration of the outer while loop. Hence, it suffices to show that the total charge to element p
is at most Õ(k13).

Now, fix an element p ∈ V and observe that (uf♯R)p can only change when we deduce an arc
from p (directly or through transitive closure). Moreover, (uf♯R)p can change at most k times as
any element reaching more than k arcs is discarded by Line 27 in Algorithm 11. Now, fix a sequence

of iterations t0, · · · , t1 of the while loop in Line 3 where the value (u
(t)

f♯R)p in the tth iteration is

constant throughout t ∈ {t0, · · · , t1}. Note that ‖u(t)
f♯R‖∞ decreases by a factor of 2 after each

iteration t and that ‖u(t1)
f♯R‖∞ ≥ (u

(t1)

f♯R)p. We can therefore bound the total number of queries
charged to p in iterations t0, · · · , t1 as

Õ(k12) ·
t1∑

t=t0

(u
(t)

f♯R)p

‖u(t)
f♯R‖∞

≤ Õ(k12)

t1∑

t=t0

2−(t1−t) ≤ Õ(k12).

Since there are at most k such sequences of iterations for p, the total number of queries charged
to p throughout the entire algorithm is at most Õ(k13). This proves that the algorithm makes at
most Õ(nk13) queries to EO in total.

Finally, to prove that the additional computation is also strongly polynomial, we note that each
iteration of the while loop in Line 3 deduces either a dimensionality reduction or an arc. Note
each one of Line 2, Line 7 and Line 18 can be implemented in O(1) depth and O(n · EO+ n) time.
Additionally, Line 3 gets called at most nk times. Since each iteration uses poly(n) additional
computation, the total runtime we obtain is Õ(nk13 · EO+ poly(n)). �

7 Ring Family and Extensions

In this section, we present more details on arc information and the submodular extension f ♯R

introduced in Section 4.1.
As was illustrated in Section 4.1, besides finding elements which are contracted (added to W ) or

discarded (added to D), our algorithms also proceed by finding elements p, q ∈ V such that any k-
sparse minimizer of the submodular function f containing p must also contain q. Such information
is captured by an arc (p, q). To incorporate all the arc information, we use the framework of SFM

50



over ring families first introduced by Iwata, Fleischer, and Fujishige [IFF01]. This framework was
later used in many other algorithms, e.g., [IO09, LSW15, DVZ21].

Here, we emphasize once more the slight difference between the arc definition we use and the
standard one in the literature. As said in Footnote 10, an arc (p, q) in our work means that
every k-sparse minimizer containing p contains q. Equivalently, this can be reformulated as “if the
minimal minimizer Smin contains element p, then it also contains element q”. Crucially, we use
this definition to limit the number of arcs we expect to deduce from any element to at most k.
Hence, whenever we deduce more than k arcs from some element, we discard it, as it is not part of
the minimal minimizer. This also affects how we implement the transitive closure in UpdateArcs,
the function in Algorithm 11 used to add new arcs to the data structure. For more details, see
the proof of Theorem 4.3. The modification in the definition of arcs, along with the corresponding
algorithmic tweaks, allows a speed-up in both the depth and query complexity of calls to the data
structure Algorithm 11, making our runtimes (Theorem 1.1, Theorem 1.2, Theorem 1.3) possible.
Our presentation and notations follow the ones in [DVZ21], with necessary adaptions to fit the arc
definition of this paper.

Directed graph and partial ordering. All arc information is maintained as a directed graph
G = (V ′, E), where V ′ := V \ (W ∪ D) with the property that if (p, q) ∈ E, then every k-sparse
minimizer S ⊆ V of the submodular function f that contains pmust also contain q. We may assume
that E is acyclic as any (directed) cycle of G can be contracted (e.g., Section 4.1 of [DVZ21]). We
may also assume that G is transitive, i.e., (p, q) ∈ E if and only if there is a directed path from p
to q in G, by maintaining its transitive closure. Our data structure, Algorithm 11, maintains this
property by adding arc p→ q whenever there is a directed path from p to q.

The acyclic graph G = (V ′, E) defines a partial order �E, i.e., q �E p if there exists a directed
path in E from p to q (and (p, q) ∈ E when G is transitive); in particular, p �E p for all p ∈ V . We
say that an ordering of the vertices is consistent with �E, if q is ordered before p whenever q �E p.
We use the simpler notation q � p if E is clear from the context.

Ring families. The acyclic graph G = (V ′, E) defines a collection of sets R(E,W,D)
def
= {S : W ⊆

S ⊆ V \D, (p ∈ S) ∧ (q � p)⇒ q ∈ S}, i.e., R(E,W,D) is the set of all lower ideals of the partial
order �. Note that R(E,W,D) contains W and V and is closed under set intersection and union.

Our algorithms begin with no arc information, so R(E,W,D) = 2V . Throughout our algo-
rithm, we maintain the ring family E ⊆ 2V (by the arcs in G = (V ′, E)) to be consistent with all
the k-sparse minimizers of the submodular function f , i.e., R(E,W,D) contains all the k-sparse
minimizers of f .

Given a ring family R(E,W,D), for any element p ∈ V ′, we define

p↓
def
= {q ∈ V ′ : q � p} and p↑

def
= {q ∈ V ′ : p � q}.

Since we have assumed that G = (V ′, E) is transitive, for all p ∈ V ′, p↓ = {p}∪{q ∈ V ′ : (p, q) ∈ E}
and p↑ = {p} ∪ {q ∈ V ′ : (q, p) ∈ E}. Similarly, for any X ⊆ V ′, we define

X↓
def
=
⋃

p∈X
p↓ and X↑

def
=
⋃

p∈X
p↑.

Note that X↓ ∪W is the unique minimal set in R(E,W,D) containing X, and (V ′ \ X↑) ∪W is
the unique maximal element of E disjoint from X. We also define, for any X ⊆ V ′ the set

X♯R def
= V ′ \ (V ′ \X)↑ .
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Note that X♯R ∪W is the unique maximal set in R(E,W,D) that is contained in X ∪W .

Upper bound values and extensions of submodular functions. Consider f a submodular
function and a consistent ring family with arc constraints captured by R. For every p ∈ V ′, we
define the upper bound values

(uf,R)p
def
= f(W ∪ p↓)− f(W ∪ p↓ \ {p}).

An intuitive property of (uf,R)p is that for any set X ∈ R(E,W,D) that does not contain p and that
X ∪{p} ∈ R(E,W,D), (uf,R)p is an upper bound on the marginal value f(X ∪{p})−f(X). Recall

from Lemma 4.2 that the upper bound values (uf,R)p coincide with (uf♯R)p
def
= f ♯R({p}) − f ♯R(∅)

whenever (uf,R)p ≥ 0.
Using the upper bound values, we define an extension f ♯R of the submodular function f that

captures the ring family structure R(E,W,D).

Definition 7.1 (Submodular Extension). Given a submodular function f and a ring family R(E,W,D)
k-consistent with the structure of its minimizers, define, for S ⊆ V \ {W ∪D}

f ♯R(S)
def
= fW (S♯R) + u+f,R(S \ S♯R) = f(W ∪ S♯R) + u+f,R(S \ S♯R).

To incorporate set W , the extension f ♯R replaces the function f with fW : 2V \W → R defined
as fW (S)

def
= f(S ∪W )− f(W ), which is submodular. For a submodular function F : 2V

′ → R, the
operation F ↓ with respect to a ring family was defined in [DVZ21]; we denote by F̄ the complement
of F , with the relationship F̄ (S) = F (V ′ \ S). The function f ♯R is the natural complement of the
function (fW )↓. In particular, it is easy to see that f ♯R(S) = ( ¯fW )↓(S). We now prove the following
lemma collecting the properties of f ♯R, which was previously stated in Section 4.1.

Lemma 4.2 (Properties of Extension f ♯R). Let f : 2V → R be a submodular function with a
k-sparse minimizer and let R(E,W,D) a ring family k-consistent with f . Then, the following
properties hold for the extension f ♯R : 2V \(W∪D) → R:

1. Submodularity: f ♯R is a submodular function.

2. Extension: f ♯R(S) ≥ f(W ∪ S♯R) for any set S ⊆ V \ W , where S♯R ⊆ S is defined
so that S♯R ∪W is the unique maximal subset of S ∪W consistent with all the arcs in E;
f ♯R(S) = f(W ∪ S) for any set S ⊆ V \W with S ∪W consistent with R.

3. k-Consistency: For any k-sparse minimizer S of f , S\W is also a k−|W |-sparse minimizer
of f ♯R; for any minimizer S∗ of f ♯R, (S∗)♯R ∪W is a minimizer of f .

4. Marginals: For any p ∈ V , (uf♯R)p = f(W ∪ p↓) − f(W ∪ p↓ \ {p}) if either f(W ∪ p↓) −
f(W ∪ p↓ \ {p}) ≥ 0 or p↓ = {p}, and (uf♯R)p = 0 otherwise. Consequently, (uf♯R)p < 0 if

and only if p↓ = {p} and f(W ∪ {p}) < f(W ). Additionally, when new arcs are added or
elements are added to W or D, the value of (uf♯R)p does not increase for any p ∈ V .

Proof. To prove the submodularity property, we note from above that f ♯R(S) = ( ¯fW )↓(V \ S),
where ¯fW (S) = fW (V \S) is the complement set function of fW . ¯fW

↓
is the submodular extension

defined in [DVZ21] for function F = ¯fW . Since ¯fW
↓
was shown to be submodular (Lemma 4.4 in

[DVZ21]), it follows that f ♯R is also a submodular function.
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The first part of the extension property follows from Definition 7.1 and the non-negativity of
u+f,R; the second part follows because S♯R = S for any set S so that W ∪ S is consistent with all
the arcs.

We now prove the first part of k-consistency. By the extension property, f ♯R(S) ≥ f(W ∪S♯R)
and that f ♯R(S∗) = f(W ∪ S∗) for any set S∗ so that S∗ ∪ W is a k-sparse minimizer f . It
follows that the minimum value of f ♯R agrees with f∗ and any k-sparse minimizer S∗ of f is also a
minimizer of f ♯R. For the second part of k-consistency, we note that f((S∗)♯R∪W ) ≤ f ♯R(S∗) = f∗

which implies that (S∗)♯R is a minimizer of f ♯R.
To prove the marginal property, we consider two cases. The first case is when there is no

element q 6= p such that q � p, or, equivalently, {p} = p↓. Then, {p}♯R = {p}, so (uf♯R)p =

f ♯R({p})− f ♯R(∅) = f(W ∪ {p})− f(W ) = (uf,R)p. In the other case, there exists q 6= p such that
q � p, and so {p}♯R = ∅. It follows that f ♯R({p}) = f(W ) + u+f,R({p}), so (uf♯R)p = u+f,R({p}).
Hence, (uf♯R)p = (uf,R)p if (uf,R)p ≥ 0, and (uf♯R)p = 0 if (uf,R)p < 0. Since adding new arcs do

not decrease the set p↓ for any element p ∈ V , the “Moreover” part immediately follows from the
submodularity of f .

Missing Proofs for Extension Maintainer

The proof of Lemma 4.2 follows immediately from the above. The data structure for the exten-
sion maintainer is formally given in Algorithm 11. We now prove that Algorithm 11 satisfies the
properties in Theorem 4.3, which is restated below.

Theorem 4.3 (Extension Maintainer). Given a submodular function f : 2V → R with n = |V | and
minimal minimizer S∗min with |S∗min| ≤ k, accessed through an evaluation oracle EO, there is a data
structure that maintains the set of elements that must be in every minimizer W , the set of discarded
elements D (with D ∩W = ∅), the set E of all the arcs for elements in V \ (D ∪W ), the values
(uf♯R)p for all p ∈ V \ (D∪W ), and the corresponding submodular extension f ♯R : 2V \(D∪W ) → R.
Access to the extension is through the following operations.

1. Init(V, k, f) initializes the data structure with W = D = ∅ and then calls UpdateSpace(∅, ∅)
defined below. The operation takes O(n) time plus the time to call to UpdateSpace(∅, ∅).

2. UpdateSpace(W add,Dadd) updates the set of contracted elements W to W ∪W add, as well as
the set of discarded elements D to D ∪Dadd for Dadd and W add such that the resulting ring
family is k-consistent. The procedure then adds elements p with (uf♯R)p < 0 to W until the
ring-family is k-consistent and that each coordinate of uf♯R is non-negative. During a call of

UpdateSpace, if the set W changes its value from W begin to W end, the depth and runtime of
that call are O(|W end \W begin|) and O(n|W end \W begin| · EO+n|W end \W begin|) respectively.

3. UpdateArcs({Sp}p∈V ) updates the data structure by adding, for each p, a set of new arcs
Sp The procedure may then add additional arcs, augment W or D. This takes O(k)-depth,
O(m · EO+ nk) time, where m is the number of elements p ∈ V \ (D ∪W ) (after the update)
that acquire new arcs, plus one call of UpdateSpace.

4. Subgrad(π) outputs the subgradient of f ♯R restricted to V \(D∪W ) in O(1)-depth, O(n·EO+n)
time.
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5. Partial(i, π) outputs the ith coordinate of the subgradient of f ♯R in O(1)-depth, O(EO + n)
time.

6. f ♯R(S) outputs the value of f ♯R at set S in constant depth and and O(EO + |S|) time. If
S = p↓ for some p ∈ V \ (W ∪D), the runtime is O(EO+ 1).

7. Sets W,D, {p↓}p∈V \(W∪D), as well as vector uf♯R , are explicitly stored and accessible.

During each of call of Init, UpdateArcs and UpdateSpace, additional elements may be added to to W
and D. However, after the operations the data structure ensures that the ring-family is k-consistent
and that each coordinate of uf♯R is non-negative.

Proof of Theorem 4.3. First, we show that Algorithm 11 indeed preserves the invariants regarding
W,D, uf♯R claimed in the theorem (k-consistency and the non-negativity of uf♯R), and then we
prove the runtime and depth bounds claimed. Note that Line 17 ensures that after any call of
UpdateSpace, we have (uf♯R)p ≥ 0,∀p ∈ V \(D∪W ). This proves that after every call to any function
of the algorithm, the values (uf♯R)p remain non-negative. Next, note that as long as W ⊆ S∗min, the
minimizer of fW is S∗min \W . As argued before, any element p with f(W ∪{p}) < f(W ) belongs to
every minimizer of fW , which implies that if W ⊆ S∗min every time Line 18 is called, the new value
of W will also be a subset of S∗min. By the assumption that W begin,W new ⊆ S∗min, adding every p↓

with p ∈ W new to set W begin yields a subset of S∗min, which means that W ⊆ S∗min is maintained
throughout the call UpdateSpace. We now prove the runtime and depth bounds for the functions
in Algorithm 11.

For Init(V, k), we need O(n) time for the initialization of V , D, k and p↓ (which can all be done
in O(1)-depth in parallel), and one call of UpdateSpace.

For UpdateSpace, we separately bound the time it takes to augment the set W from W begin

to W end and the set D during one function call. First, each time we augment W by at least one
element, it takes O(1) depth and O(n ·EO+n) time to recompute the (uf,R)p, (uf♯R)p values. Since

we make at most |W end \W begin| updates to W , this gives the desired bound. For augmenting D,
we need not recompute any (uf,R)p, (uf♯R)p values, as discarding elements does not affect them.
Moreover, excluding elements that have arcs to elements newly discarded (Line 10) can be done
with no queries to f , by simply traversing the edges of the graph via BFS (using the edge directions
for the former operations and the inverse directions for the latter), which takes O(n) time.

For Subgrad(π), note that π[i]♯R is monotonitically increasing with i, so we can compute them
one by one using a total of O(n) time. We then need to make n queries, one to each f(π[i]♯R). These
operations can be done in O(1) parallel round. The analysis for Partial(i) is similar to Subgrad(π).
For f ♯R(S), it’s easy to see that at most 1 function call to f is needed. Constructing S♯R takes
O(n) time, and so does computing u+f,R(S \ S♯R). When S = p↓, we simply return f(S), meaning
that we only do one query, with no additional computation.

Finally, we prove the lemma statement for Update({Sp}p∈V ), which requires a very careful
analysis. In Line 22 - 23, we need to first compute the transitive closure when the new arcs
corresponding to vertices in each Sp are added. Direct implementation of this step could take
O(n) parallel depth, e.g., when the new arcs form a chain of length O(n) and propagating the
information of the last arc along the chain takes O(n) depth. But clearly, such a large parallel
depth is unnecessary for the correctness of the entire function, since each element p ∈ V \D can
have at most k arcs or else it will be discarded in Line 27.
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Algorithm 11: Data Structure: Extension Maintainer

1 State maintained: // Read-only access

2 Ground set V , discarded elements D ⊆ V , and contracted elements W ⊆ V // Elements in

D not in any k-sparse minimizer, elements in W belong to every minimizer

3 Explicit array of sets p↓ ⊆ V \ (D ∪W ) for each p ∈ V \ (D ∪W ) // Closure of all arcs

4 Sparsity parameter k ∈ Z≥0
5 Explicit arrays of (uf,R)p, (uf♯R)p ∈ R for all p ∈ V \ (D ∪W )

6 Function Init(V, k, f):
7 V ← V , D ← ∅, W ← ∅, k ← k, f ← f, p↓ ← {p} ∀p ∈ V
8 self.UpdateSpace(∅, ∅)
9 Function UpdateSpace(W add,Dadd):

10 for p ∈ Dadd do D ← D ∪ p↑

11 if W add 6= ∅ then
12 W ←W ∪p∈W add p↓

13 for p ∈ V \ (W ∪D) do
14 (uf,R)p ← f(W ∪ p↓)− f(W ∪ p↓ \ p) and

(uf♯R)p ← f(W ∪ {p}♯R) + u+f,R({p} \ {p}♯R)
15 end

16 end

17 while ∃p : (uf♯R)p < 0 do

18 W ←W ∪p:(u
f♯R

)p<0 p
↓

19 for p ∈ V \ (W ∪D) do update (uf,R)p, (uf♯R)p as in Line 14

20 end

21 Function UpdateArcs({Sp}p∈V ):
22 p↓ ← p↓ ∪ Sp for each p ∈ V \ (D ∪W ),W new,Dnew ← ∅
23 Update each p↓ to its transitive closure (possibly adding elements to W new)

// Parallel implementation in Theorem 4.3

24 Update (uf,R)p, (uf♯R)p for every p with new arcs

25 for p ∈ V \D do

26 if |p↓| > k or p↓ ∩D 6= ∅ then
27 Dnew ← Dnew ∪ {p} // p is discarded if it has > k arcs, or an arc to D

28 end

29 end

30 self.UpdateSpace(W new,Dnew)

31 Function Subgrad(π):
32 if D is not at the end of π then return “Error”

33 gi ← (f(π[i]♯R) + u+f,R(π[i] \ π[i]♯R))− (f(π[i− 1]♯R) + u+f,R(π[i− 1] \ π[i− 1]♯R)) for all

i ∈ V \ (D ∪W )

34 return vector g ∈ R
|V \D| // The full sub-gradient, for parallel algorithm

35 Function Partial(i, π):
36 if i ∈ D then return “Error”

37 gi ← (f(π[i]♯R) + u+f,R(π[i] \ π[i]♯R))− (f(π[i− 1]♯R) + u+f,R(π[i− 1] \ π[i− 1]♯R))

38 return gi ∈ R // The ith coordinate of sub-gradient gπ, for sequential algorithm

39 Function f ♯R(S):
40 return f(S♯R) + u+f,R(S \ S♯R)
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Therefore, we can implement Line 22 - 23 in depth k by using a parallel BFS approach where
each p runs the following procedure in parallel for k iterations: p checks every element q ∈ p↓

and update new arcs in each q↓. Note that this will not compute the full transitive closure, but
suffices for the condition in Line 27, and can correctly compute p↓ for all element p that will not
be discarded after the update.

Note that the above strategy can also be implemented in total time O(nk), since we can freeze
(and discard it in Line 27) each element p whenever |p↓| > k. This way each element adds at most
k new arcs, with a total runtime of O(kn) for Line 22 - 23.

Lastly, Line 24 of the function Update({Sp}p∈V ) can be computed using O(1) depth, O(m)
queries to EO, one for each p whose (uf,R)p, (uf♯R)p needs to be updated, and additional O(nk)
time.
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A Optimization Methods

A.1 Stochastic Follow-the-Reglarized-Leader

In this subsection, we discuss the stochastic follow-the-reglarized-leader (stochastic FTRL) algo-
rithm (see Algorithm 12) and its corresponding performance guarantees.

Algorithm 12: Stochastic Follow-the-Regularized-Leader

Data: A convex function f on R
V , a convex domain D ⊆ R

V , the step size η > 0 for the
update, and the number of iterations m

Result: {x0, x1, . . . , xm} ⊆ D, the sequence of iterates generated, which satisfy the
guarantees stated in Lemma A.1

1 Function StochasticFTRL(f,D, η,m):

2 x0 ← argminx∈D r(x) // x0 is the initial point, r(x) is the entropy regularizer

3 for t = 0, 1, . . . ,m do

4 Sample stochastic subgradient ht, with E[ht] = gxt

5 xt+1 = argminx∈D η
∑t

j=0 h
⊤
j x+ r(x) // Recall that r(x) =

∑
i∈V xi log xi

6 end

7 return {x0, x1, . . . , xm}

We prove the following guarantees for Algorithm 12.

Lemma A.1. For any point w ∈ D, where D is as in Algorithm 12. Assume that η ‖ht‖∞ < 1/2
with probability 1 for all t ∈ {0, . . . ,m− 1}. Then, the iterates of Algorithm 12 satisfy

E

[
m−1∑

t=0

〈gxt , xt − w〉
]
≤ supx∈D r(x)− infy∈D r(y)

η
+ η

m−1∑

t=0

E[‖ht‖2xt
]. (13)

Furthermore, define the stochastic process {w(0), w(1), . . . , w(m)} ⊆ R
V as w(0) def

= ~1 and w
(t+1)
i

def
=

w
(t)
i exp(−η(ht)i), for all i ∈ V and t ∈ {0, . . . ,m − 1}. Define stochastic vector p(t) ∈ R

V with

coordinates p
(t)
i

def
=

w
(t)
i

‖w(t)‖
1

. Let v∗ be a number such that with probability 1,

−η〈p(t), gxt〉+ η2Et

[
‖ht‖2p(t)

]
≤ v∗, ∀t ∈ {0, . . . , T − 1},

where the expectation Et is taken over ht conditioned on {h0, . . . , ht−1}. Then with probability at
least 1− ρ, we have

max
i∈V

m−1∑

t=0

−η(ht)i ≤ mv∗ + log
(n2

ρ

)
. (14)

The proof of Lemma A.1 relies on Lemma A.2 and Lemma A.3 which we prove below.

Proof of Lemma A.1. First, we prove (13). For each T ∈ {0, . . . ,m− 1}, define potential function

ΦT (x)
def
= 〈η∑T

t=0 ht, x〉 + r(x) and Φ−1(x)
def
= r(x). We later show that for any outcome of the

randomness of xT and hT , we have

ΦT (xT+1) ≥ ΦT−1(xT ) + ηh⊤T xT − η2 ‖hT ‖2xT
, ∀T ∈ {0, . . . ,m− 1}. (15)
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For now, assume (15) holds. Summing up inequalities (15) for all T ∈ {0, . . . ,m− 1} yields

Φm−1(xm)− Φ0(x1) ≥ η
m−1∑

t=0

h⊤t xt − η2
m−1∑

t=0

‖ht‖2xt
.

Since xm minimizes Φm−1(·), we have Φm−1(w) ≥ Φm−1(xm) and therefore

η

m−1∑

t=0

h⊤t w + r(w)− r(x1) ≥ η

m−1∑

t=0

h⊤t xt − η2
m−1∑

t=0

‖ht‖2xt
.

This in turn implies that

m−1∑

t=0

〈ηht, xt − w〉 ≤ r(w)− r(x1) + η2
m−1∑

t=0

‖ht‖2xt
.

Bounding r(w)− r(x1) ≤ supx∈D r(x)− infy∈D r(y) and taking the expectation17 over the random-
ness of h0, . . . , hm−1, we obtain the inequality in (13):

E

[m−1∑

t=0

〈ηgxt , xt −w〉
]
≤ sup

x∈D
r(x)− inf

y∈D
r(y) + η2

m−1∑

t=0

E[‖ht‖2xt
].

Now, to prove that inequality (15) is true, fix T ∈ {0, . . . ,m− 1}. Note that it suffices to show
that ΦT−1(xT+1)− ΦT−1(xT ) ≥ ηh⊤T (xT − xT+1)− η2 ‖hT ‖2xT

. Observe that

ΦT−1(xT+1)− ΦT−1(xT ) = 〈η
T−1∑

t=0

ht, xT+1 − xT 〉+ r(xT+1)− r(xT )

= 〈η
T−1∑

t=0

ht +∇r(xT ), xT+1 − xT 〉+ VxT
(xT+1),

where we define
∑T−1

t=0 ht
def
= ~0 for T = 0. Since xT minimizes ΦT−1 for any T ∈ {0, . . . ,m− 1}, we

have that 〈η∑T−1
t=0 ht +∇r(xT ), xT+1 − xT 〉 ≥ 0. Hence, we obtain

ΦT−1(xT+1)− ΦT−1(xT ) ≥ VxT
(xT+1).

Using Lemma A.2 with g = −ηhT , we bound

〈ηhT , xT − xT+1〉 − VxT
(xT+1) ≤ ‖ηhT ‖2xT

.

Thus, we have
ΦT−1(xT+1)−ΦT−1(xT ) ≥ ηh⊤T (xT − xT+1)− η2 ‖hT ‖2xT

.

By moving the term ηh⊤T xT+1 to the left side, this implies (15)

ΦT (xT+1) ≥ ΦT−1(xT ) + ηh⊤T xT − η2 ‖hT ‖2xT
,

17More formally, by Tower law, we have E[〈ht, xt − w〉] = E[E[〈ht, xt − w〉|xt]] = E[〈gxt , xt −w〉].
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which completes the proof of the inequality (13).
Next, to prove inequality (14) in the “moreover” part of the lemma, first note that as p(t)

depends on randomness of h1, · · · , ht−1 but not on ht, we have for every t = 0, . . . , T − 1 that

Et

[
−η〈p(t), ht〉+ η2 ‖ht‖2p(t)

]
= −η〈p(t), gxt〉+ η2Et

[
‖ht‖2p(t)

]
≤ v∗.

We can therefore apply Lemma A.3 with g(t) = −ηht to obtain that for any i ∈ V , with probability
at least 1− ρ/n,

m−1∑

t=0

−η(ht)i ≤ mv∗ + log
(n2

ρ

)
.

Then a union bound over all coordinates i ∈ V completes the proof of the lemma.

The following lemma explains the assumption that η ‖ht‖∞ < 1/2 for all t ∈ {0, . . . ,m− 1}.
Lemma A.2. For any vector g ∈ R

n with gi ≤ 1.79 for all i ∈ V and x, u ∈ R
V
>0, then we have

〈g, u − x〉 − Vx(u) ≤ ‖g‖2x.
Proof. Define concave function f(z) for all z ∈ R

n as

f(z) = 〈g, z − x〉 − Vx(z) .

Note that ∇f(z) = g−∇r(z)+∇r(x) = g−log(z/x). Consequently, z∗ def
= x exp(g) ∈ R

n
>0 entrywise

satisfies that ∇f(z∗) = 0. Therefore

sup
z∈Rn

>0

f(z) = f(z∗) =
〈
g, z∗ − x

〉
− Vx(z∗)

=
〈
g, z∗ − x

〉
−
〈
z∗, log(z∗/x)

〉
−
〈
x− z∗,~1

〉

=
〈
z∗ − x,~1

〉
−
〈
g, x
〉
=
∑

i∈V
xi (exp(gi)− 1− gi) ,

where above we used (1) in the second line. Finally, since exp(gi) ≤ 1 + gi + g2i as gi ≤ 1.79, the
result follows.

A.2 Stochastic Multiplicative Weights

In this section, we present the Stochastic Multiplicative Weights algorithm and its analysis, which
helps with the proof of Lemma A.1. First, we start with the algorithm pseudocode.

Now, we provide the guarantee on {w(t)} and {g(t)} that we need.

Lemma A.3. For each step t ∈ {0, . . . ,m−1} of Algorithm 13, define vector p(t) ∈ R
V with entries

p
(t)
i

def
=

w
(t)
i

‖w(t)‖
1

. Let v∗ be a number such that with probability 1,

Et

[
〈p(t), g(t)〉+

∥∥∥g(t)
∥∥∥
2

p(t)

]
≤ v∗, ∀t ∈ {0, . . . ,m− 1},

where the expectation Et is taken over g(t) conditioned on {g(0), . . . , g(t−1)}. Suppose
∥∥g(t)

∥∥
∞ ≤ 1/2

for all t with probability 1. Then for any ρ > 0 and i ∈ V , with probability at least 1− ρ,

m−1∑

t=0

g
(t)
i ≤ mv∗ + log

(n
ρ

)
.
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Algorithm 13: Stochastic Multiplicative Weights

Data: {g(0), . . . , g(m−1)}, the sequence of stochastic vectors used for the update steps, and
the number of iterations m

Result: {w(0), w(1), . . . , w(m)}, the sequence of iterates generated
1 Function StochasticMW({g(1), . . . , g(m)}):
2 w(0) = ~1 ∈ R

V // w(0) is the initial point.

3 for t ∈ {0, 1, . . . ,m− 1} do
4 w

(t+1)
i ← w

(t)
i exp(g

(t)
i ), for all i ∈ V

5 end

6 return {w(0), w(1), . . . , w(m)}

Proof. Since exp(α) ≤ 1 + α+ α2 whenever |α| ≤ 1
2 , for any step t ∈ {0, . . . ,m− 1} and i ∈ V ,

w
(t+1)
i ≤ w

(t)
i (1 + g

(t)
i + (g

(t)
i )2) =

∥∥∥w(t)
∥∥∥
1
(p

(t)
i + p

(t)
i g

(t)
i + p

(t)
i (g

(t)
i )2),

where the equality follows from the definition w
(t)
i = p

(t)
i

∥∥w(t)
∥∥
1
. Now we sum up the above for all

i ∈ V , using that
∑

i∈V p
(t)
i = 1 and w(t+1) ∈ R

V
+, to obtain

∥∥∥w(t+1)
∥∥∥
1
≤
∥∥∥w(t)

∥∥∥
1

(
1 + 〈p(t), g(t)〉+

∥∥∥g(t)
∥∥∥
2

p(t)

)
.

Note that w(t) does not depend on the randomness of g(t). Therefore, taking expectation with
respect to the randomness of g(t), conditioned on g(1), . . . , g(t−1), we obtain

Et

[∥∥∥w(t+1)
∥∥∥
1

]
≤
∥∥∥w(t)

∥∥∥
1
Et

[
1 + 〈p(t), g(t)〉) +

∥∥∥g(t)
∥∥∥
2

p(t)

]
≤
∥∥∥w(t)

∥∥∥
1
exp(v∗),

where in the last inequality, we used Et

[
〈p(t), g(t)〉) +

∥∥g(t)
∥∥2
p(t)

]
≤ v∗ with probability 1, and that

1 + α ≤ exp(α) for any α ∈ R. Further taking the expectation and unravel the above yields

E

[∥∥∥w(m)
∥∥∥
1

]
≤ E

[∥∥∥w(m−1)
∥∥∥
1

]
· exp(v∗) ≤

∥∥∥w(0)
∥∥∥
1
· exp(mv∗) = n exp(mv∗), (16)

where the last equality is because w(0) = ~1. Next, note that for any coordinate i ∈ V , we have

E

[∥∥∥w(m)
∥∥∥
1

]
≥ E

[
w

(m)
i

]
= E

[
w

(0)
i exp

(
m−1∑

t=0

g
(t)
i

)]
= E

[
exp

(
m−1∑

t=0

g
(t)
i

)]
,

where the last equality uses w
(0)
i = 1. It follows from Markov’s inequality and (16) that

exp

(
m−1∑

t=0

g
(t)
i

)
≤ n

ρ
exp(mv∗), with probability ≥ 1− ρ.

Taking the logarithm on both sides completes the proof of the lemma.
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B Proximal Step Over k-simplex

In this subsection, we show how to take a proximal step efficiently. The rest of this section is
devoted to proving Lemma B.1. Throughout this section, we identify V with [n] as the set of
coordinates to ease the comparison between elements in V .

Lemma B.1 (Proximal step). For any vectors x0 ∈ R
V
>0 ∩SV

k , h ∈ R
V , and positive integer k, the

proximal step
z

def
= argmin

x∈SV
k

h⊤x+ Vx0(x)

can be computed in O(1)-depth and O(kn) time. Moreover, for any i, j ∈ V , zi ≥ zj if and only if
either log x0,i − hi > log x0,j − hj or log x0,i − hi ≥ log x0,j − hj and i < j.

Proof of Lemma B.1. The procedure for computing a proximal step in Lemma B.1 is given in
Algorithm 14. From the algorithmic description, the algorithm can be implemented in O(1)-depth
and O(kn) time by implementing the for loop in parallel. The rest of this proof is devoted to the
correctness of Algorithm 14.

Algorithm 14: Proximal step over k-simplex

Data: x0 ∈ R
V
>0 ∩ SV

k , h ∈ R
V , k ∈ Z>0

Result: z = argminx∈SV
k
h⊤x+ Vx0(x), where SV

k = {x ∈ [0, 1]V : ‖x‖1 ≤ k}
1 Function ProximalStep(x0, h, k):
2 yj ← x0,j · e−hj for all j ∈ V
3 Let π : [n]→ V be permutation sorting the coordinates in decreasing order of y,

breaking ties alphabetically
4 for i = 1, . . . , k − 1 do // i is the number of coordinates of z that are 1

5 Set λ∗ ← max{0, log(∑n
j=i+1 yπ(j)/(k − i))}

6 if yπ(i+1)e
−λ∗ ≤ 1 then

7 zπ(j) ← 1 for all j ≤ i

8 zπ(j) ← yπ(j)e
−λ∗ for all j > i

9 return z

10 end

11 end

The following equivalent view of the proximal step is standard

z = argmin
x∈SV

k

h⊤x+ Vx0(x) = argmin
x∈SV

k

h⊤x+ r(x)−∇r(x0)⊤x

= argmin
x∈SV

k

r(x)− (∇r(x0)− h)⊤x
def
= argmin

x∈SV
k

Vy(x),

where y ∈ R
V
>0 in Line 2 is defined to satisfy ∇r(y) = ∇r(x0) − h. This definition is further

equivalent to yi
def
= x0,i · e−hi for all i ∈ V .
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To reason about x∗ = argminx∈SV
k
Vy(x), we use the KKT conditions. Using (1) (with the

parameters x and y swapped), we have

Vy(x) =
∑

i∈V
xi log(xi/yi)−

∑

i∈V
xi +

∑

i∈V
yi.

Note that the last term
∑

i∈V yi is independent of the variables x that we are optimizing over.
Therefore, the point z = argminx∈SV

k
Vy(x) is the solution to the following convex program

min
x

∑

i∈V
xi log(xi/yi)−

∑

i∈V
xi

s.t. xi ∈ [0, 1]V ,
∑

i∈V
xi ≤ k.

Let us ignore the constraint xi ≥ 0 for now (as we shall see, xi > 0 will be satisfied automatically).
We introduce Lagrangian multipliers µi ≥ 0 for each constraint xi ≤ 1 and λ for the constraint∑

i xi ≤ k. Consider the Lagrangian dual

L(x, µ, λ) =
∑

i

xi log(xi/yi)−
∑

i

xi +
∑

i

µi(xi − 1) + λ(
∑

i

xi − k).

Strong duality holds for this program, so KKT condition ∇xL(z, µ
∗, λ∗) = 0 gives

log(zi/yi) + µ∗i + λ∗ = 0,

where µ∗, λ∗ are the optimal Lagrangian multipliers. This implies that

zi = yi · exp(−µ∗i − λ∗) > 0. (17)

Note the other KKT conditions are (1) primal and dual feasibility: zi ≤ 1,
∑

i zi ≤ k, µ∗i , λ
∗ ≥ 0

and (2) complementary slackness: µ∗i (zi − 1) = 0 and λ∗(
∑

i zi − k) = 0.
Now, note that each iteration of the for loop in Line 4 tries one of these i values. Once i is

fixed, we compute the project of the remaining coordinates of y onto {z ≥ 0 :
∑

j>i zj ≤ n− k}. If
the projected point z has any coordinate zj > 1, this means our guess is wrong, and we proceed to
increase i by 1; otherwise, our guess for i is correct (the projected point z ∈ SV

k ) and the point z
is also the correct point after the proximal step. To show correctness of Algorithm 14, it suffices
to show that z∗ = argminx∈SV

k
Vy(x) can indeed be constructed by this procedure. To do this, we

use the following key structural properties of the proximal step z.

Claim B.2. Let z∗ = argminx∈SV
k
Vy(x). For any coordinates j, ℓ ∈ V such that yj > yℓ, we have

zj ≥ zℓ. Moreover, if j < ℓ and yj ≥ yℓ, we have zj ≥ zℓ.

Before presenting the proof of Claim B.2, we first use it to finish the proof of the correctness
of the algorithm. Note that Claim B.2 implies that the set of zj = 1 must correspond to a set
of largest i coordinates of y, where i ≤ k since ‖z‖1 ≤ k. Next, that once we set the values µi

for i ∈ V , the choice of λ for respecting the KKT conditions is unique (if it exists). Hence, our
procedure correctly attempts to increase the µj corresponding to the largest i coordinates first, and
then find a value of λ that satisfies the KKT conditions. Thus, to finish the proof, it suffices to
show that Line 6 in Algorithm 14 is activated at least once, as the vector returned would satisfy
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the KKT conditions, or, equivalently, that trying to setting only the first i values of µπ(j) to be
positive (for some i ≤ k) is enough. To see why this is true, suppose that it is never activated. In
particular, this implies yπ(k) > 1, which in turn implies that

∑
j≥k yπ(j) > 1, which yields

yπ(k)e
log(

∑
j≥k yπ(j)) =

yπ(k)∑
j≥k yπ(j)

< 1,

which yields a contradiction.
Lastly, the second part of the statement clearly follows from the description of our procedure.

�

Proof of Claim B.2. Let j, l be coordinates with yj > yℓ and assume for the purpose of
contradiction that zj < zℓ. Note that this implies, by the complementary slackness, that zj < 1
and thus µ∗j = 0 ≤ µ∗ℓ . Now by (17), we have

zj = yj · exp(−µ∗j − λ∗) > yℓ · exp(−µ∗ℓ − λ∗) = zℓ,

which leads to a contradiction. This proves the claim. �

Update Step for Algorithm 12

In this section, we present the pseudocode and runtime guarantee for one update step for Algo-
rithm 12. Our main result is the following:

Lemma B.3 (Update step for follow-the-regularized-leader). For any vectors h1, h2, . . . , hl ∈ R
V ,

and positive integer k, the proximal step

z = argmin
x∈SV

k

∑

t∈[l]
h⊤t x+ r(x)

can be computed in O(1)-depth and O(kn) time. Moreover, for any i, j ∈ V , zi ≥ zj if and only if
either −∑t∈[l][ht]i > −

∑
t∈[l][ht]j or −∑t∈[l][ht]i ≥ −

∑
t∈[l][ht]j and i < j.

The procedure for computing a proximal step in Lemma B.3 is given in Algorithm 15.

Algorithm 15: Update step over k-simplex Sn
k for FTRL

Data: h1, . . . , hl ∈ R
V , k ∈ Z>0

Result: z = argminx∈SV
k

∑
t∈[l] h

⊤
t x+ r(x), where SV

k = {x ∈ [0, 1]V : ‖x‖1 ≤ k}
1 Function FTRLUpdate({h1, . . . , hl}, k):
2 x0 ← k

n
~1

3 h←∑
t∈[l] ht +∇r(x0)

4 return ProximalStep(x0, h, k)

Proof. Note that Algorithm 15 is an instantiation of Algorithm 14 where h =
∑

t∈[l] ht +∇r(x0),
where x0

def
= k

n
~1 and use Lemma B.1.
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