
Optimum Wordlength Allocation

George A. Constantinides, Peter Y.K. Cheung, Wayne Luk

Department of Electrical and Electronic Engineering, Imperial College, London SW7 2BT.

Department of Computing, Imperial College, London SW7 2BZ.

Abstract

This paper presents an approach to the wordlength

allocation and optimization problem for linear digi-

tal signal processing systems implemented in Field-

Programmable Gate Arrays. The proposed technique

guarantees an optimum set of wordlengths for each

internal variable, allowing the user to trade-o� imple-

mentation area for error at system outputs. Optimal-

ity is guaranteed through modelling as a mixed integer

linear program, constructed through novel techniques

for the linearization of error and area constraints.

Optimum results in this �eld are valuable since they

can be used to assess the e�ectiveness of heuristic

wordlength optimization techniques. It is demon-

strated that one such previously published heuristic

reaches within 0:7% of the optimum area over a range

of benchmark problems.

1 Introduction

This paper addresses the problem of hardware syn-

thesis from an initial, in�nite precision, speci�cation

of a digital signal processing (DSP) algorithm. DSP

algorithm development is usually initially performed

without regard to �nite precision e�ects, whereas for

Field-Programmable Gate Array (FPGA) implemen-

tation, �nite precision e�ects are often of critical im-

portance.

It has been argued elsewhere [1] that often the most

eÆcient FPGA implementation of an algorithm is one

which supports a wide variety of �nite precision rep-

resentations, so that the best representation can be

used for each internal variable. The accuracy observ-

able at the outputs of a DSP system is a function

of the wordlengths used to represent all intermediate

variables in the algorithm. However accuracy is less

sensitive to some variables than to others, as is imple-

mentation area.

The contribution of this paper is to present a tech-

nique for optimum wordlength allocation, for the case

where the DSP algorithm to be synthesized is a lin-

ear, time-invariant (LTI) system [2]. Existing meth-

ods for wordlength allocation are heuristic by nature

and thus it is diÆcult to measure the quality of the

solutions produced by these methods. It is this un-

certainty that has motivated the work set forth in this

paper: to enable accurate characterization of the e�ec-

tiveness of wordlength optimization techniques with

respect to optimum solutions.

The wordlength optimization techniques of inter-

est are those which allow a user-controlled trade-o�

between implementation area and signal quality at

the DSP system outputs, such as those described

by [1, 3, 4, 5].

The Mixed Integer Linear Programming (MILP)

technique described in this paper has been applied to

several small benchmark circuits, and the results com-

pared to the heuristic presented in [1]. Modelling as

a MILP permits the use of industrial-strength MILP

solvers such as BonsaiG [6]. Although MILP solu-

tion time can render the synthesis of large circuits

intractable, optimal results even on small circuits are

valuable as benchmarks with which to compare heuris-

tic optimization procedures. For this purpose the opti-

mal speci�cations have been made available for public

download for anyone interested in comparing new or

existing wordlength optimization techniques.

Although the construction of the MILP is described

in detail in this paper, no complete example MILP is

given for space reasons. Several examples can be found

at:

http://infoeng.ee.ic.ac.uk/�gac1/OptimumWL

This paper has the following structure. Section 2

describes the relevant literature in wordlength opti-

mization, before the computation model and associ-

ated high-level area models are described in Sections 4

and 5. A brief review of the proposed noise model

for LTI systems is then provided in Section 6, before

the construction of the proposed MILP is given in

Section 7. Results from application of the model to

benchmark circuits are given in 8, before concluding

the paper in Section 9.
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2 Background

In [7] it has been demonstrated that a simpli�ed

version of the problem addressed in this paper is

NP-hard. There are, however, several published ap-

proaches to wordlength optimization. Those o�ering

an area / signal quality tradeo� are all of an heuristic

nature [1, 3, 5] or do not support di�erent fractional

precision for di�erent internal variables [4].

Bendetti and Perona [8] have proposed an analytic

method for wordlength optimization based on inter-

val arithmetic. The authors propose a `multi-interval'

approach, and demonstrate that the addition, subtrac-

tion, multiplication and division of the proposed inter-

vals result in similar intervals, which may be propa-

gated through a loop-free data-
ow graph in order to

estimate the wordlength required for a computation

without losing any precision.

The Bitwise Project [9] propose a similar compiler-

based technique based on propagating the ranges of in-

teger variables backwards and forwards through data-


ow graphs. Their focus is on removing unwanted

most-signi�cant bits (MSBs) { no technique is pro-

posed for removing unwanted least-signi�cant bits

(LSBs).

The MATCH Project [4] also use compiler-based

propagation through data-
ow graphs, except they al-

low variables with a fractional component. All signals

in their model must have equal fractional precision

{ the authors propose an analytic worst-case error

model in order to estimate the required number of

fractional bits.

Wadekar and Parker [3] have also proposed a

methodology for wordlength optimization. Like [4],

their technique also allows controlled worst-case error

at system outputs, however they allow each interme-

diate variable to take a wordlength appropriate to the

sensitivity of the output errors to quantization errors

on that particular variable. A Genetic Algorithm is

used to perform the optimization, and Taylor series

are used to evaluate an estimate of the worst-case error

at a system output for any given internal wordlengths.

Cmar et al. [10] have developed a wordlength opti-

mization system which uses a combination of range

propagation and simulation with known input vec-

tors to limit the wordlengths of internal variables. An

heuristic algorithm is applied whereby the wordlength

is decided based on the value of an empirically derived

scaling of the error standard deviation for each signal

under simulation. The idea behind such an approach

is that it sets an upper-bound on the wordlength of

each variable, beyond which the least signi�cant bits

will be drowned in quantization or external noise. No

additional mechanism is proposed to automate the

tradeo� of system area against error.

Kum and Sung [5] have proposed several

wordlength optimization techniques to trade-o� sys-

tem area against system error, some of which have

been incorporated in the Cadence Signal Processing

Worksystem [11]. These techniques are heuristics

based on bit-true simulation of the design under var-

ious internal wordlengths. Some similar simulation-

based work has been reported by Leong et al. [12].

In a previous paper [1] we present an optimization

heuristic based on analytic average-case error analy-

sis of LTI systems. Results of between 6% and 45%

area reduction were achieved by our heuristic com-

pared to the use of the optimum uniform wordlength

design. However until this paper it has been impos-

sible to e�ectively judge the quality of the solutions

achieved due to the lack of an optimum comparative

benchmark.

3 Notation

In this paper, the following notation is used.

For a directed graph G(V;E), pred(e) and succ(e)

indicate the predecessor and successor nodes of an

edge e 2 E. od(v) denotes the out-degree and id(v)

denotes the in-degree of a node v 2 V . For a node

v 2 V with id(v) = 1, in(v) denotes the signal driving

node v. Similarly for a node v 2 V with od(v) = 1,

out(v) denotes the signal driven by node v.

Set subtraction is indicated by the operator n.

For a function f : X ! Y , f(X 0
� X) � Y denotes

the subset fy 2 Y j9x 2 X
0 : f(x) = yg.

4 Computation Model

A computation graph G(V; S) is the formal rep-

resentation of an algorithm. V is a set of graph

nodes, each representing an atomic computation or

input/output port, and S � V � V is a set of di-

rected edges representing the data 
ow. An element

of S is referred to as a signal. The set S must sat-

isfy the constraints on indegree and outdegree given

in Table 1. We partition the set V into subsets

V = VG [ VI [ VO [ VA [ VF [ VD , representing the

set of gain nodes, input nodes, output nodes, adder

nodes, fork nodes and delay nodes respectively.

A graphical representation of a simple computation

graph is shown in Fig. 1. Adders, constant coeÆcient

multipliers and unit sample delays are represented us-

ing di�erent shapes. Edges are represented by arrows



Table 1: Degrees of nodes in a computation graph

type id(v) od(v)

inport 0 1

outport 1 0

add 2 1

delay 1 1

gain 1 1

fork 1 � 2

x[t] y[t]+

(b) an example computation graph

+

z-1

z-1

ADD GAIN DELAY FORK

(a) some nodes in a computation graph

COEF

Figure 1: The graphical representation of a computa-

tion graph

indicating the direction of data 
ow. Fork nodes are

implicit in the branching of arrows. Inport and out-

port nodes are also implicitly represented, and may

be labelled with the input and output names, x[t] and

y[t] respectively in this example.

The algorithms described by computation graphs

will be implemented using a multiple wordlength ar-

chitecture, as introduced in [1]. This scheme will be

brie
y reviewed in order to aid the understanding of

the remainder of this paper.

In FPGAs, it is well known that a �xed-point imple-

mentation is generally more eÆcient than a 
oating-

point implementation for most DSP algorithms with

low dynamic range [13]. Each signal in a multiple

wordlength architecture is allowed to take a distinct

wordlength and scaling, appropriate to the internal

variable represented by the signal. Fig. 2(a) shows the

meaning of these two parameters: nj is the number of

bits in the representation of the signal (excluding the

sign bit), and pj is the displacement of the binary

point from the LSB side of the sign bit towards word

LSB.

p

...S

n

(a)

(a,v) (b,w) (c,x)
+

(d,y)(e,z) z-1

(b)

Figure 2: The Multiple-Wordlength Paradigm: (a)

Signal Parameters: `s' indicates the sign bit (b) A

multiple wordlength architecture,

During the design stage, each wordlength is chosen

individually to minimize logic usage while satisfying

roundo� or truncation error. The contribution of this

paper is to perform this design optimally.

5 Area Models

In order to formulate the error-constrained area

minimization problem, it is necessary to construct

high-level models of the area consumption of each type

of node. Only adders, gains, and delays are consid-

ered to consume area resources on the FPGA; the re-

maining nodes are simply wiring or input/output con-

structs.

Model formulation has proceeded by de�ning a pa-

rameterized high-level area model from knowledge of

the internal architecture of a component. The model

parameters have then been tuned to the Xilinx Virtex

series of FPGAs through the synthesis of many sam-

ple library elements using coregen and least-squares

�tting to the theoretical model. Although the values

of the model parameters presented are speci�c to Xil-

inx Virtex, the models themselves are general and can

easily be re-tuned to alternative FPGA families and

manufacturers or for ASIC implementation.



S

S

(a)

+

S

S

S

S+

na

nb

no

m-1

s

no
q

na

nb s

S

S

(b)

+

S

S

S

S

(d)

+

na

nb

m-1

na

nb

no
q

no

s

s

a:

b:

o:

a:

b:

o:

(c)

S

m-1 no
q

no
S

S

S

m-1 no
q

no

a:

b:

o:

a:

b:

o:

Figure 3: Multiple wordlength adder types

5.1 Adders

Usually adders are implemented in FPGAs as

ripple-carry designs, since fast carry chains are pro-

vided in modern FPGA architectures [14]. Multiple

wordlength implementations of adders can be concep-

tually quite complex due to the alignment required for

signals of di�erent wordlength or with di�erent scal-

ing (binary point location). Fig. 3 illustrates the adder

types found in practice in multiple wordlength imple-

mentations [15]. The inputs of these adders have been

arranged so that binary-point alignment requires left

shifting of input b.

Even when the inputs to the adders have been so

arranged, there are still four distinct cases as illus-

trated in Figs. 3(a){(d). In Figs. 3(a) and (c), input

b's most signi�cant bit (MSB) extends beyond that of

input a, whereas the opposite is true in Figs. 3(b) and

(d). The remaining distinction concerns the output

wordlength. In Figs. 3(a) and (b) the output is drawn

entirely from the overlapping portions of signals a and

b. By contrast the outputs in Figs. 3(c) and (d) draw a

portion of their value from signal a alone { this portion

is implementation cost-free.

The core integer adder used to implement such mul-

tiple wordlength adders will consist of a total of up to

max(na � s; nb) + 2 single-bit adders if all MSBs of

the result are required. However not all these adders

will have equal cost, because those not driving a por-

tion of the output signal, illustrated in Figs. 3(a) and

(b), require carry logic but no sum logic. In Figs. 3(c)

and (d) there are no such cases. Also it is important

to note that not all possible MSBs of the summation

may be required by the output. A total of m bits may

not be required due to signal scaling information [1].

The output is drawn entirely from the overlap be-

tween signals a and b if no +m � max(na � s; b) + 1.

Thus the overall area of an adder can be modelled

as (1).

A =

8>><
>>:

k1(no + 1) + k2[max(na � s; nb)�m� no + 1];

if no +m � max(na � s; b) + 1

k1[max(na � s; nb)�m+ 2];

otherwise

(1)

For a Xilinx Virtex implementation our experi-

ments suggest k1 � 1:0 LUTs and k2 � 0:5 LUTs.

5.2 Gains

Area estimation for constant coeÆcient multipliers

is signi�cantly more problematic. A constant coeÆ-

cient multiplier can be implemented in FPGAs as a se-

ries of additions and subtractions, through a recoding

scheme such as the classic Booth technique [16]. This

implementation style causes the area consumption to

be highly dependent on coeÆcient value. Although

an ideal area model would account for a recoding-

based implementation, this currently remains unim-

plemented. Instead we propose to use a `coeÆcient

blind' area model, which has been demonstrated in

practice to provide good results [1, 15, 17]. The

placed-and-routed area results attainable with the

present implementation also provides an upper bound

for those attainable by a more sophisticated model.

For the remainder of this section, we consider a

gain node with input signal i, output signal o and a

coeÆcient of wordlength cw.

The number of additions required to implement a

constant coeÆcient multiplier is assumed to rise pro-

portionally with the coeÆcient wordlength. Each of

these will be a (no + 1)-bit addition. However, a to-

tal of ni + nc � no additions along the edge of the

multiplier array may not require their sum circuitry,

as with the adder case. Note that this area model

is equally valid with full-adder based array multipli-

ers and standard Wallace or Dadda-tree [18] multiplier

implementations.

A = k3cw(no + 1) + k4(ni + cw� no) (2)

For a Xilinx Virtex implementation, our exper-

iments over a wide range of coeÆcient values and

wordlengths suggest values of k3 � 0:60 LUTs and

k4 � �0:85 LUTs.



5.3 Delays

The area of a unit sample delay with input i, imple-

mented as a register, is simply expressed as (3). For

Xilinx Virtex implementation, our experiments sug-

gest k5 � 1:0 LUTs.

A = k5(ni + 1) (3)

6 Noise Model

As shown in [1], since the systems of interest for this

work have the LTI property, an analytic model based

on [19] can be used to estimate the error at each sys-

tem output. The variance of the error injected by each

truncation of a signal from n1 bits to n2 bits is given

by (4). If the transfer function from this point to the

system output of interest is given in the z-domain as

H(z), then the resulting error variance at the output

is �2L2
2fH(z)g, where L

2
2f�g denotes the well-known

L2-norm, included as (5) for completeness. (Z�1f�g

represents the inverse z-transform).

�

2 = 22p(2�2n2 � 2�2n1) (4)

L2fH(z)g =

 
1
2�

�R
��

jH(ej�)j2d�

! 1
2

=

�
1P
n=0

jZ
�1
fH(z)g[n]j2

� 1
2

(5)

A contribution of this paper is to demonstrate how

to linearize these error models and hence incorporate

them within a MILP model for the entire optimization

problem.

7 MILP Model

The MILP formulation presented relies on some

knowledge of integer linear programming. An excel-

lent tutorial is given by Gar�nkel and Nemhauser [20]

on this topic.

The proposed MILP model contains several vari-

ables, which may be classi�ed as: integer signal

wordlengths, and signal wordlengths before quanti-

zation, binary auxiliary signal wordlengths, and aux-

iliary signal wordlengths before quantization, binary

decision variables, real adder costs, and real fork node

errors.

Note that only adders, gains, and delays cost area

resources (forks are considered free). However adders

have an inherently complex area model and thus while

gains and delays are included directly in the objective

function, the cost of each adder V 2 VA is represented

by a distinct variable Av .

We are now in a position to formulate an area-based

objective function for the MILP model (6), where

cw(v) represents the coeÆcient wordlength of gain

node v.

min:
X
v2VA

Av +
X
v2VG

n
(k3cw(v) + k4)nin(v)�

k4nout(v) + (k3 + k4)cw(v)
	
+
X
v2VD

k5nin(v) (6)

Constraints on quantization error propagation are

much harder to cast in linear form due to the expo-

nentiation, shown in Section 6. In order to overcome

this nonlinearity, we propose to use an additional bi-

nary variables, �n, one for each possible wordlength

that a signal could take. This is expressed in (7),

and (8) ensures that each signal can only have a single

wordlength value. Here n is used to denote set sub-

traction. Note that in order to apply this technique,

it is necessary to know upper-bound wordlengths n̂s
for each s 2 S. Techniques to derive these will be dis-

cussed in Section 7.1. Note that signals which drive

fork nodes are not considered in this way, as fork

node error models are considered separately (see Sec-

tion 7.3).

8s 2 S n pred(VF ); ns �

n̂sX
b=1

b � �ns;b = 0 (7)

8s 2 S n pred(VF );

n̂sX
b=1

�ns;b = 1 (8)

Using these binary variables it is possible to re-

cast expressions of the form 2�2nj , which appear in

error constraints (see Section 6), into linear form

as
Pn̂s

b=1 2
�2b�nj;b. Similarly it is necessary to lin-

earize the exponentials in wordlengths before quan-

tization (9){(10).

8s 2 S n pred(VF ) n succ(VF ); n
q
s �

n̂qsX
b=1

b�n
q
s;b = 0 (9)

8s 2 S n pred(VF ) n succ(VF );

n̂qsX
b=1

�n
q
s;b = 1 (10)



For each system output, we propose to use an er-

ror constraint of the form given in (11). Note that

in this paper we only consider single-output systems,

for simplicity of explanation, however the technique

is general and our software can optimize multiple-

input, multiple-output (MIMO) systems. E represents

a user-de�ned bound on the error power at the system

output, and hence on the signal quality.

X
v2VF

Ev +
X

s2Snpred(VF )nsucc(VF )nsucc(VI)

22ps

L

2
2fHs(z)g(

n̂sX
b=1

2�2b�ns;b �

n̂qsX
b=1

2�2b�n
q
s;b) +

X
s2succ(VI )

22psL2
2fHs(z)g(

n̂sX
b=1

2�2b�ns;b � 2�2n
q
s)

� 12E (11)

Note that those signals driven by system inputs

are considered separately, since there is no need for

Boolean variables representing the pre-quantization

wordlength of a variable, as this parameter is de�ned

by the system environment. Place-holders Ev are used

for the contribution from fork nodes; these will be de-

�ned by separate constraints in Section 7.3.

7.1 Wordlength Bounds

Upper bounds on the wordlength of each signal, be-

fore and after quantization, are required by the MILP

model in order to have a bounded number of binary

variables corresponding to the possible wordlengths of

a signal.

Our bounding procedure proceeds in three stages:

perform an heuristic wordlength optimization on the

computation graph [1]; use the resulting area as an

upper-bound on the area of each gain block within

the system, and hence on the input wordlength of each

gain block; `condition' the graph, following the proce-

dure of [1]. The intuition is that typically the bulk

of the area consumed in a DSP implementation comes

from multipliers. Thus reasonable upper-bounds are

achievable by ensuring that the cost of each single

multiplier cannot be greater than the heuristically

achieved cost for the entire implementation.

Of course this only bounds the wordlength of

signals which drive gain blocks. In addition, the

wordlength of signals driven by primary outputs is

bounded by the externally-de�ned precision of these

outputs. Together this information can be propagated

through the computation graph, resulting in upper

bounds for all signals under the condition that any

closed loop must contain a gain block.

In the remainder of this paper, we denote by n̂j the

so-derived upper bound on the wordlength of signal

j 2 S and by n̂

q
j the upper bound on the wordlength

of the same signal before LSB truncation.

7.2 Adders

It is necessary to express the area model of Sec-

tion 5.1 as a set of constraints in the MILP. Also a

set of constraints describing how the wordlength at

an adder output varies with the input wordlengths is

required.

7.2.1 Area model

In the objective function, the area for each adder

v 2 VA was modelled by a single variable Av. It will

be demonstrated in this section how this area can be

expressed in linear form.

Let us de�ne �v for an adder v 2 VA with input

signals a and b (12), where the inputs `a' and 'b' are

chosen to match with Fig. 3 so that it is b which needs

to be left-shifted for alignment purposes. sv is also

illustrated in Fig. 3, and models the number of bits

by which input b must be shifted.

�v = max(na � sv; nb) (12)

We may then express the area of an adder as (13).

Signal o is the output signal for the adder and mv

models the number of MSBs of the addition which are

known through scaling to contain no information, as

described in [1] and illustrated in Fig. 3. This value is

independent of the wordlengths, and for an adder can

be expressed as mv = max(pa; pb) + 1� po.

Av =

8>><
>>:

k1(no + 1) + k2 [� �mv � no + 1] ;

no +mv � � + 1

k1 [� �mv + 2] ;

otherwise

(13)

The non-linearities due to the max operator in (12)

and the decision in (13) must be linearized for the

MILP model. This is achieved through the introduc-

tion of four binary decision variables Æv1, Æv2, Æv3 and

Æv4 for each adder v 2 VA.

For the remainder of this section, we consider a

general adder with inputs i and j and output o, to

distinguish from the more speci�c case considered

above, where input b was used to denote the left-

shifted input to an adder. In order to model (12),



if pj � pi then (14){(17) are included in the MILP.

Otherwise (18){(21) are included in the MILP.

ni � nj + pj � pi < Æv1(n̂i + pj � pi) (14)

�v � nj + pj � pi � (1� Æv1)(�n̂j � pi + pj) (15)

ni � nj + pj � pi � Æv2(�n̂j + pj � pi) (16)

�v � ni � (1� Æv2)(�n̂i) (17)

nj � ni + pi � pj < Æv1(n̂j � pj + pi) (18)

�v � ni + pi � pj � (1� Æv1)(1� n̂i � pj + pi) (19)

nj � ni + pi � pj � Æv2(�n̂i + pi � pj) (20)

�v � nj � (1� Æv2)(�n̂j) (21)

Note that �v and �v are only bounded from below

by the constraints given. Inequalities are used in order

to allow disjunctions and thus implications, for exam-

ple selecting Æv1 = 0 in (14) gives ni�nj+pj�pi < 0,

whereas selecting Æv1 = 1 gives �v � nj + pj � pi � 0.

Allowing Æv1 as an optimization variable results in

ni � nj � pj + pi ) �v � nj + pj � pi. Equality

of Av is guaranteed through its positive coeÆcient in

the objective function.

In order to model (13), (22){(25) are included in

the MILP. These terms model the choice in (13) as

a pair of implications, in an identical manner to that

described above.

no � �v +mv � 1 � Æv3(mv � �̂v) (22)

Av + (k2 � k1)no � k2�v + k2(mv � 1)� k1 �

(1� Æv3)
h
(k2 � k1)n̂o � k2�̂v + k2(mv � 1)� k1

i
(23)

no � �v +mv � 1 < Æv4(n̂o +mv � 2) (24)

Av + k1(mv � �v � 2) � (1� Æv4)k1(mv � �̂v � 2) (25)

7.2.2 Output Wordlength

The pre-quantization output wordlength of an adder

with inputs i and j and output o is given by n
q
o =

max(ni�pi; nj�pj)+po. We may express this as (26){

(27), since before-quantization wordlengths only ap-

pear with negative coeÆcient in the error so the error

constraints can be relied upon to reduce nqo to achieve

equality.

n

q
o � ni � pi + po (26)

n

q
o � nj � pj + po (27)
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Figure 4: Possible output permutations in a 3-way

fork

7.3 Forks

As demonstrated in [15], fork nodes can lead to

unusual error behaviour due to the di�erent possible

orderings of wordlength at their outputs, which are

required in order to guarantee freedom from statistical

correlation and hence an accurate error model. Fig. 4

illustrates the six di�erent possible con�gurations of a

3-way fork with outputs n1, n2 and n3. For example,

the top left �gure corresponds to n1 � n2 � n3 and the

bottom right to n3 � n2 � n1. Each of the `Q' blocks

is a truncation of least-signi�cant bits in a signal. The

z-domain transfer function from the truncation error

injected, to the system output, is shown underneath

the relevant `Q' block.

In order for the MILP to fully model this behaviour

it is necessary to consider each of the possible or-

derings. Let �v be a w-tuple, representing an order

(a; b; : : : ; f) on a w-way fork node v 2 VF with input

signal i. Thus, for example, �v(2) is the second largest

signal width. We may express the error resulting from

truncation of those signals driven by node v as (28),

with one constraint per possible �, a total of w!. Here

^ represents Boolean conjunction.
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Applying DeMorgan's theorem and linearizing the

resulting disjunction gives (29){(33). Each exponen-

tial is then further linearized through the procedure

described in Section 7. The � and � variables in (29){

(33) are additional binary decision variables and the

right-hand side of each inequality consists of a trivial

bound on the left-hand side, multiplied by a decision

variable. At least one inequality is non-trivial, a prop-

erty ensured by (33).

n�(1) � n�(2) < �v�(1);�(2)n̂�(1) (29)

n�(2) � n�(3) < �v�(2);�(3)n̂�(2) (30)

: : :

n�(w�1) � n�(w) < �v�(w�1);wn̂�(w�1) (31)

Ev � 22pi
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w�1X
r=1

�v�(r);�(r+1) + �v� � w � 1 (33)

It is not necessary to explicitly consider quantiza-

tion of the input signal to a fork node, since the above

constraints use the pre-quantization wordlength of the

fork input n
q
i . It is necessary, however, to guarantee

that the input signal provides enough wordlength for

the largest of its outputs (34).

ni � na

ni � nb

: : : (34)

ni � nf

7.4 Gains

In contrast to adders and fork nodes, gain nodes are

straight-forward. The area of a gain node has already

been modelled in the objective function (Section 7).

The only remaining constraint required is to model the

pre-quantization output wordlength of a gain v 2 VG

with input signal a, output signal o and coeÆcient of

wordlength cw(v) and scaling sc(v) (35). This con-

straint is already in linear form.

n

q
o = na + cw(v)� pa � sc(v) + po (35)

7.5 Delays

Delay nodes also have a simple relationship between

their input wordlength and their output wordlength

before quantization, shown in (36) for the case of a

delay node with input i and output o.

n

q
o = ni (36)

7.6 MILP Summary

A MILP model for the wordlength optimization

problem has been proposed. It remains to quantify the

number of variables (37) and constraints (38) present

in the model. Note that the number of constraints

given does not include integrality constraints, the unit

upper bounds on Boolean variables, or the trivial fork

constraints in (34) which do not form part of the op-

timization problem.

vars =
P

s2Snpred(VF )

(n̂s + 1)+P
s2Snpred(VF )nsucc(VF )

(n̂qs + 1)+

jVF j+

6jVAj+P
v2VF

od(v)(od(v)� 1) f1 + (od(v) � 2)!g

(37)

cons = 2jS n pred(VF )j+

2jS n pred(VF ) n succ(VF )j+

1+

10jVAj+P
v2VF

od(v)(od(v) � 1) f1 + 2(od(v)� 2)!g+

jVGj+ jVD j

(38)
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Figure 5: Area / Error tradeo�s compared for a 2nd

and 3rd order FIR �lter

It can be seen that so long as the number of large-

fanout fork nodes are limited, the number of con-

straints in the MILP model grows approximately lin-

early in the number of nodes and signals. Under the

same conditions the number of variables can grow up

to quadratically with the number of signals because

the upper bounds on each signal wordlength will vary

approximately linearly with the number of large area-

consuming nodes. Both parameters are dominated by

any large-fanout fork nodes, since the number of �

variables and their associated constraints grow combi-

natorially in the fanout.

8 Results

Fig. 5 illustrates area-error tradeo� curves for both

a second and a third order linear phase FIR �lter [2].

For the second order �lter, results for both 4-bit and

8-bit inputs are given. For the third order �lter, only

results for a 4-bit input have been obtained. Three

curves are present in each plot: the optimum uni-

form wordlength implementation, the heuristically de-

rived multiple wordlength implementation from [1],

and the optimum multiple wordlength implementation

achieved by solving the MILP presented in this paper.

The results clearly illustrate the high-quality solu-

tions achievable by the heuristic solution, averaging

only 0:7% with a maximum of 3:9% worse than the

optimum result.
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Figure 6: Optimal wordlength allocations for the ITU

RGB to YCrYb converter

An optimum wordlength allocation for an RGB to

YCrCb convertor described in [1] with 4-bit inputs has

also been performed. This result shows an optimal

cost of 78.61 LUTs, equal to the result achieved by

the heuristic presented in [1].

Fig. 6 illustrates the structure [21] and optimum

wordlengths of the RGB to YCrCb converter for 4-

bit inputs (of range �112), 4-bit coeÆcients, and with

an error-free Y, whereas a bounded error power of up

to 10�2 has been allowed for Cr and Cb. We believe

such optimum results, even for small circuits, to be

highly valuable as a benchmark against which many

new and existing heuristics [1, 3, 4, 5, 8, 9, 10] may

be compared. For this reason we are making several

optimum wordlength benchmarks publicly available at

http://infoeng.ee.ic.ac.uk/�gac1/optimumWL.

The BonsaiG MILP solver [6] was used to solve the

MILP models: execution time ranged from 2 seconds

to 6 minutes on an AMD Athlon 1.2 GHz with 512

MB RAM. This compares to less than 0.2 second for

the heuristic solutions on the same machine. Limits

on the scale of the MILP solvable are due to both

excessive run-time and numerical instabilities in the

MILP solver.

9 Conclusion

This paper presents an approach to construct a

mixed integer linear program (MILP) from an error-

constrained area optimization problem, in order to

perform wordlength allocation. High-level area models

of parameterizable library blocks have been proposed

and �tted to a Xilinx Virtex implementation. These

form the basis of the objective function for the opti-



mization, which is performed subject to user-speci�ed

constraints on output signal quality.

Results indicate that our previously proposed

heuristic solution [1] produces results reaching the op-

timum in most cases and, on average, deviating only

0:7% from the optimum area.

Our current and future work is concentrating

on wordlength optimizations of nonlinear DSP algo-

rithms, and on including other models such as power

consumption into the optimization procedure.
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