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Abstract—For heterogeneous dynamic short-range molecular
dynamics simulations it is critical to employ suitable load-
balancing methods to minimize the time to solution. How-
ever, designing, selecting and parametrizing the optimal load-
balancing method is a complex task which depends on detailed
properties of the simulation scenario. The main challenge in
balancing the load of molecular dynamics simulations is the
extreme difference in load for scenarios with a heterogeneous
particle density, which can easily reach 4-6 orders of mag-
nitude. Therefore, heterogeneity is deemed to be a relevant
property.
In this paper, we formulate a suitable metric to reliably
quantify heterogeneity. We apply this metric, which is based
on the binning of particles and the evaluation of statistical
moments, to example scenarios, and we correlate the results to
the performance of five load balancing methods. Furthermore,
we identify the load dynamics as a second relevant property.
It quantifies how rapidly the load varies over time, and
we introduce corresponding metrics. We show that the load
dynamics can be used to determine how long the benefits of a
specific partitioning are expected to last.
The results indicate that these metrics are useful to differentiate
between scenarios, and that they facilitate reasoning over the
complex relationship between particle simulation scenarios and
optimal load balancing methods. This work is a first step
towards understanding this relationship, and it introduces key
concepts that we regard as crucial in this process.

Keywords-short-range molecular dynamics, parallelization,
spatial decomposition, distributed memory, linked-cell, load-
balancing, heterogeneity, load dynamics

I. INTRODUCTION

Molecular dynamics (MD) [1]–[3] is an important method

of simulation for many fields. We use short-range MD

in conjunction with dynamic binding of particles to form

agglomerates [4]. These models are used, e.g., to study soot

particles [5]. The force evaluation for short-range potential

fields can be reduced from O(n2) for the naive method to

O(n) for the so-called linked-cell method [6], [7]. Moti-

vated by the massively parallel architectures of current and

future high performance computers, MD simulations can be

parallelized for scalability via spatial decomposition [8], [9].

However, in heterogeneous MD scenarios one needs to

explicitly adapt this decomposition to minimize the time

to solution. This process is called load-balancing—finding

an optimal partitioning to fully balance the load between

all available distributed resources—and is NP-hard [10].

Faced with this complexity class, various methods based on

approximation algorithms have been proposed. We present

five of them and empirically investigate their suitability for

heterogeneous agglomeration scenarios in detail. We do this

not by implementing them in a particular MD application but

rather “offline” using a load model to quantify the quality

of a partitioning.

Our main contribution is two-fold: First, we use an

example scenario and different load-balancing methods to

show that finding a good partitioning depends on the specific

simulation scenario. Second, we propose metrics to evaluate

the heterogeneity and the load dynamics of a scenario based

on a binned particle distribution.

The paper is organized as follows: In Section II we

report on work of other research groups on load-balancing,

modelling and the comparison of different methods. In

Section III we present a simple load model to quantify

the effects of load-balancing. In Section IV we present the

scenarios we use for evaluation and the main properties of

MD scenarios, namely heterogeneity and load dynamics. In

Section V we propose metrics to quantify these properties. In

Section VI we present five different load-balancing methods

and some enhancements which we propose for them. In

Section VII we evaluate the metrics and the load-balancing

methods on one sample scenario and show the resulting

speedups of load-balancing. Finally, in Section VIII we

summarize our work and conclude with a note on further

research topics.

II. RELATED WORK

Load-balancing methods have been subject to intensive

studies. These include load-balancers based on space-filling

curves (SFC) [11], [12], which are used, e.g., by Xiaolin

and Zeyao [13]. They order cells along an SFC and use
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a 1D bisection scheme to partition the curve. Bisection

can also be applied without an SFC. Recursively bisecting

a domain is known as the orthogonal recursive bisection

algorithm (ORB) [14]. This is used in the software pack-

ages ls1-mardyn [15] and NAMD [9]. The latter even

allows to distribute the workload with respect to ghost

layer sizes [16] or the process topology [17]. Simon and

Teng [18] discuss in general the quality of ORB for solving

p-way partitioning problems. Fleissner and Eberhard [19]

present an ORB approach which can adapt the partitioning

in a local manner. GROMACS [20] uses another sectioning

approach. It staggers the dimensions and does all nec-

essary sections in one dimension at once. Nakano and

Campbell [21] present a decomposition based on a uniform

grid in curvilinear coordinates and simulated annealing.

Another well-known partitioning algorithm is graph parti-

tioning. General information can be found in the work of

Bichot and Sarry [22]. Hendrickson and Kolda [23] describe

the problem of modeling communication cost using graph

partitioning. Catalyurek et al. [24] describe a repartitioning

model based on hypergraphs with fixed vertices. A diffusive

load-balancing scheme is described in [25], [26]. Deng et

al. [27] show its relation to the iterative solution of a Poisson

equation in two dimensions. Hu and Blake [28] approach

the problem more generally formulating the process of

optimally migrating load as a quadratic program. Another

local method that uses a grid to determine the partitioning is

proposed by Deng et al. [29], [30]. We call it the grid-based

scheme. Begau and Sutman [31] extend this scheme to three

dimensions and report on its implementation in IMD [32].

Comparisons of different load-balancers can, e.g., be

found in [33] and [34]. Both compare graph partitioning to

SFCs. The main message is that graph partitioning gives

a better partitioning quality, while SFCs are faster and

consume less memory. A comparison including diffusive

methods can be found in [26]. Hendrickson and Devine [23]

review several static and dynamic load-balancing algorithms

for their quality, memory usage, speed, etc. Particularly for

MD, Buchholz [35] compares several different partitioners

and describes their implementation in ls1-mardyn. Buchholz

also presents a heuristic cost-model similar to the one used

in this work. He uses it to estimate the cost as input to load-

balancers especially to those that cannot rely on measure-

ments of execution time. Nyland et al. [36] model the cost

of an MD application using the Bulk Synchronous Parallel

(BSP) model [37] in order to see how parallel performance

is affected by computation and communication in their

simulations. They conclude that for small simulations a good

decomposition of the workload is far more important than

communication cost. For a general overview over the BSP

model and how to combine different cost terms, see [38].

Similar to Buchholz we use the cost-model as a cost

estimator for load-balancing methods. But in contrast to

Buchholz and Nyland et al., our main focus is on the

theoretical assessment of to properties of different simulation

scenarios. It is based on the distribution of cost across the

linked-cells and prepares the path for a general classifica-

tion of load balancing methods with respect to classes of

simulation scenarios.

III. MODELLING A SHORT-RANGE MD APPLICATION

To quantify the effects of load-balancing one typically

simply measures the simulation time. However, to study

different combinations of load-balancing methods and sce-

narios, we choose to model the load using a computation

and a communication term. This facilitates collecting data

significantly and at the same time renders us independent

from a specific implementation of MD.

Typically, the overwhelming amount of work in a short-

range MD simulation is force calculation. Therefore, we

limit the modelling to this inner-most part. As mentioned

before, we assume that the linked-cell algorithm is used.

In addition to computational cost, there are communication

costs related to so-called ghost layer particles. These are

necessary to compute interactions between particles residing

in different partitions. So, for a process p we have

cost(p) = compcost(p) + commcost(p).

Since we seek to partition the discrete set of all linked-

cells it is natural to quantify computational cost on the level

of a single cell. The linked-cell algorithm can be described as

follows: The particles are sorted into cells of size rc, which

is exactly the cutoff radius for the short-range forces. During

the force calculation only particles from neighboring cells

are considered, see Figure 1(a). According to measurements

in [35] with argon and carbon dioxide, neglecting the actual

number of force calculations in the cost term induces only

an negligible error in the partitioning. Therefore, we base

the computational cost model on distance calculations only.

The considered cell neighborhood can be limited further to

the half-shell neighborhood, using Newton’s third law. We

do not apply Newton’s third law at ghost cells since this

would require an additional communication phase to pass

back forces. We calculate cross-boundary interactions on

both involved processes.

cc(i) =

{
icc(i), if i is an inner cell

icc(i) + bcost(i), if i is a boundary cell,

where icc(i) = α dpairs(i) is the cost of an inner cell

with dpairs being the number of distance pairs in the half-

shell neighborhood. bcost is defined like icc but sums over

cross-boundary pairs which are not included in the half-shell

neighborhood. Finally, the computational cost term is given

by summing over all local cells i: compcost(i) =
∑

i cc(i).
The parameter α is the time it takes to calculate a single

distance. It depends on the machine and the intermolecular

potential. If one was to also consider the cost of force pairs,

they could simply be included as another term in icc(i).
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(a) A particle with its cell and the neigh-
borhood in the linked-cell algorithm. To find
interaction partners, one searches in the gray
area (half-shell neighborhood) and writes calcu-
lated forces also back to its interaction partners.
This saves interaction calculation in the hatched
area.

(b) Ghost layer exchange for a spatial decom-
position in 2D. In gray the boundary layer
which has to be sent to the ghost layers
(hatched) of all neighbors. The communication
is split into two phases: Sending north and
south and then sending east and west.

Figure 1. Basic algorithms comprising the cost: On the left the linked-cell algorithm and on the right the ghost layer exchange for a spatial decomposition.

In order to calculate the forces on boundary particles a

subdomain needs information about the boundary particles

of neighbors. Exchanging this information is called ghost
layer exchange. To reduce the number of neighbors to

communicate with, we employ the staggered communication

scheme of Plimpton [8], see Figure 1(b). Since each process

needs to send its boundary layer and receive the neighboring

one, we model the cost as

commcost(p) = γ (Npartgl + Npartbndry) ,

where Npartgl and Npartbndry are the numbers of particles

in the ghost layer and the boundary cell layer of process

p, respectively. The parameter γ is the time it takes to

communicate one particle and is machine-dependent. We

measured the typical cost for a 2D ghost-layer exchange

on “Hazel Hen” at the High Performance Computing Cen-

ter Stuttgart, using one process per node, averaging over

different numbers of total processes and each of these over

100 communication steps. In each communication we sent

at least 8192 bytes which is the default limit to switch to

the Rendezvous protocol. These results were again averaged

over ten different node allocations. Finally, we did a linear

regression and obtained γ ≈ 1.6 · 10−8 s. The linked-

cell calculation of distance and force takes approximately

1.3 · 10−8 s per pair. This number was measured on a local

machine with an Intel Xeon E7-8880v3. While the com-

putation parameter will stay the same, the communication

parameter will increase when going to 3D.

IV. SCENARIO PROPERTIES

We base this investigation on three example scenarios. In

the main scenario, we simulate 10,000 particles as a two-

dimensional Lennard-Jones fluid using ESPResSo [39] with

dynamic bonding in a setup similar to [5]. However, we

use ESPResSo’s three particle bond feature to bind particles

together via three pairwise harmonic and angular bonds. We

also increase the volume density to 0.16 in order to get

larger clusters. (Later on, Figure 3(a) will plot an exemplary

particle distribution at timestep 106.) Most agglomerates

have a fractal dimension Df [40] of 1.5 to 1.8. Over time,

agglomerates tend towards higher Df . A fractal dimension of

2 means that the agglomerate is disc-shaped whereas perfect

chains have a value of 1. On a high level, the scenario

basically consists of two parts: In the first part, medium- to

large-sized agglomerated form. Here, a significant speedup

drop happens. The magnitude and the length of time of

the drop depend on the scenario and the partitioning. In

the second part, large agglomerates move around due to

Brownian motion.

The second scenario we investigate is nucleation. It has

the same configuration as the agglomeration scenario but

without dynamic binding. The third one is an artificial

scenario where only movement occurs: particles are ordered

in a grid in a square block and move with the same speed in

one direction. To classify the scenarios we define two main

properties: heterogeneity and load dynamics.

A. Heterogeneity

The distribution of particles, i.e. the density, varies heavily

in all scenarios. They are heterogeneous. We have presented

that the cost of calculating one particle depends on the

number of neighbor particles within a fixed neighborhood

(compare Figure 1(a) once more). Therefore, it scales with

the local density ρ. The cost of calculating all particles in

an area therefore scales with ρ2. This fact explains why the

speedup will degrade for the example scenario and it points
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towards the challenge of load balancing heterogeneous MD

simulations. As an example, consider a fluid droplet in

coexisting vapour: the density of a fluid is typically two

to three orders of magnitude higher than the density of the

vapour. Therefore the load per volume is four to six orders

of magnitude higher.

B. Load Dynamics

Load dynamics is the second important property of a

simulation scenario. With the term “load dynamics” we

refer to the change of load over time. Such a change can

have several causes, mainly the clustering of particles and

the movement of particle clusters. Note, however, that in

a completely homogeneous particle distribution, Brownian

motion may actually not cause any load dynamics as referred

to here. This definition of dynamics has the advantage that

it directly correlates to the need for rebalancing the load.

C. Exemplary reasoning

Load balancing scenarios with a high degree of hetero-

geneity will most likely lead to subdomains of unequal sizes,

i.e., small subdomains in regions with high cost density

and large subdomains elsewhere. However, large subdomains

can lead to a rapid deterioration of the load distribution for

dynamic scenarios, because load can migrate into them. The

rate at which load will migrate depends on the load dynamics

of the scenario and on the surface area of the subdomain.

Therefore, with increasing load dynamics, the maximum size

and surface of subdomains should decrease. This redefines

what is to be considered the optimal load balancing.

Even from the simple reasoning above it quickly becomes

obvious that optimal load balancing of specific scenarios is

a highly complex task. And, as we will see in Section VI,

there are plenty of load-balancing methods available which

can be further adapted or hybridized and on top of that have

various parameters to tune. Our ansatz to cope with this

complexity hinges on a crucial component: we introduce

metrics to quantify the heterogeneity and load dynamics of

scenarios and thereby render them classifiable. We present

these metrics in the following section.

V. METRICS

In this section we present metrics for quantifying the

main properties of a simulation scenario: heterogeneity and

load dynamics. The first one provides a statement about

the distribution of load and is based on moments of this

distribution. The latter one provides a statement about the

movement or migration of load over time. It is based on the

difference in load between timesteps.

A. Heterogeneity

We first bin particles into cells corresponding to the cell

grid of the linked-cell algorithm and calculate the full-shell

load for each of the cells. Then, we successively coarsen

the cell grid by summing over neighboring cells. We use a

2× 2 neighborhood in 2D. This builds a hierarchy of grids

with associated load values in each grid cell. We regard

these cells as box-sized subdomains. The subdomain’s size

corresponds to the number of cells of the original grid which

have been summed together. The load values serve as a

discrete distribution, which we normalize by its average. We

call a cost value normalized by the average an imbalance.

Then, we take standardized moments of the distributions.

These are variance, skewness and excess kurtosis.

The variance is the primary indicator for load hetero-

geneity as its statement is how strongly a distribution de-

viates from its mean. Empirically investigated over different

scenarios, we find that a variance of over 0.05 is already

problematic, as the corresponding speedups in most cases

are down by 20–50%. A variance of 0.05 means that the

standard deviation σ is approximately 0.22. Assuming a

standard normal distribution this means that roughly 17 %

of all cells on a certain level have a load of at least the

average plus 22 %. However, the higher moments show

us that in heterogeneous scenarios we do not deal with

normal distributions. This motivates the second indicator

of heterogeneity: Positive skewness. We interpret positive

skewness as a few cells having a lot of load while the

bulk of cells is cheaper. How much more expensive these

cells are is indicated by the value of the excess kurtosis.

If it is positive the “tails” of the distribution become fatter,

i.e. more likely. In the example agglomeration scenario, the

actual amount of cells which are more expensive than the

average plus 1σ goes up to over 25 % at the skewness peak.

Figure 2 shows this for a homogeneous example, the ag-

glomeration scenario at MD timestep 107 and the “inverse”

of it, meaning the density is inverted by subtracting it from

the maximum density. This could correspond to cavitation:

Gaseous regions in a fluid. For each scenario the load

imbalance distribution on the linked-cells grid is shown and

the imbalance metric for different coarsened versions of this

grid. We see that the load distribution of the agglomeration

scenario is right-skewed with positive excess kurtosis while

having a large variance. We regard this scenario as hard to

balance because the bulk of cells is cheap. As expected,

the variance decreases with growing subdomain sizes. This

is typical for particle clustering. Conversely, the inverse

scenario is not inhomogeneous in its load at all—while still

being inhomogeneous in its particle distribution—because

the bulk of cells is expensive and, therefore, also the average

load. We regard the latter scenario, as the variance suggests,

as easier to balance than the agglomeration scenario.

B. Load Dynamics

To quantify the movement of load we have to look at

multiple timesteps. We take the load imbalance distribution

from the last section as starting point. Let d1 and d2 be two

such distributions. We take the norm of the difference of
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Figure 2. Comparison of the load imbalance distribution on the linked-cells
grid on the left (different x-axis scales) and its moments for different levels
of the hierarchy (subdomain sizes) on the right for three different scenarios:
One homogeneous, one agglomeration and one agglomeration with inverse
density, i.e., empty regions in a dense fluid. The load distributions are log-
scaled to highlight their skewness. For the homogeneous distribution the
variance is almost zero. The agglomeration scenario is highly inhomoge-
neous and right-skewed. The inverse scenario has a variance near zero.

these two distributions: dyn(d1, d2) := ||d1 − d2||. We use

this metric in two forms. First, to quantify the dynamics over

time with a fixed timestep, i.e. calculate dyn(dt, dt+δt) for

a fixed δt and varying t. Second, to quantify the change

that happened since a particular timestep, i.e. calculate

dyn(dt, dt+δt) for fixed t and varying δt. We also apply

the concept of different hierarchies which we presented for

heterogeneity to this dynamics metric.

For a nucleation scenario, which does not involve move-

ment of the nuclei, the value of dyn(d1, d2) decreases over

time. A pure movement scenario shows a mostly constant

behavior. In a highly dynamic scenario, we can expect to

see dyn(dt, dt+δt) increase when starting from an arbitrary

point in time.

We present evaluations of both metrics on the agglomera-

tion scenario in the results in Section VII and see their value

for explaining the behavior of load-balancing methods. But

first, we describe the load-balancing methods we consider

and compare.

VI. LOAD-BALANCING ALGORITHMS

The main component of a load-balancer is a partitioning

algorithm. Additionally, a load migration routine which, in

our case, moves all reassigned linked-cells from one process

to the respective new one, is necessary. The particles (and

cells) to be moved to other processes are referred to as

migration volume.

We use the two terms static load-balancing and dynamic
rebalancing to refer to two different concepts of load-

balancing. The first one refers to the static partitioning once

at the beginning of a simulation while the latter refers to the

repartitioning during runtime. To efficiently rebalance a sim-

ulation during runtime, not only the partitioning algorithm

has to be fast, but it also has to keep the migration volume

and the amount of processes to communicate with low.

This motivates what is sometimes called load migration:

exchange cells only between neighbors. We call the load-

balancers local which fulfill this criterion as they (mostly)

communicate with their neighborhood only. One might allow

for global communication even in local load-balancers sim-

ply to increase the rate of convergence if they are iterative.

An equal categorization is that local load-balancers build on

an existing partitioning and only adapt it slightly. Note, that

local load-balancers are inherently distributed. In contrast

to local ones, load-balancers which completely redistribute

the domain are consequently called global and usually do

not restrict the migration volume or need a dedicated load-

balancing process.

Following this classification, we briefly sketch the im-

plementational ideas of graph partitioning and orthogonal

recursive bisection as static, global load-balancers and an

SFC-based, a grid-based and a diffusion-based one as local

load-balancers.

A. Graph partitioning

The main task is to define a mapping from the load-

balancing problem to a graph and then let an external library

do the partitioning. We use METIS [41]; ParMETIS [42] can

be used to partition in parallel. Since we seek to partition

the set of linked-cells, it is natural to use these as nodes

of the graph with the corresponding half-shell cost of each

cell as vertex cost. The set of edges is determined by the

full-shell neighborhood relation. As edge cost we use the

calculation cost of particle pairs between two adjacent cells.

Then, a cut at a specific edge adds the cross-boundary cost

of the respective cell pair to the overall cost.

This fact reveals that the objective function of load-

balancing does not map correctly to graph partitioning: It

minimizes the total cross-boundary interaction cost subject

to equalizing the half-shell calculation cost in each subdo-

main. However, we rather seek for a partition minimizing the

sum of both, local half-shell cost and local cross-boundary

interaction cost. Despite this fact, graph partitioning gives

the best results for static partitioning. Also, communication

cost is not directly mappable because they incur only at

boundary cells and are defined between subdomains rather

than cells [23]. Therefore, we left them out in the explanation

above. In [35] an example is given why communication cost

should be included anyway on a cell-to-cell basis.

B. ORB

The idea of ORB is to approximate the p-way partitioning

problem by successive bisections. A good description can be

found in [35]. The basic procedure is to fix a dimension (or

search in all dimensions and then take the best) and project
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the 3D domain to this dimension by summing up the cost

over all layers of cells. Then, we solve the 1D bisection prob-

lem by iterating through the chosen dimension and seeking

the section layer which equalizes the two sections best. Also,

we take communication and cross-boundary interaction cost

at the chosen section layer into account. When a section

layer has been chosen, we recursively do the same procedure

again in the two newly created subdomains until there exists

a one-to-one mapping between subdomains and processes.

The partitioning can be stored in a k-d tree [43]. Note, that

this is a sequential process which has to be executed on

a distinguished node. This node beforehand has to collect

all the necessary information and afterwards distribute the

new k-d tree. One major problem of this scheme is that the

subdomain cost at future section layers are not known during

a bisection. These future cost might change the current

subdomain’s cost significantly.

C. SFC

The SFC-based load-balancer uses an even simpler ap-

proximation: Linearize the 3D domain using a space-filling

curve and partition it in 1D. This can be done, again, by

1D bisectioning as in [13]. However, we employ a slightly

different scheme because it is easier to see the parallelism

in it. Let � be the local cost of a subdomain. We calculate

the target load �̄ per subdomain via global reduction and the

prefix load �̂ of a subdomain along the space-filling curve.

Then, in every subdomain we iterate over its cells calculating

the prefix sum �̂i of each cell. We calculate the new subdo-

main for each cell as pi = � �̂i
�̄
�. The partitioning is given by

the subdomain boundaries, i.e. where pi changes, as pairs of

process number and index on the space-filling curve. Using

this load-balancer, the migration is most likely between a

subdomain itself and the two neighboring processes along

the SFC only if the repartitioning is done often enough.

Also, non-local migration is trivial because every process

knows all process boundaries. So it can easily determine its

send and receive partners. As cost we simply take the half-

shell interaction cost of a cell since the control over partition

boundaries is fully handed over to the space-filling curve.

We use the Hilbert curve [44] and the Z curve or Morton

order [45]. In our 2D experiments we find that the two

curves on average produce slightly less than 8 neighbors per

subdomain. However, the maximum number of neighbors in

heterogeneous scenarios is typically larger than 10.

D. Grid-based

In [29] and [30], Deng et al. propose a dynamic 2D

rebalancing scheme where the partitions are given as cells

of a grid. To balance the load between the subdomains, the

vertices of the grid are shifted while the structure of the

grid—and therewith the process topology—stays fixed. The

method can be sketched according to [31] as follows: We

calculate the load �p of each subdomain and a center of

load cp (e.g. the center of mass). Let �̄ be the load averaged

over the neighborhood. Then we define a “virtual force”

f shifting the vertex v as the sum over the neighborhood,

f :=
∑

p(
�p
�̄
− 1)up, where up is the normalized distance

vector from a vertex v to the neighboring subdomain p’s

center of load cp. We restrict the grid cells to being convex to

avoid collapsing. If a subdomain is completely empty we do

not consider it as a term in the virtual force calculation. The

vertex movement is restricted to the length of one linked-

cell, thus effectively limiting the migration volume of one

iteration of this scheme. Like the space-filling curve load-

balancer, only scalar costs can be considered, so we again

take the half-shell interaction cost as the load metric.

E. Diffusion

Diffusion [25], [26] is arguably the most natural algo-

rithm for load migration presented in this paper. The main

idea is that overloaded processes select and send cells to

underloaded processes. This is referred to as sender initiated
in contrast to receiver initiated which would be a form

of load stealing. We use the transfer volume calculation

of Willebeek-LeMair and Reeves [26] and a cell selection

scheme adapted from Buchholz [35]. Unlike Buchholz, we

do not consider an overall gain for changing the ownership

of a cell but we clearly distinguish between cost saved on the

sending process and cost arising on the receiving process.

Given a transfer volume δp→q of load to be sent from process

p to q, we calculate the cost si saved on process p owning a

boundary cell i by sending it to q. Conversely, we calculate

ai which is the cost this reassignment adds to the receiving

process q. These costs are determined counting the cross-

boundary particle pairs in neighboring cells, subtracting

saved communication and adding additional necessary com-

munication costs. Then, we sort the boundary cells according

to si, and, starting with the most promising one, we try to

send each cell to a neighbor if δp→q > ai. Afterwards,

we decrease the admissible transfer volume by ai. Note

that there is no distinguished data structure holding the

partitioning. It is implicit.

The transfer volume δp→q is determined in the local

neighborhood as follows: Let �p be the load of a subdomain

p and �̄ the load averaged over the neighborhood. Each

process defines for each neighbor q an absolute deficiency

value hq := max{�̄−�q, 0} and a relative one, ĥq := 1
Hp

hq ,

where Hp is summed over the neighborhood Hp =
∑

q hq .

Then, the send volume is given as δp→q = (�p − �̄) ĥq .

F. Enhancements

We observe that in scenarios driven by the movement of

large particle clusters it becomes crucial how to divide the

(mostly) empty space around these clusters becomes crucial.

Especially graph partitioning is prone to assign empty parts

of the domain to a single process—because they do not cause

much or any load at all. Considering a high load dynamics of
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a scenario, the particle clusters will eventually move into the

large empty parts which then causes a massive overload of

one process. Therefore, we propose an enhancement to make

load-balancing more robust. We convolve the cell load values

before partitioning with a Gaussian kernel which makes cells

near cells with a high load more expensive. This forces

the partitioner to not only partition the cluster itself but

also a “halo” region around it. We study this enhancement

exemplarily with graph partitioning in the results section.

While local load-balancers are prone to get stuck in

local minima, Begau and Sutman [31], e.g., mention that

their grid-based method sometimes needs a “reset”. Global

load-balancers cannot be executed often enough to maintain

a good load balance in highly dynamic scenarios. This

motivates what we call hybrid load-balancers which consist

of a fitting pair of global and local methods. The local

method is used to maintain the load balance the global

method has established. The global one is only executed,

e.g., if there is a manifesting imbalance, if the partitioning is

too suboptimal with respect to subdomain layouts or simply

after a fixed number of timesteps.

VII. RESULTS

In this section we present results for the 2D agglomeration

scenario presented in Section IV to see how the different

load-balancing methods can cope with heterogeneity and

load dynamics. We use snapshots of the scenario as input to

a Python implementation of all the above-mentioned load-

balancers. As the baseline, we employ a standard spatial

decomposition by splitting the domain into 16 equally sized

boxes on a 4× 4 grid, see Figure 3(a). To assess the quality

of any decomposition we evaluate it with the metric we

presented in Section III. Let this parallel load be Tn. We

also calculate the load T1 a sequential simulation causes.

Then, we calculate the speedup S = T1

Tn
. Note, that T1 nei-

ther includes communication nor cross-boundary calculation

cost.

The speedup for the first 2·106 timesteps of the mentioned

decomposition corresponds to the blue curves in Figure 4.

As one can see, the speedup deteriorates rapidly at the

beginning of the simulation. Later in the simulation, starting

after about 1.5 · 107 timesteps, we would observe another

speedup drop, this time to 5, which is caused by two

clusters agglomerating in a single subdomain. The overall

drop height depends on various simulation parameters. To

explain this deterioration we look at the heterogeneity of the

scenario. The Figures 3(b), 3(c) and 3(d) show the moments

for the upper part of the hierarchy of load imbalances

as defined in Section V-A for the agglomeration scenario.

Here, we show results for up to 4 · 107 timesteps, which

includes both speedup drops. We observe that the variance,

i.e. heterogeneity, increases during both drops. During the

second drop also the skewness and kurtosis for 4 × 4 cells

increase sharply which implies that expensive outliers get

more common. We can also see that for 4 × 4 cells the

variance gets bigger than 0.05 within the first timesteps

while the speedup in this small time frame gets practically

halved. Even a decomposition into 4 equally sized boxes

would lose its efficiency in the last quarter of the simulation.

Now, we test how different load-balancers perform on

the example scenario. We use 16 processes and partition

at fixed points in time in order to see how the partitions

behave over time. For static load-balancing we use 40,000

timesteps, for local load-balancing 4,000 and we evaluate the

partitioning cost using the current particle positions every

1,000 timesteps. The results for graph partitioning, ORB

and the SFC-based load-balancer using the Hilbert curve can

be found in Figure 4(a) for the first two million timesteps.

We did not measure a significant difference in partitioning

quality between the Hilbert and the Z curve. The results

of grid and diffusion-based load balancers are given in

Figure 4(b). For the former we did 10 iterations per load-

balancing step and for the latter a single one sufficed to get

good results.

We observe that the quality of partitionings at the exact

timestep of rebalancing does not vary much over time for

any load-balancer—even beyond the time range plotted in

Figure 4. Graph partitioning gives the best results followed

by diffusion. The ORB partitioning varies most. Its ma-

jor disadvantage are the axis-parallel section layers: The

achievable partitioning quality depends on the position of

the agglomerates. This can also be observed for the grid-

based scheme. It seems to have problems when the change in

variance is high. This can—at least partly—be remedied by

investing more iterations. Therefore, we show the results for

10 iterations each. The formation of large particle clusters

requires to cut through clusters to balance the load. These

cuts increase the load since cross-boundary interactions in

high density regions need to be calculated, and therefore

the speedup with respect to the sequential simulation drops.

This also holds true if we simply increase the number

of processes. Thus, strong scaling becomes increasingly

ineffective. But if we use 100 processes for example and

do graph partitioning on the agglomeration scenario, we still

get an average speedup of around 70 (in contrast to about 20

for the unbalanced simulation) at the partitioning timesteps.

We get very different results when inspecting the qual-

ity of partitionings between rebalancing steps, i.e., when

the simulation has progressed but the partitioning has not

yet been adapted. This behavior depends strongly on the

scenario dynamics. After the initial partitioning the speedup

drops rapidly to the level of the non-balanced decomposition

for the static load-balancers. We can conclude that an initial

partitioning in the homogeneous state of the scenario does

not make much sense. The dynamic load-balancers behave

better, simply because they are cheaper and can therefore

be applied with higher frequency. Using a lower load-

balancing frequency, we spot another important fact: The
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(a) The agglomeration scenario at timestep 106. Colors en-
code the different subdomains and the particle distribution
is overlayed.

(b) The variance of the load distribution of the agglomera-
tion scenario over time for different cell sizes. The increase
for 4× 4 cells is directly related to a drop of speedup.

(c) The skewness of the load distribution of the agglomer-
ation scenario over time for different cell sizes. The change
in the skewness for 4×4 means that more cells get empty.

(d) The excess kurtosis of the load distribution of the
agglomeration sceneario over time for different cell sizes.
A positive kurtosis means outliers become more frequent.

Figure 3. On the upper left the scenario with the basic domain decomposition. The other three pictures show the seconds (variance), third (skewness)
and fourth (kurtosis) standardized moments of the binned particle load distribution on different levels for different levels of the hierarchy (cell count in
the legends).

speedup of balanced simulations might actually drop below
the unbalanced one, meaning that infrequent load-balancing

may become harmful for overall performance. Comparing

the static load-balancers, ORB seems to have the best con-

sistency over time especially at later points in the simulation

when large particle clusters move around. However, as we

stated above, we use convolution to attempt to remedy this

fact, see Figure 4(c). There, we only balance every 100,000

timesteps in order to see the effects of too infrequent load-

balancing. The graph partitioning results drop multiple times

to a level which is way smaller than its static partitioning

quality. To remedy this problem, we convolve each load

value with a Gaussian kernel of width 10. We can see that

the static partitioning quality decreases but the behavior over

time gets better. In Section VI-D we gave an explanation

for this. Note that the static partitioning quality of the

convolved scheme must not necessarily decrease because

the graph partitioning libraries also do approximations of

their own. To give an indicator of how much simulation cost

according to the load model the partitionings actually save,

we assume the simulation cost to be constant within one

evaluation step (1,000 timesteps). Using this approximation,

graph partitioning saves 42 % of the cost within the plotted

range, ORB 35 % and the SFB-based method 32 %. We

regard these numbers as an upper bound to the saved cost

because of the approximations we mentioned and since we

don’t include the cost of load-balancing. However, for the

overall simulation, the savings are higher, since the speedup

of the unbalanced simulation drops further while the quality

of the load-balancing methods stays roughly on the same

level.

We now exemplarily take the partitioning from Figure 4(c)

and try to explain the difference in the temporal suitabil-

ity of the partitionings after timestep t0 = 200,000 and

t1 = 300,000. After the first one, the speedup of graph

partitioning degrades rapidly which is not the case after the

partitioning at t1. To explain this difference, we consider

the load dynamics metric as described in Section V-B. We
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(a) Static partitioning every 40,000 timesteps. In green
graph partitioning, ORB in red and the SFC-based in
magenta. Graph partitioning performs best at this rate of
partitioning.

(b) Dynamic partitioning every 4,000 timesteps. In green
diffusion and in red the grid-based method. We don’t plot
points at partitioning timesteps in this figure. Diffusion
performs better than the grid-based method at this rate of
rebalancing.

(c) Effects of the convolution of load values before graph
partitioning: In green unconvolved; in red convolved with
a Gaussian kernel of width 10. Both are applied every
100,000 timesteps. Convolution has a positive effect on the
robustness of the partitioing over time. The drop heights are
reduced, but static partitioning quality usually gets worse.

(d) A hybrid load-balancing scheme based on graph parti-
tioning and diffusion. Graph partitioning is applied every
100,000 timesteps (dots) and diffusion (x marks) every
10,000. This leads to the highest speedups.

Figure 4. Load-balancing results in comparison to the unbalanced simulation in blue. Results of static partitioners are shown in the upper left picture;
dynamic load-balancing in the upper right. The lower left picture shows the convolution strategy and the lower right picture the hybrid method. The points
mark the speedup directly after partitioning. The speedup a partitioning produces in subsequent timesteps is represented by the tails.

subtract the imbalance distributions of subsequent timesteps

(up to t1) from the one of t0. The same is done for

t1. Figure 5 shows the load dynamics metric for the two

mentioned timespans. In the first timespan the load dynamics

rises higher and more quickly. Therefore, this timespan is

more problematic with respect to the temporal suitability of

the subdomains. While graph partitioning assigns a single

subdomain roughly 50 % of all cells at t0, the convolved

scheme only assigns approximately 10 % of all cells to the

largest subdomain. The same holds true for ORB. Graph

partitioning is affected more by higher load dynamics than

the other methods as we reasoned in Section IV-C. Another

important fact we mentioned before is the subdomain sur-

face. We compare the surface of the two largest subdomains

in both cases. For pure graph partitioning this surface is over

10 times higher than for the convolved scheme. For ORB

this number is even higher because it produces rectangular

subdomains. These differences make the graph partitioning

drop steeper than the partitionings produced by any other

method.

Diffusion and grid-based load-balancing show a good

temporal behavior because we apply them more often. We

see that diffusion applied in this frequency is in this scenario

capable of producing a partitioning which is almost as good

as graph partitioning. Over time, diffusion saves 40 % of

the cost and the grid-based load-balancer 34 %. The grid-

based method is slightly worse because of the restrictions it

imposes on the partitioning.

Finally, we show results for the hybrid methods which we

proposed. A natural choice is to combine graph partitioning
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Figure 5. Scenario load dynamics with respect to t0 = 200,000 and
t1 = 300,000 in a semi-log plot. The imbalance increases quickly by
more or less one order of magnitude depending on the level in the first
time frame. The rise is lower in the second time frame.

and diffusion, see Figure 4(d). As we can see, the diffusive

strategy can keep the speedup on the high level which

graph partitioning establishes. This is slightly worse in the

first few iterations, where the change in variance is very

high. More iterations of the diffusive load-balancer or a

higher rebalancing frequency solve this problem. The results

over time are better than pure diffusion and pure graph

partitioning. It saves 43 % of the cost. Another possible

hybrid method to test in the future is a combination of the

grid-based scheme with a global method establishing load-

balance through a rectangular non-equidistant grid.

To really estimate the savings of a simulation we would

have to consider the time rebalancing takes. Therefore the

savings will—in a real simulation—definitely be lower than

the ones we mention here. Choosing the right points in time

when to do rebalancing is, given the cost of rebalancing,

another factor in the optimization problem. However, to the

best of our knowledge there is no general work on when to

best do rebalancing steps based on both simulation cost and

rebalancing cost, neither results on how long different load-

balancers take to execute in example scenarios. We hope to

be able to provide more insight to this problem in a follow-

up work. Here, we can only conclude with the very general

cost estimate and consideration of scalability: It should be

obvious that the local methods cause computational work

of at most an order of a timestep. The migration volume

for one iteration of the diffusive and grid-based scheme is

limited to one ghost-layer exchange. This does not change

with increasing processor count since these schemes work

purely local. Therefore, they are scalable. The SFC-based

partitioner needs two collective operations: One allreduce
to determine the target load and one exscan to determine

the prefix load. ORB clearly does not scale in the form

presented here since it needs a distinguished node to do

the partitioning. For graph partitioning the most crucial part

is limiting the migration volume. In the version presented

here, this is not the case. Also, the graph partitioner itself

might need a considerable amount of time when requesting

a large number of partitions.

VIII. CONCLUSIONS

We have presented metrics to quantify two basic proper-

ties of particle simulation scenarios: heterogeneity and load

dynamics. We have shown that these two metrics quantify

relevant properties of the scenario and enable us to reason

over the performance of specific load-balancing methods.

Our work demonstrates that it is crucial to define such

metrics on scenarios to be able to understand the effects of

load-balancing. This is a central step towards an automated

mapping from scenarios to suitable load-balancing methods.
We have shown that these metrics can enable us to

reason about the behavior of load-balancing methods and

partitionings on scenarios. We postulate that the insight

gained through these metrics for a specific scenario, e.g.

the use of a specific load-balancing method or the optimal

rebalancing times, can be generalized to other scenarios with

similar properties.
We have presented evaluations of load-balancing methods

on an example agglomeration scenario. There, rebalancing

too infrequently is clearly harmful to the overall perfor-

mance. Motivated by the scenario’s load dynamics, we have

proposed the convolution of load values as an enhancement

and we have applied it to graph partitioning. Finally, we

demonstrated how hybrid methods that combine global and

local methods can be used to “reset” the partitioning to a a

better overall optimum.

A. Further Work
Since our main concern is to understand the complex re-

lationship between simulation scenarios and load balancing

methods, the amount of knowledge regarding the quality of

different load balancing methods for scenarios with different

metric values needs to be increased. This will be crucial to

formulate clear hypotheses which can then be tested. We will

continue to work on more concise metrics for evaluation and

extend our assessment to three dimensions.
One necessary step to attain reliable predictive results for

the selection of the optimal load-balancing method will be to

include the cost of rebalancing. This especially holds true

when it comes to huge simulations on large high perfor-

mance computers (HPC). With the issue of scalability on

current HPC systems comes another requirement: Awareness

of the network topology has to be considered not only for the

produced partitioning but also for the load-balancer itself,

e.g. by considering local load exchanges only within a node.
The load model can be improved by including bonded

interaction cost for vastly bonded scenarios. Also the pos-

sibility of integrating communication hiding or latency cost

on a per-neighbor basis should be investigated. For a more

realistic model of simulations on machines which are not

used exclusively, a stochastic network congestion model

could be included in the communication cost.
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