
Multi-Source Sensor Fusion for Small Unmanned 

Aircraft Systems Using Fuzzy Logic 
 

Brandon Cook1,2 and Kelly Cohen2

1Aviation Systems Division 

NASA Ames Research Center 

Moffett Field, CA, USA 

brandon.cook@nasa.gov 

 

2Department of Aerospace Engineering and Engineering 

Mechanics 

University of Cincinnati 

Cincinnati, OH, USA

Abstract—As the applications for using small Unmanned 

Aircraft Systems (sUAS) beyond visual line of sight (BVLOS) 

continue to grow in the coming years, it is imperative that 

intelligent sensor fusion techniques be explored. In BVLOS 

scenarios the vehicle position must accurately be tracked over time 

to ensure no two vehicles collide with one another, no vehicle 

crashes into surrounding structures, and to identify off-nominal 

scenarios. In this study, an intelligent systems approach is used to 

estimate the position of sUAS given a variety of sensor platforms, 

including GPS, radar, and onboard detection hardware. Common 

research challenges include multiple sensor platforms and sensor 

reliability. In an effort to resolve these challenges, techniques such 

as a Maximum a Posteriori estimation and Fuzzy Logic based 

sensor confidence determination are used. 

Keywords—Fuzzy Logic; Sensor Fusion; small Unmanned 

Aircraft Systems (sUAS) 

I. INTRODUCTION 

As the popularity of using small Unmanned Aircraft Systems 
(sUAS) for various applications continues to increase in the 
coming years, so will the number of aircraft operating in low 
altitude airspace. With this increase in air traffic density, it is 
imperative to accurately identify and track all vehicles. This 
becomes increasingly evident when operators, both commercial 
and hobbyists alike, begin flying their vehicles beyond visual 
line of sight (BVLOS). In these scenarios, accurate state 
estimation is vital, regardless of whether a human traffic 
manager or an automated system is responsible for keeping 
aircraft separated from one another or from physical structures. 

Due to the fact that several sensor sources can provide 
position estimations for a single aircraft, these data must be 
interpreted and combined into a single position estimate. If all 
data were provided to an air traffic manager or sUAS operator, 
the abundant information could be overwhelming and difficult 
to interpret. Furthermore, it may be difficult for a human 
operator to identify readings that are inaccurate or contradictory, 
which may lead to poor decisions. Although many solutions 
have been presented to take the data from multiple sources and 
fuse the values into a single estimation, these solutions are 
typically constrained to specific systems and are not adaptive 
based on the accuracy and number of sensors being used [1, 2]. 

In this study, a novel adaptive sensor fusion technique that 
can be used in real-time operations is proposed. In particular, 

three sensor types are used to identify where several sUAS are 
located: GPS, radar, and an onboard detection suite. For the 
onboard and radar sources, a preliminary Maximum a Posteriori 
(MAP) estimator is used to combine the various readings from 
similar sensor types to a single estimation. After a single reading 
from each sensor type is found, a Fuzzy Logic based system is 
used to determine the confidence in each reading to create a 
weighted average position estimate. 

II. PROBLEM DESCRIPTION 

Given position data for several sUAS, obtained from several 
GPS, radar, and onboard detection sensors, one must be able to 
provide an accurate estimate of where the vehicle is located 
using sensor fusion. The amount, and accuracy, of information 
available to the sensor fusion platform is determined by each 
sensors’ specifications. In this study, the source of each data 
point is known, as well as, to which vehicle the data belongs. In 
the following sections, a description of each sensor and its 
performance is shown. 

A. Sensor Platforms 

In this study, three sensor platforms, or types, were used to 
provide raw position data of vehicles in three-dimensional 
space: GPS, radar, and onboard sensors. Each of these sensor 
platforms vary in performance and reliability. Thus, a vehicle 
may be identified by one or more sensor types. Whereas the GPS 
platform produces only one position estimate for each vehicle, 
for both the radar and onboard sensor platforms more than one 
source may be within range to sense the vehicle. For example, if 
multiple vehicles are within close proximity, their onboard 
detection sensors will each measure the position of one another. 

To model the various sensors for simulation, functions were 
created to provide noisy position estimates of a vehicle given its 
true position. To accomplish this, the perceived location of each 
vehicle was found using each sensors’ respective performance 
(i.e. standard deviation in error). By using the standard deviation 
in error for each sensor platform and the built-in randn function 
in MATLAB, a normally distributed pseudorandom number 
generator, a noisy output could be found. 

Because the GPS system estimates the position of the vehicle 
in three-dimensional space, the standard deviations in error for 
the lateral and vertical planes were used to generate perceived 
vehicle position estimates in Cartesian space. For both the 
ground based radar and the onboard sensor packages, the vehicle 



position is estimated by converting the range, azimuth, and 
elevation measurements to Cartesian space. The standard 
deviation in error for each sensor package is shown in Table I. 
In addition, the maximum sensing range for the radars and 
onboard sensors are shown. 

The error values for the radar and GPS platforms were found 
in [3] and [4], respectively. Because this study focuses on sUAS 
applications, the radar maximum sensing range was limited to 
2000 m. However, since the radar source is designed to detect 
larger objects at a greater distance, the probability of detection 
of an sUAS at this range would be low. By increasing the 
sensing range the error associated with all measurements also 
increases. Therefore, this large detection range allowed the 
sensor fusion system to be tested under high uncertainty 
conditions. The onboard detection sensor standard deviation 
values were not selected from any particular sensor package. 
These onboard sensor values were selected such that they 
provide an optimistic estimation of a nearby vehicle. Thus, the 
solution presented in this study needs to be tuned to the sensor 
packages available. 

TABLE I.  SENSOR SPECIFICATIONS 

Type Parameter Std. Dev. Sensor Range 

Radar 

Range (R) 4.37 m 2000 m 

Azimuth (𝜃) 0.002 rad N/A 

Elevation (𝜀) 0.002 rad 0.5236 rad 

Onboard 

Range (R) 1.00 m 200 m 

Azimuth (𝜃) 0.175 rad N/A 

Elevation (𝜀) .0175 rad N/A 

GPS 
Lateral (𝑟) 3.10 m N/A 

Altitude (z) 3.90 m N/A 

With these standard deviations in error, the measured 
location of each vehicle can be found using the following 
equations. For the GPS, the measurement values were found 
using (1) through (5). 

 𝛼 = 2𝜋 𝑟𝑎𝑛𝑑 

 𝑟 =  𝜎𝑟𝑟𝑎𝑛𝑑𝑛 

Where 𝑟𝑎𝑛𝑑 is the built-in MATLAB function to find a random 
number between zero and one, 𝜎𝑟 is the standard deviation in the 
lateral plane, 𝑟𝑎𝑛𝑑𝑛 is the random standard deviation function, 
and 𝛼 and 𝑟 are the noisy returned measurements of the angle 
and range, respectively. 

The noisy measurement in the lateral plane, found using (1) 
and (2), can be converted to Cartesian space (𝑥𝑚, 𝑦𝑚, 𝑧𝑚) using 
(3), (4), and (5). Here, 𝑥, 𝑦, and 𝑧 represent the true location of 
the vehicle in Cartesian space, 𝜎𝑧 is the standard deviation in 
altitude, and 𝑟𝑎𝑛𝑑𝑛 is the random standard deviation function.  

 𝑥𝑚 = 𝑥 + 𝑟 cos 𝛼 (3) 

 𝑦𝑚 = 𝑦 + 𝑟 sin 𝛼 (4) 

 𝑧𝑚 = 𝑧 + 𝜎𝑧𝑟𝑎𝑛𝑑𝑛 (5) 

 Similarly, the measurements for both the radar and onboard 
detection sensor types can be found using (6) through (11). Here, 
𝑅 , 𝜃 , and 𝜀  are the true range, azimuth angle, and elevation 
angle, respectively, used to describe the vehicle location with 
respect to the sensor source, 𝜎𝑅 , 𝜎𝜃 , and 𝜎𝜀  are the standard 

deviations in range, azimuth, and elevation, respectively, and 
𝑅𝑚, 𝜃𝑚, and 𝜀𝑚 are the noisy measured range and angles with 
respect to the sensor location. 

 𝑅𝑚 = 𝑅 + 𝜎𝑅𝑟𝑎𝑛𝑑𝑛 (6) 

 𝜃𝑚 = 𝜃 + 𝜎𝜃𝑟𝑎𝑛𝑑𝑛 (7) 

 𝜀𝑚 = 𝜀 + 𝜎𝜀𝑟𝑎𝑛𝑑𝑛 (8) 

To convert the measured values (𝑅𝑚, 𝜃𝑚, and 𝜀𝑚) from their 
respective spherical reference frame to the global Cartesian 
frame, (9) through (11) are used. Here, 𝑥𝑠, 𝑦𝑠, and 𝑧𝑠 represent 
the position of the sensor source in Cartesian space and 𝑥𝑚, 𝑦𝑚, 
and 𝑧𝑚  represent the measured position of the vehicle in 
Cartesian space.

 𝑥𝑚 = 𝑥𝑠 + 𝑅𝑚 cos 𝜀𝑚 cos 𝜃𝑚 

 𝑦𝑚 = 𝑦𝑠 + 𝑅𝑚 cos 𝜀𝑚 sin 𝜃𝑚 

 𝑧𝑚 =  𝑧𝑠 + 𝑅𝑚 sin 𝜀𝑚 

B. Simulation Environment 

To test the effectiveness of the Fuzzy Logic based sensor 
fusion system, a simulation environment was used to compare 
the raw sensor measurements to the fused position estimates. In 
this study, one or more vehicles were randomly placed within a 
2 km by 2 km area. On each corner of the area boundary, a radar 
source was placed, each with a maximum sensing radius of 2 
km. After the vehicle location(s) were set, each sensor package 
would run independently to measure the location of each 
vehicle. If a vehicle was located outside of a particular sensor’s 
range, it would not be recognized by that sensor. Thus, some 
vehicles may be identified by all three sensor sources and others 
by a combination of radar and only one other source. Due to the 
locations and ranges of each radar, each vehicle is always 
identified by at least two radar sources. 

A depiction of the simulation space is shown in Fig. 1. The 
various arcs depict the sensor ranges of the radar sources. All 
simulations conducted constrain the vehicles to be within the 
areas shaded in yellow due to symmetry. In this figure, the 
numbers two through four represent the number of radars that 
can reach that particular region. 

 
Fig. 1. Simulation Area 

For this study, 135 cases, each varying in vehicle position 
and sensor availability, were tested. For each combination of 
available sensor platforms, a total of 45 cases were tested. For 
each set of 45 cases, 15 belonged to each designated region 



shown in Fig. 1. A breakdown of the cases can be seen in Table 
II. 

In practice, not all sUAS will be self-reporting its GPS 
information to a ground based station, or broadcasting its 
location via a transponder to all surrounding vehicles. Thus, 
some vehicles that are placed within the airspace will not be 
identified via GPS. For scenarios involving only radar and GPS, 
all cases involved only one sUAS. For these scenarios, 15 total 
cases were evaluated in each radar configuration (two, three, and 
four radars). These 15 cases were a result of testing five different 
vehicle locations, each tested at three different altitudes. For 
scenarios involving only radar and onboard sensors, the 
available radars again varied, however, for each radar 
configuration there were between two and four vehicles (whose 
onboard sensors could sense one another), yielding three 
different scenarios per radar configuration (nine in total). These 
nine scenarios were each evaluated for five different vehicle 
location sets. Lastly, for the scenarios involving all thee sensor 
types, the same cases as previously described for the onboard 
and radar case were used, with GPS enabled. 

TABLE II.  SIMULATION CASES  

# Radars # UAS # Cases GPS On? 

2 

1 15 Yes 

2 5 Yes/No 

3 5 Yes/No 

4 5 Yes/No 

3 

1 15 Yes 

2 5 Yes/No 

3 5 Yes/No 

4 5 Yes/No 

4 

1 15 Yes 

2 5 Yes/No 

3 5 Yes/No 

4 5 Yes/No 

For each of the cases shown in Table II, 1,000 independent 
measurements from each sensor source were obtained, each with 
randomized noise. The error between the true vehicle location 
and the measured vehicle location was recorded. These raw 
measurements were then passed through the sensor fusion 
package and the results of the final position estimations were 
compared against the raw measurement values. 

III. PROPOSED SOLUTION 

To accurately estimate the state of an sUAS given 
measurements from several sensor sources, a sensor fusion 
package based on fuzzy logic was developed. This sensor 
fusion package considers the number of sensor types and 
determines how much confidence one should place in each 
measurement. If, for example, a GPS measurement is obtained, 
and is known to have low uncertainty, whereas, a radar 
measurement is expected to have high uncertainty, one would 
place more confidence in the GPS measurement accuracy. 
Therefore, the level of confidence for each measurement is 
taken into consideration to output a single position estimation. 
In practice, each sensor’s accuracy should be found through 
sensor testing/calibration and/or obtained from manufacturer 
hardware specifications. 

Prior to using the fuzzy solution to calculate measurement 
confidence, two additional steps are taken. The first is to reduce 

the number of measurements being examined by the fuzzy 
system. To do this, the algorithm first takes all the radar and 
onboard data, separately for each sensor type, and combines the 
measurements into a single estimate for each. Thus, if for 
example all four radar sources identify an sUAS, the four 
measurements are combined into a single value. To do this, a 
Maximum a Posteriori (MAP) estimator was used. 

Once the measurements for each vehicle were reduced to a 
single value for each sensor type, the types of sources available 
for each vehicle were identified. Since a radar measurement 
was guaranteed for all vehicles in all scenarios, there were three 
possible sensor type combinations: GPS and radar, onboard and 
radar, and all three types. In this study, for each measurement 
recorded, the sensor type and sensor performance is known. In 
addition, after all measurements are recorded they are 
processed simultaneously. Therefore, if sensors sample data at 
different rates, measurements would be stored until the fusion 
system can process all data simultaneously (i.e. fuse the data at 
slowest available sensor’s sample rate). 

A. Maximum a Posteriori Estimator 

If multiple measurements for the same vehicle were obtained 
from a similar source (e.g. multiple radars or multiple onboard 
sensors) a Maximum a Posteriori (MAP) estimator was used to 
combine the multiple measurements into a single position 
estimate for that sensor type. To accomplish this, the posterior 
probability distributions of the measurements, as given by the 
normal distribution parameters in Table I, were maximized to 
yield the best overall estimation as perceived by that sensor type. 

Because the standard deviations for each measurement are 
measured in the local spherical frame, to calculate the MAP 
estimate one must first convert each individual measurement to 
the global spherical frame, as shown in (12) through (15). 

 Θ𝑖 = tan−1 (
𝑦𝑖

𝑥𝑖
)  (12) 

 Ε𝑖 = tan−1 (
𝑧𝑖

𝑟𝑖
)  (13) 

 𝑟𝑖 =  
𝑦𝑖

sin 𝜃𝑖
 (14) 

Where Θ𝑖 , and Ε𝑖  are the measurements for the 𝑖𝑡ℎ  radar (or 
onboard sensor) source in the spherical global frame, 𝑥𝑖, 𝑦𝑖, and 
𝑧𝑖 are the raw measurements in the Cartesian global frame ((9) 
through (11)), and 𝑟𝑖  is the two-dimensional range of the 
measured value on the x-y plane, found using (14). Then using 
(15), the range in the spherical global frame, 𝑅𝑖, can be found. 

 𝑅𝑖 =
𝑧𝑖

sin Ε𝑖
  (15) 

Using the above global representation for each 
measurement, the MAP estimate for 𝑛  radars (or 𝑛  onboard 
sensors) can be found using (16). Here, 𝑄𝑀𝐴𝑃  represents the 
MAP estimation found using the measurements of interest (𝑄𝑖) 
and their respective standard deviations (𝜎𝑞). So, this equation 

can be used to calculate the MAP estimate of the range (𝑅𝑀𝐴𝑃), 
azimuth (Θ𝑀𝐴𝑃), and elevation (Ε𝑀𝐴𝑃) in the global frame by 
using the respective individual measurements and standard 
deviations for range (𝑅𝑖 , 𝜎𝑅 ), azimuth (𝜃𝑖 , 𝜎𝜃), and elevation 
measurements (Ε𝑖 , 𝜎𝜀). 



 𝑄𝑀𝐴𝑃 = ∑ (
∏ (𝜎𝑞𝑗

2)𝑛
𝑗=1

∑ [∏ (𝜎𝑞𝑟
2)𝑛

𝑟=1 ]𝑛
𝑝=1

𝑄𝑖)
𝑛
𝑖=1 , 𝑗 ≠ 𝑖 and 𝑟 ≠ 𝑝 (16) 

Once calculated, the measurement can be converted to the 
Cartesian frame using (17) through (19), where 𝑥𝑀𝐴𝑃, 𝑦𝑀𝐴𝑃, and 
𝑧𝑀𝐴𝑃 are the final 𝑥, 𝑦, and 𝑧 MAP values, respectively. 

 𝑥𝑀𝐴𝑃 = 𝑅𝑀𝐴𝑃 cos Ε𝑀𝐴𝑃 cos Θ𝑀𝐴𝑃 (17) 

 𝑦𝑀𝐴𝑃 = 𝑅𝑀𝐴𝑃 cos Ε𝑀𝐴𝑃 sin Θ𝑀𝐴𝑃 (18) 

 𝑧𝑀𝐴𝑃 = 𝑅𝑀𝐴𝑃 sin Ε𝑀𝐴𝑃 (19) 

Although the above MAP estimation helps decrease the 
measurement uncertainty for each sensor type, the following 
fuzzy fusion technique can be achieved without finding the 
MAP estimate. If not found, the sensor confidence levels shown 
in (20) would need to be modified. In particular, the confidence 
values for each sensor type would need to be divided by the 
number of raw measurements obtained from that particular 
sensor type. Doing so will satisfy the constraints in (20). 

B. Fuzzy Sensor Fusion 

Once the measurements from each source have been reduced 
(if necessary) to only one estimate per sensor type, the fuzzy 
sensor fusion package is employed. This fuzzy approach is used 
to determine how much confidence one should place in each 
sensor type’s estimate. 

Due to each sensor having variation in its performance for 
both the lateral (x-y plane) and vertical (z) directions, the sensor 
confidence was calculated separately for each. Thus, if for 
example two sensor types are available and one is relatively 
more accurate in its altitude estimation, but the other is more 
accurate in its lateral position estimation, one could vary the 
confidence on each estimation accordingly. 

Overall, the confidence values for each sensor type are used 
to create a weighted average of the measurements. Therefore, 
the final estimation of the vehicle position given 𝑛 sensor types 
can be described by (20). 

 𝑋⃗𝑓 = (∑ 𝑥𝑖𝑐𝑙𝑖
𝑛
𝑖=1 )𝑖̂ + (∑ 𝑦𝑖𝑐𝑙𝑖

𝑛
𝑖=1 )𝑗̂ + (∑ 𝑧𝑖𝑐𝑣𝑖

𝑛
𝑖=1 )𝑘̂ 

 where ∑ 𝑐𝑙𝑖
𝑛
𝑖=1 = 1 and ∑ 𝑐𝑣𝑖

𝑛
𝑖=1 = 1 (20) 

Where 𝑋⃗𝑓  is the final fused position estimation in three-

dimensional Cartesian space, 𝑥𝑖, 𝑦𝑖, and 𝑧𝑖, are measurements 

from the 𝑖𝑡ℎ  sensor type, and 𝑐𝑙𝑖
 and 𝑐𝑣𝑖

 are the lateral and 

vertical confidence, respectively, for the 𝑖𝑡ℎ sensor type. 

In this study, three separate fuzzy systems were developed 
to help simplify the construction of the sensor fusion system. 
Overall, each fuzzy system is constructed in a similar manner 
and is governed by the same fuzzy architecture, where each 
differs is in the inputs, outputs, and rule bases. Each of the fuzzy 
systems are of Mamdani-type and have the following 
architecture: triangular membership functions, fuzzy 
partitioning, normalized inputs and outputs, minimum “and” 
method, minimum implication method, sum aggregation, and 
centroid defuzzification. For the scope of this paper, the fuzzy 
partitioning is such that the membership functions are structured 
where the end points of one membership function coincide with 
the center points of the neighboring membership functions. Due 
to this fuzzy partitioning, and the fact that each Fuzzy Inference 
System (FIS) input and output contains three membership 
functions, for all possible inputs exactly two rules will be 
activated. Thus, the third rule yields an output of zero 
membership. This can be verified by referencing Fig. 2. 

Each FIS consists of a single input with four outputs. 
Depending on the FIS being used, the input to the system is 
based on the normalized distance a sensor is from the sUAS. If, 
for example, one or more onboard sensors detect a single sUAS, 
the average range the detected vehicle is away from each sensor 
is used. However, if no vehicles are close enough to a particular 
sUAS to sense it with their onboard sensors, the input will 
instead be based on the distance from the radar sources. Here, 
instead of using the average distance, the input will be the range 
to the closest radar source. 

The four outputs of each FIS are dependent on the sensor 
platforms available. If only two sensor types are available, the 
FIS outputs would be the confidences in the lateral and vertical 
estimations for each sensor type. Given this common 
architecture, examples of input and output membership 
functions are shown in Fig. 2. In the left inset, the input 
(normalized distance) is described by three membership 
functions: Close, Medium, and Far. Regardless of the source 
used to describe the distance, the input domain will always lie 
between zero and one. 

Similar to the input, each output (sensor confidence) is also 
described by three membership functions: Low, Medium, and 
High. These two outputs represent the confidence level placed 
on two sensor types along the same direction (either lateral or 
vertical). Since the sum of the confidence values for each 
direction must be equal to one, as seen in (20), the domain for 
each output must satisfy the constraint described by (21). 

 
Fig. 2 Example of Fuzzy Inference System Structure 



 1 = {
min(𝒟1) + max(𝒟2)

max(𝒟1) + min(𝒟2)
 (21) 

Where 𝒟1  and 𝒟2  are the domains for outputs one and two, 
respectively. Therefore, in this example, the first input domain 
lies between 0.55 and 0.85, and the second output has a domain 
between 0.15 and 0.45. Thus, 0.55 + 0.45 = 1  and 0.85 +
0.15 = 1 , satisfying (21). This property will hold for all 
domains that satisfy this constraint due to the structure of each 
FIS and the input output relationships described by the rule 
bases, shown in Tables IV and VI. 

Since a centroid defuzzification technique is used, and two 
rules are always active for all input values, the FIS output can 
never reach the bounds of the output domain. Thus, the actual 
minimum and maximum outputs of the FIS are limited by the 
relationship shown in (22). Here, 𝑎𝑖 and 𝑐𝑖 are the minimum and 

maximum values of the 𝑖𝑡ℎ output domain (𝒟𝑖), respectively. 

 Out ∈ 𝒟𝑖 : 
𝑎𝑖+𝑐𝑖

6
≤ Out ≤

𝑎𝑖+5𝑐𝑖

6
 (22) 

The rule bases of each respective FIS are shown in Tables 
III, V, and VII. In addition, the domains of each output for each 
respective FIS are shown in Tables IV, VI, and VIII. Here, the 
minimum and maximum values for each output are also shown. 
In Tables III through VIII, the following shorthand is used: 

• Normalized distance: [Dist] 

• GPS confidence in lateral and vertical measurements, 
respectively: [G(xy)] and [G(z)] 

• Onboard sensor confidence in lateral and vertical 
measurements, respectively: [O(xy)] and [O(z)] 

• Radar confidence in lateral and vertical measurements, 
respectively: [R(xy)] and [R(z)] 

• Domain and Output bounds, respectively: [𝒟] and [Out] 
• Inputs: Close [C], Medium [M], and Far [F] 

• Outputs: Low [L], Medium [M], and High [H] 

a) GPS and Radar 

If an sUAS is equipped with an onboard GPS system, and is 
also detected by two or more ground based radars, the FIS rules 
shown in Table III are used. Here, the input to the system would 
be the minimum normalized distance the vehicle is sensed from 
all radar sources. To normalize the distance input, the true range 
is divided by 1464.2 m. This is 50 m greater than the distance 
from the center of the simulation area to any of the four radars. 

TABLE III.  GPS AND RADAR FIS RULES 
 

Input Outputs 

Rule # Dist G(xy) R(xy) G(z) R(z) 

1 C L H L H 

2 M M M M M 

3 F H L H L 

TABLE IV.  GPS AND RADAR FIS OUTPUT DOMAINS 

 G(xy) R(xy) G(z) R(z) 

𝓓 [0.55, 0.85] [0.15, 0.45] [0.2, 0.5] [0.5, 0.8] 

𝐎𝐮𝐭 [0.6, 0.8] [0.2, 0.4] [0.25, 0.45] [0.55, 0.75] 

b) Onboard and Radar 

If an sUAS does not have an onboard GPS system, but is 
recognized by both a ground based radar and at least one other 
vehicle, the following FIS is used. The input to the system is the 

normalized average range the vehicle is from all other sUAS that 
sense that particular vehicle. This distance is normalized by 
taking the true average value and dividing it by 150 m. This 
normalization value was selected after testing and tuning the 
fusion system. This value is near the range where the onboard 
sensor errors become exceptionally large (i.e. less accurate). 

TABLE V.  ONBOARD AND RADAR FIS RULES 

 Input Outputs 

Rule # Dist O(xy) R(xy) O(z) R(z) 

1 C H L H L 

2 M M M M M 

3 F L H L H 

TABLE VI.  ONBOARD AND RADAR FIS OUTPUT DOMAINS 

 O(xy) R(xy) O(z) R(z) 

𝓓 [0.325, 0.775] [0.225, 0.675] [0.2, 0.425] [0.575, 0.8] 

𝐎𝐮𝐭 [0.4, 0.7] [0.3, 0.6] [0.25, 0.4] [0.6, 0.75] 

c) GPS, Onboard, and Radar 

If an sUAS has GPS onboard, is detected by surrounding 
vehicles, and identified by the ground based radars, then this FIS 
will be employed. Here, the input to the FIS is again the 
normalized average range separating the vehicles, as sensed by 
the onboard sensors. This average range was normalized by 
taking the true average value and dividing it by 180 m (also 
determined after testing/tuning). 

Unlike the previously described FISs, a total of six 
confidence values need to be assigned. To accomplish this, it 
was decided that two of the six values, one for each direction 
(lateral and vertical) would be held constant, regardless of the 
input value. Thus, the FIS still only needs to compute four 
confidence values. For this study, G(xy) and R(z) were held 
constant at 0.5. These were selected due to the low uncertainty 
associated with the GPS estimation in the lateral plane, and the 
relatively low uncertainty with radar measurements in the 
vertical plane. 

Recalling (20), we need to ensure that the sum of all three 
confidences must be equal to one, for both the lateral and vertical 
directions. Thus, the domain of each output must consider how 
much confidence has already been placed in the sensor that is 
held constant. For this fuzzy system, the domain of the outputs 
must satisfy (23). Here, 𝒟1 and 𝒟2 are the domains for outputs 
one and two (for the same direction), respectively, and 𝑐 is the 
constant confidence level as defined by the designer. 

 1 = {
min(𝒟1) + max(𝒟2) + 𝑐

max(𝒟1) + min(𝒟2) + 𝑐
 (23) 

TABLE VII.  GPS, ONBOARD, AND RADAR FIS RULES 

 Input Outputs 

Rule # Dist O(xy) R(xy) O(z) G(z) 

1 C H L H L 

2 M M M M M 

3 F L H L H 

TABLE VIII.  GPS, ONBOARD, AND RADAR FIS OUTPUT DOMAINS 

 O(xy), R(xy) O(z) G(z) 

𝓓 [0.175, 0.325] [0.125, 0.275] [0.225, 0.375] 

𝐎𝐮𝐭 [0.2, 0.3] [0.15, 0.25] [0.25, 0.35] 



IV. RESULTS 

In each of the 135 configuration cases shown in Table II, 
1,000 independent measurements were evaluated. For each case, 
the error for each independent measurement was recorded. To 
visualize the error distributions, each sensor type’s estimate and 
the final fused estimate was plotted on a histogram. In Fig. 3, an 
example histogram is shown. This histogram shows the results 
of a sample trial where all four radar sources are available and 
three sUAS can sense the vehicle with onboard sensors. Here, 
the measurement error was broken down into the lateral error, 
vertical error, and the total error. As seen from this figure, the 
fuzzy fusion estimation more accurately modeled the true 
vehicle location than all other sources. In all cases, the fused 
mean error is lesser than all other estimations, and has a lesser 
standard deviation. Although not explicitly shown, in all cases 
the MAP estimations displayed were more accurate than the 
individual raw measurement values. 

To evaluate the performance of the proposed fusion 
technique, the mean and standard deviation of the error for each 
configuration was computed and compared against the sensor 
MAP values. The results of all 135 cases have been described in 
Fig. 4. Here, the mean and standard deviation of the error for 
each sensor type combination is shown. Whereas the left inset 
in Fig. 4 segregates the data by the number of radars, the middle 
and right insets combine the results for all numbers of radars and 
instead segregates the data by number of sUAS. As it can be seen 
from these graphs, the fused value had a lower mean and 
standard deviation than any single sensor MAP estimation in all 
cases. In addition, as the number of sUAS increased, the mean 
and standard deviation of the error decreased. This means that 
as the number of vehicles sensing one particular vehicle 
increased, so did the accuracy of the position estimation. Lastly, 
using all three sensor types resulted in the best fused estimation. 

V. CONCLUSION 

In this study, we have demonstrated a novel approach to 
estimate the location of an sUAS using a Fuzzy Logic based 
sensor fusion technique. The presented fusion system produced 
position estimates that had lower mean error and standard 
deviation when compared to using a Maximum a Posterior 
estimator for each sensor platform. Overall, this approach could 
be applied to any number of sensor sources with varying 
reliability and performance, and be used in real-time operations. 

At this time, the fuzzy system parameters were developed by 
hand with no additional tuning. To improve its performance, we 
wish to develop a Genetic Algorithm to train each FIS. In 
addition, we would like to incorporate this system into a vehicle 
tracker. Therefore, as vehicles move in space throughout time, 
the tracker would need to identify the vehicles and use data 
association to assign new data to tracks. Adding this time 
component would allow this fuzzy solution to be used for state-
estimation of the speed and heading of all sUAS. Lastly, we are 
interested in using a quaternion approach to estimate vehicle 
locations. This approach may have a beneficial reduction in the 
computational complexity of the proposed system. 
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Fig 3. Histograms of Measurement Error 

Fig 4. Mean and Standard Deviations for all Sensor Types 


