
Smart Contracts for Multiagent Plan Execution in
Untrusted Cyber-physical Systems

Anshu Shukla, Swarup Kumar Mohalik, Ramamurthy Badrinath
Ericsson Research, Bangalore, India

Email: {anshu.shukla, swarup.kumar.mohalik, ramamurthy.badrinath}@ericsson.com

Abstract

Intelligent Cyber-physical systems can be modeled as multi-agent systems
with planning capability to impart adaptivity for changing contexts. In such
multi-agent systems, the protocol for plan execution must result in the proper
completion and ordering of actions in spite of their distributed execution.
However, in untrusted scenarios, there is a possibility of agents not respecting
the protocol either due to faults or due to malicious reasons thereby resulting
in plan failure. In order to prevent such situations, we propose to implement
the execution of agents through smart contracts. This points to a generic
architecture seamlessly integrating intelligent planning-based CPS and smart-
contracts.

Keywords

Artificial Intelligence; Planning; Multi-agent; Blockchain; Smart Contract;
Cyber-physical systems;

1. Introduction

Cyber-physical systems (CPS) comprise sensing and actua-
tion capabilities controlled typically through software agents.
A view of intelligence in these systems attempts to equip the
systems with self-adaptivity so that the systems can adapt to
dynamic changes in the environment and system capabilities
automatically. Such self-adaptivity can be imparted by inte-
grating artificial intelligence (AI) planning subsystems in the
software agents. Frameworks along this philosophy have been
studied in the autonomous systems literature [1]

Extending the above approach to distributed CPS, one
naturally has multi-agent planning based systems where both
plan synthesis and execution need coordination between the
agents. The plans are maintained in data structures that can
be global and is orchestrated by a central agent, or in local
data structures and are executed through agreed protocols
between the agents. These are the central themes of multi-
agent planning literature [2]. In this paper, we assume that
the plans have already been synthesized (global or local) and
concern ourselves only with the execution phase.

A hidden assumption in multi-agent planning is that once
the plan is synthesized and the protocol has been agreed
upon, the agents execute strictly according to the protocol.
However, in an untrusted environment, this assumption may
not be tenable. Either due to malicious reasons or selfishness,
or due to faults, the agents may not be able to adhere to
the protocols, which may lead to one or more number of
anomalies such as out-of-order execution, untimely initiation

and improper completion of actions etc. In critical CPS, the
cost of resulting failures being very high, it is necessary to
devise a mechanism where agents cannot deviate from the
established and agreed-upon protocol.

Towards this, we propose a multi-agent plan execution
framework based upon Smart contracts on blockchains. The
design of smart contracts for the plans along with the prop-
erties transparency, authenticity and immutability enforced by
blockchains ensure the desired execution of plans in spite of
the untrusted environment. The structure of the smart contracts
is dependent upon the multi-agent plan execution architecture
(centralized or decentralized execution).

To the best of our knowledge, this is the most direct
application of smart contracts and blockchains in AI planning.
So far, blockchains have been used mainly to store data,
AI models and algorithms to ensure integrity in untrusted
environments. Controlling the plan execution via validated
smart contract transactions seems to be a completely novel
contribution.

The paper is organized as follows. In the following section,
we give some basic introduction to planning, multi-agent
planning, blockchains and smart contracts. Section 3 describes
the system model formally and outlines the issues of plan
execution in untrusted environments. We give the solution
based on smart contracts in Section 4. The review of literature
in the intersection of smart contracts AI is given in Section 5.
Section 6 concludes the paper with a summary and number of
possible extensions.

2. Background

Cyber-physical systems(CPS) consist of a number of physi-
cal devices that can be controlled by one or more agents. Typ-
ically, the devices expose a set of actions through an API that
is utilized by the agents. In autonomous CPS, the agents are
intelligent i.e. they adapt to changes in the environment and/or
requirements and control the devices differently to achieve
changed goals. In AI literature, planning - plan synthesis and
execution - is one of the approaches of endowing agents with
intelligence.

2.1. Planning

AI Planning is an umbrella of techniques which derives
a sequence of actions (called a Plan) that can lead from an

ar
X

iv
:1

81
2.

07
21

9v
1

 [
cs

.C
R

]
 1

8
D

ec
 2

01
8

Figure 1: Architecture of planning based intelligent agent

initial state to a specified goal state. Each state is described
by a set of predicates about the objects of the world and their
relationships. Actions describe the change they cause to a state
of world. They are specified through 〈precondition, effect〉
pairs that are boolean combination of predicates. An action is
enabled in a state only when its precondition is satisfied in
that state. The execution of the action leads to a new state
where its effect holds.

A planning domain specifies the predicates (and functions)
necessary to capture the states of the domain under considera-
tion. It also specifies the actions through their precondition
and effect pairs. On the other hand, a planning problem
captures the planning requirements through a specific state of
the domain as initial state and a specific goal state. For more
details on planning see [3].

AI planning involves plan synthesis and plan execution. The
typical architecture of an intelligent agent is given by the
basic sense-plan-act loop or its variations, such as MAPE -
K [1]. Fig. 1 gives the schema of a bare-boned planning
based intelligent agent. Note that the plan component may
just acquire a plan, say from a user or plan database, instead
of having to actually compute it.

Planning algorithms derive plans, which are a partially
ordered set of nodes labeled with actions. A plan is said to
be properly executed when for each action a in the partial
order, (1) a is executed only when the actions on which it is
dependent - denoted dep(a) - have already completed execu-
tion, (2) the pre-conditions of a are satisfied and (3) when a
completes execution, the effects of a hold true. Otherwise one
could conclude that either the action did not execute properly
or the modeling of the effects of the action was wrong.
Essentially, the actions in the partial order plan should execute
in a topological order with additional constraints imposed by
preconditions and effects.

2.2. Multi-agent Planning

Multi-agent planning is a natural extension of the basic
planning problem where there are more than one agent. The
extension gives rise to a number of variations such as: whether
the agents are cooperative or competitive, whether planning is
centralized or not, whether communication is reliable or not
[2] etc.

The basic problem in multi-agent agent planning is the
distribution of plans over the agents. These plans must be

executed in a coordinated manner so as to achieve the system
goals. Therefore, the agents must follow certain protocols that
are part of the plan generation.

In the present paper, we address two execution architectures
for multi-agent planning. The first one is a centralized architec-
ture where a scheduler agent has the full plan and orchestrates
the execution by dispatching them to the agents in a timely
manner(Fig. 3a). The second one is where each agent acquires
its plan and the execution is done in a coordinated manner
through communication between the agents(Fig. 3b).

2.3. Blockchain & Smart Contract

A blockchain is a distributed, decentralized ledger that
maintains a common set of updated and secure records of
transactions across many computers based on peer-to-peer
networks and cryptographic algorithms. Each peer in the
network validates the transaction against the rules set in the
specific blockchain network [4], [5], [6]. A certain number of
valid transactions are grouped to form a block. Each block has
a reference to the preceding block in the blockchain allowing
the participants to confirm the integrity of the blocks all the
way back to the original genesis block. A copy of blockchain
is stored on every machine participating in the blockchain
network and is synchronized among the peers continuously.
Thus, it is a permanent ledger that all peers on the network use
for verification, coordinating actions and to reach an agreement
in an auditable manner.

A smart contract [7] is essentially a collection of code
and data representing some business logic running on a
blockchain. The smart contract resides at specific address on
the blockchain. Solidity [8] is one of the commonly used
languages for coding smart contracts. The basic example
for smart contract can be just a data update operation on
blockchain; e.g., updating the account balance after validating
that account has enough money before debiting it. As a more
complex example, in the smart logistics domain one may
dynamically adjust the shipping cost based on the time of
the request. The ledger will have agreed terms by both parties
coded as smart contracts. The appropriate funds incorporating
the dynamic delivery charges are transferred automatically
based on delivery time of item.

3. System Model

In this section, we describe the formal model of the multi-
agent planning based CPS and define the problems to be
addressed.

The CPS under consideration consists of a set of devices D
where each device d is associated with a number of actions
Actd exposed through a REST-based API. We denote the set of
all the actions from the devices as Act. The REST-based API
abstracts the underlying communication and device libraries
and is not relevant to the scope of the present paper. We denote
by execute(a) a call to the API that executes an action a on
the corresponding device.

Each device d has a number of sensors collecting data about
the state of the device. We model the state of the devices via
a set of predicates whose values can be decided by processing
the sensor values. The set of all predicates is denoted as P
and the predicates associated with a device d is denoted as
Pd. Similar to the actions, the values of the predicates are
assumed to be accessible through a REST-based API. We
denote by getV al(p) the REST-based call to get the value
of the predicate p.

One or more devices have an associated agent which is
implemented in software. The set of all agents is denoted
as AG. The spatial distribution function loc : Act → AG
maps each action of a device to the associated agent. At the
basic level, each agent can call the getV al(·) API to access
the value of a predicate and call execute(·) to execute an
action in a device. Moreover, each agent has the mechanisms
to communicate with each other or with a separate central
agent to exchange information. For the purpose of the paper,
the information to be exchanged is essentially about the
completion of an action by the device.

To assist automatic synthesis and control plan execution,
the actions are annotated with two sets of predicates: pre-
condition, which should be true for the action to be enabled
and effect, which must hold as a result of action execution.
Given an action a, we denote the pre-condition and effect of
the action as precond(a) and effect(a) respectively.

An initial state init is specified as a conjunction of state
predicates from P and a goal state is specified as a boolean
expression over P as well. A plan for the problem (init, goal)
is derived as a partial order over Act.

A proper execution of the plan starts at the init state,
executes the actions in the plan in topological order and
finally results in a state satisfying goal. The agents check the
precondition and effect constraints by accessing the predicate
values through getV al(·). The actual execution of the actions
is done through the execute(·) calls. In addition, for each
action a to be executed by the agent loc(a), the agent needs
to know that the actions in dep(a) have already completed
execution. Since these actions in dep(a) might be with other
agents, the action completion events must be notified through
the communication mechanism between agents. This leads to
two natural architectures for distributed plan execution.

3.1. Distributed Plan Execution in Centralized Mode

In the centralized mode of plan execution, there is an
external Scheduler agent who schedules the execution of
actions taking into account dep(·) of actions. The device
agents are only responsible for the verification of precondition
and effects and dispatch of actions through the action APIs.
The general schema is depicted in Fig. 3a.

The Scheduler implements the topological order of the
plan by maintaining a datastructure completedActionsList
to record the completion of execution of actions as notified
by the agents. When the dependencies of an action a is de-
tected to be fulfilled by inspecting the completedActionsList,

Figure 2: Global and local plans

Scheduler sends a request for dispatch to the agent loc(a). The
device agent accesses the state of the devices through the call
getV al(precond(a)) and if it is true, issues the execute(a)
call. When the action is completed successfully (result of the
execute() call), the agent sends the completion message to
the Scheduler which updates the completedActionsList. The
interactions continue till all actions in the plan are completed
(completedActionList == actions in the plan).

3.2. Distributed Plan Execution in Decentralized
Mode

In the decentralized mode for distributed plan execution,
there is no single scheduler. The agents communicate and
coordinate with each other to execute a plan (Refer Fig. 3b).
Each agent maintains a completedActionsList locally. It
also maintains a local plan which is a set of local actions
〈In(a), precond(a), a, effect(a), Out(a)〉, where a is the
label of the action, In(a) is the set of actions on which a is
dependent and Out(a) is the set of actions that are dependent
upon a. Given a global partial order plan, it is easy to derive
the local plans for each agent.

Fig. 2 shows an example with three agents where Agent1
operates the actions {a, d, f}, Agent2 operates {b, e} and
Agent3 operates {c, g}. The preconditions and effects of the
actions are specified through a bunch of predicates named
atX(). Fig. 2a shows the global partial order plan. Corre-
sponding local plans for the agents are shown in Fig. 2b.
For example, for the action labeled e, the in-dependency is
IN(e) = {c, d} and the out-dependency is Out(e) = {f, g}.

The local plan execution proceeds as follows: when an
action a is completed, the information is communicated
to the agents in Out(a) i.e. the agents whose actions
have a in their dependency. Then, each agent updates its
completedActionsList and decides whether it can sched-
ule some action for execution by checking against In(a).
Only after that, the agent checks the precondition through
getV al(precond(a)), calls the execute(a) function and then
again checks the effect through getV al(effect(a)) in that
order.

(a) Centralized mode

(b) Decentralized mode

Figure 3: Architectures for distributed plan execution.

3.3. Issues with multi-agent plan execution in an
untrusted environment

The distributed plan execution mechanisms described above
(both centralized and de-centralized) implicitly assume that the
agents are trusted and collaborative. Therefore, plan execution
can be implemented using simple datastructures and communi-
cation mechanisms. However, in highly distributed CPS’s with
mobile entities entering and exiting the system dynamically,
such assumptions may be misplaced. In the following, we
discuss the points of failure in distributed plan execution
in untrusted environments where agents may be faulty or
malicious.

1) An agent may not execute the action it is supposed to
execute. This will result in blocking the dependent actions
in the same or other agents, or not resulting in the desired
effects, consequently leading to plan failure.

2) An agent may execute a local action out of order even
though the dependencies are not yet fulfilled. This can
happen when such early execution is beneficial to the
agent but leads to failure in achieving the system goal (a
la ”tragedy of commons”).

3) An untrusted agent may call the execute() API even
though the preconditions do not hold. This may be
because of malicious or greedy reasons on part of the
agent since the agent might have predicted that such
preemptive execution might lead to system failure (e.g.
baking a cake without pre-heating the oven).

4) Agents may notify the completion of actions even though
they might not have issued the API corresponding to the
action or even though the effects were not satisfied. This
may be because an agent may profit by ”shirking” its
responsibility.

In the rest of the paper, we describe how one can implement

Figure 4: Smart contract based Distributed plan execution in
centralized mode.

the agents in a distributed plan execution system with smart
contracts such that the above-mentioned issues are prevented.

4. Distributed Plan Execution with Smart Con-
tracts

The main idea is to coordinate the steps in distributed plan
execution through smart contracts. Then, the semantics of
smart contracts and the underlying blockchain ensures that
the (in)actions of the agents are securely recorded so that
agents violating the smart contract (hence the intended plan
execution) can be determined unequivocally. The associated
penalty of contract violation then forces the agents to follow
the contract resulting in proper plan execution.

4.1. Smart contracts for plan execution in centralized
mode

The architecture of the Smart Contract enhancement is
shown in Fig. 4. There is a smart contract (Plan SC) which
is the Scheduler agent that orchestrates a given plan, a bunch
of smart contracts (Act SC) each responsible for getting the
predicate values and getting the actions executed. Since these
actions need to access the datasources external to the under-
lying blockchain, the operations are executed as transactions
on an Oracle smart contract(Oracle SC)(explained in the
following). In addition, for ease of information access, we
use a Register smart contract(Register SC) that essentially
stores a mapping from the actions to the corresponding Act
SC.

We give the schema of the smart contracts in Listing 1.
Complete code is given in the Appendix1.

1. The code is attached only for ready reference. To respect page limits,
we will just provide a link to the code in a publicly available archive in the
final version.

contract Register_SC {
event logDeployedContract(address

tenant,string s);
mapping(uint256 => Act_SC)

action_scAddrMap;
function setAct(uint[] memory

action_names) public { . . . }
function getAct(uint256 action_name)

public returns(Act_SC act_scAddr) {
. . .}

}

contract Plan_SC{
event loglist(uint256[] x,string s);
event logexist(uint256[] x,uint s,bool

b);

function Plan_SC(){//DAG Creation
:
}
function dispatchNext(Register_SC

register_addr, uint256 Action_id)
returns(bool _success){ . . . }

import "github.com/oraclize/ethereum-api/
oraclizeAPI.sol";

contract Act_SC is usingOraclize{
struct Action{
uint256 Action_id;
string Action_URI;
bytes32 [] preCond,effects;

}
Action private action_1,....,action_6;
mapping(uint256 => Action)

actionid_ActionMap;

function Act_SC(uint[] memory
action_names){· · ·}

function getPreCondition(uint256
Action_id) public returns (bytes32
[] preCond){· · ·}

function getEffect(uint256 Action_id)
public returns(bytes32[] effect) {
· · ·}

function checkPreCondition(bytes32[]
preCond,bytes32[] preCond_orac)
returns(bool cond){· · ·}

function checkEffect(bytes32[] eff,
bytes32[] eff_orac) public returns(
bool cond){· · ·}

function execute(uint256 Action_id)
external returns(bool success){· · ·}

}

Listing 1: Smart Contracts for Plan Execution in Centralized
Mode

4.1.1. Outline of the smart contracts. The Plan smart
contract acquires a plan as a part of its constructor. In the
listing, we have hardcoded the plan, but it can be obtained
from the user or application or from some service. The plan is
represented as a list of lists, the head of each sub-list denoting
an action a, and the rest denoting In(a). Whenever there is a
completion notification for an action, this is deleted from all
the lists. Thus, when the sublist is a singleton, it is known that
its in-dependencies have been already completed and the head
of the list is taken up for execution by calling dispatchNext.

There are multiple instances of the Act smart contract each
corresponding to an agent. For each action that the Plan smart
contract wants to dispatch, it must know the corresponding
Act smart contract address. This information is maintained
in a mapping (actions → Act SC instance address) in the
Register smart contract. The setAct function is used to create
the mapping and getAct function is used to extract the address
of the Act smart contract instance.

Taking advantage of the shared blockchain, the different
instances of Act smart contract instance share a common
completedList of actions. When the action is executed by an
Act instance and the effect has been verified, it updates the
list. The Plan smart contract accesses the completedList to
see if the execution was successful and whether it can update
the plan datastructure (list of lists).

Note the import statement in the Act smart contract: im-
port ”github.com/oraclize/ethereum-api/oraclizeAPI.sol”; and
the definition of Act smart contract as derived from
Oraclize: contract Act SC is usingOraclize. This pre-
pares Act SC to interface with Oraclize with the

callback(bytes32 myid, bytes32[] result) function. In
the main function execute(), the Act smart contract checks the
precondition after getting the predicate values from the oracle,
calls the device execution through the Oracle (this is skipped
in the code since we are just faking the execution, but in real
application too, this is no different from the Oracle calls), and
checks the effect after which it updates the completedList.
Any failure in any of the above steps results in aborting the
transaction, which can ultimately be cascaded to the user or
application.

4.1.2. Oracle SC from Oraclize. The Oraclize [9] solution
guarantees that the data fetched from the original data-source
is genuine and untampered. This is achieved by creating a doc-
ument called authenticity proof for the data returned from the
sensors. These proofs can be build using different technologies
like Trusted Execution Environments e.g. Intel SGx [10] and
auditable virtual machines. The communication between smart
contract and Oraclize is asynchronous in nature and happens as
follows: Every transaction broadcast by an agent participating
in the blockchain will have special instruction which manifest
to Oraclize. The 3rd party service running the oraclize will
be constantly monitoring the blockchain for such requests of
sensor Data. As per the request, Oraclize will collect the result,
sign and execute the callback function in smart contract.
It also follows an ”If This Then That” logical model. For

example, it could continuously check for a condition and notify
when the condition has been met. The oracles can be both
Inbound, to get data inside the blockchain or Outbound, to
notify an actuator outside of the blockchain about an event.

4.1.3. Deployment and Running. First the oracle smart
contract is deployed. Using its address, the Act SC instances
are deployed. User then deploys the Register SC that, in
turn, calls the Act SC functions to populate the mapping
(actions → Act SC instance address). Lastly, the Plan SC is
deployed. After deployment, user or application can upload
a plan to the Plan SC through the constructor. We plan to
provide a plan.setPlan(plan) function to upload plans
during operation as well which can help in replanning. The
plan.startExec() starts off the execution of the plan by
repeated calls to the dispatchNext() function.

The function plan.dispatchNext() selects actions
whose dependencies have been fulfilled. These actions are then
passed to Act.execute(). Preconditions of these actions
are checked by obtaining the predicates from the Oracle SC.
After the action is invoked through the corresponding API,
effect predicates are checked. Any exception in any of the steps
leads to call of plan.abort(). These steps are illustrated
in a pictorial manner in Fig. 5.

Figure 5: Deployment and Execution of smart contracts for
plan execution

4.2. Smart Contracts based plan execution in decen-
tralized mode

The main ideas for the smart contracts for decentralized
mode operation is similar to the centralized case, except that
the Scheduler Plan SC and Act SC are now combined
with action dependencies maintained and updated in the single
Plan Act SC. The architecture for the distribute plan exe-
cution with smart contracts is given in Fig. 6. As before, we
have a Register smart contract which provides a function to
map actions to the corresponding agents. This mapping is used
to call the update function of the Plan Act SC instances.
We also use the same Oracle smart contract to access the
predicates and execute the actions.

Figure 6: Distributed plan execution with Smart Contracts.

In the centralized case the Act smart contracts were in-
teracting with the Plan smart contract and there was no
communication among the Act instances. On the other hand,
in the distributed case, the Plan Act smart contract inter-
act peer-to-peer. Each Plan Act smart contract maintains a
completedList which is used to find if any action can be
enabled at all. When an action is enabled for execution, as
before, precondition and effect are verified through the Oracle.
When an action completes, the update function of the Act
instances in Out(a) are called so that their completedLists
are updated.

5. Related Work

There is very little published research work in the inter-
section of AI and blockchain. But there is immense interest
and a large number of magazine style articles out there
that talk about the potential. [11] talks about AI used as a
cognitive technology for user interaction and how that enables
a blockchain based solution. The online article [12] argues at a
high level several benefits of blockchains to AI and vice versa.
In a number of papers from [13] AI is suggested to analyze
the effectiveness of past contracts and suggest new terms and
conditions.

Blockchains are used to market and incentivize data, AI
models and algorithms. Decisions from AI algorithms are
proposed to be kept in the blockchain for provenance since
blockchain ensures integrity of the data. Blockchain is used
in federated learning to ensure accountability and prevent
data poisoning [14]. However, it seems the exploration of the
intersection of AI and blockchain is still very much in its early
days.

[15] is a recent survey of the state of the art in the
application of Blockchains to multi-agent systems. However
in most cases, existing works do not address the issues in
plan execution. For example, in [16] the focus in on multi-
agent coordination and control in the context of UAVs using
blockchains.

Most work is focused on multi-agents and distributed vs
centralized planning or the issues in coordinating planning
activity in a distributed setup. There is very little on execution
time coordination of plans among multiple agents. For exam-
ple, [2], [17], [18], [19] survey several multi-agent planning
methods including distributed plans. [20] talks about how
individual agents in a multi-agent setup may deal with failure
situations. However, there is very little on how to enforce
coordinated execution, especially in untrusted environments.
In this paper, we show probably the most direct use of smart
contracts in an AI use case to date.

6. Conclusion

Intelligent cyber-physical systems can be implemented by
integrating planning capability in agent software, which trans-
forms the system to a multi-agent planning paradigm. How-
ever, the traditional methods for planning and plan execution
in multi-agent system can fail when the agents are untrusted. In
this paper, we propose a smart-contract based extension of the
agents which ensure proper plan execution even in untrusted
environments.

We have described two specific architectures - one for a
centralized and the other for a decentralized mode of execution
of distribution plans. The architectures depend only upon the
underlying devices and their agents and are independent of any
applications built on top of the CPS. Moreover, the proposed
architectures suggest that smart contracts can be automatically
generated from the derived plans, as a result of which the entire
system of smart, intelligent agents can be fully automated.

Another point to be noted is the clean separation of the
physical layer operations (sensing and actuation) from the
contract logic through the oracle smart contracts. Due to
this characteristic, it is envisaged that functions such as plan
synthesis and replanning can be easily integrated in the system
by accessing these external services through the Oracle.

References

[1] “An architectural blueprint for autonomic computing,” White Paper,
IBM, June 2005.

[2] M. de Weerdt and B. Clement, “Introduction to planning in multiagent
systems,” Multiagent Grid Syst., vol. 5, no. 4, pp. 345–355, Dec. 2009.
[Online]. Available: http://dl.acm.org/citation.cfm?id=1735317.1735318

[3] S. J. Russell and P. Norvig, Artificial Intelligence: A Modern Approach,
2nd ed. Pearson Education, 2003.

[4] D. Mazieres, “The stellar consensus protocol: A federated model
for internet-level consensus. url:https://www.stellar.org/papers/stellar-
consensusprotocol.pdf,” 2016.

[5] S. Popov, “The tangle. url:https://iota.org/iota whitepaper.pdf,” IOTA
Whitepaper. pdf, 2017.

[6] C. Cachin, “Architecture of the hyperledger blockchain fabric,” in
Workshop on Distributed Cryptocurrencies and Consensus Ledgers, vol.
310, 2016.

[7] V. Buterin et al., “A next-generation smart contract and decentralized
application platform,” white paper, 2014.

[8] “The solidity contract-oriented programming language.” [Online].
Available: https://github.com/ethereum/solidity

[9] Oraclize-Dev-Community, “Documentation of oraclize.
url:https://docs.oraclize.it,” Documentation, 2018.

[10] V. Costan and S. Devadas, “Intel sgx explained.” IACR Cryptology ePrint
Archive, vol. 2016, no. 086, pp. 1–118, 2016.

[11] P. Treleaven and B. Batrinca, “Algorithmic regulation: Automating
financial compliance monitoring and regulation using ai and blockchain,”
Journal of Financial Transformation, vol. 45, pp. 14–21, 2006.

[12] F. Corea, “The convergence of ai and blockchain:
whats the deal?” https://medium.com/@Francesco AI/
the-convergence-of-ai-and-blockchain-whats-the-deal-60c618e3accc,
2017, accessed: 2018-09-01.

[13] Blockchain, “Combining blockchain and ai to make smart con-
tracts smarter. url:https://legalconsortium.org/uncategorized/combining-
blockchain-and-ai-to-make-smart-contracts-smarter/,” Blockchain Con-
sortium, 2017.

[14] J. Weng, J. Weng, M. Li, Y. Zhang, and W. Luo, “Deepchain: Auditable
and privacy-preserving deep learning with blockchain-based incentive,”
IACR Cryptology ePrint Archive, vol. 2018, p. 679, 2018. [Online].
Available: https://eprint.iacr.org/2018/679

[15] D. Calvaresi, A. Dobovitskaya, J. P. Calbimonte, K. Taveter, and M. I.
Schumacher, “Multi-agent systems and blockchain: Results from a sys-
tematic literature review,” in 16th International Conference on Practical
Applications of Agents and Multi-Agent Systems (PAAMS 2018), 2018.

[16] A. Kapitonov, S. Lonshakov, A. Krupenkin, and I. Berman, “Blockchain-
based protocol of autonomous business activity for multi-agent systems
consisting of uavs,” in Workshop on Research, Education and Devel-
opment of Unmanned Aerial Systems (RED-UAS), October 2017, pp.
84–89.

[17] A. Bonisoli, “Distributed and multi-agent planning, challenges and open
issues,” in 13th Doctoral Workshop in Artificial Intelligence in Interna-
tional Conference of the Italian Association for Artificial Intelligence
(AI*IA 2013), December 2013.

[18] Y. Dimopoulos and P. Moraitis, “Multi-agent coordination and co-
operation through classical planning,” in Proceedings of the 2006
IEEE/WIC/ACM International Conference on Intelligent Agent Technol-
ogy, December 2006.

[19] R. Nissim, R. I. Brafman, and C. Domshlak, “A general, fully dis-
tributed multi-agent planning algorithm,” in Proc. of 9th Int. Conf. on
Autonomous Agents and Multiagent Systems (AAMAS 2010), May 2010.

[20] C. Guzman, P. Castejon, E. Onaindia, and J. Frank, “Robust plan
execution in multi-agent environments,” in IEEE 26th International
Conference on Tools with Artificial Intelligence, 2014, pp. 384–391.

http://dl.acm.org/citation.cfm?id=1735317.1735318
https://github.com/ethereum/solidity
 https://medium.com/@Francesco_AI/the-convergence-of-ai-and-blockchain-whats-the-deal-60c618e3accc
 https://medium.com/@Francesco_AI/the-convergence-of-ai-and-blockchain-whats-the-deal-60c618e3accc
https://eprint.iacr.org/2018/679

7. Appendix

7.1. Register Smart Contract

pragma solidity 0.4.0;
contract Register_SC {

event logDeployedContract(address
tenant,string s);

mapping(uint256 => Act_SC)
action_scAddrMap;

function setAct(uint[] memory
action_names) public {
Act_SC addr=new Act_SC(action_names)

; // returns address of new
contract

for(uint256 x = 0; x < action_names.
length; x++) {
action_scAddrMap[action_names[x

]]=addr;
}
logDeployedContract(addr,"

new_contract_address");
}

function getAct(uint256 action_name)
public returns(Act_SC act_scAddr) {
return action_scAddrMap[action_name

];
}

}

Listing 2: Register Action API

7.2. Plan Smart Contract

pragma solidity ˆ0.4.0;
import "Register.sol";
contract Plan_SC{

event loglist(uint256[] x,string s);
event logexist(uint256[] x,uint s,bool

b);

using ListInteger for *;
uint action_count;
uint256[][6] dag;
uint256 CompletedListLength;
function Plan_SC(){//DAG Creation

action_count=6;
dag[0]=[1]; dag[1]=[2];

dag[2]=[3,1]; dag[3]=[4,2];
dag[4]=[5,2,3]; dag[5]=[6,5];

}
function runPlan(Register_SC

register_addr){
while(CompletedListLength!=

action_count)

for(uint256 x = 0; x < dag.length; x
++) {
uint current;bool _success;
if(dag[x].getSize()==1){
current =dag[x][0];
_success=dispatchNext(

register_addr,current);
}
if(_success){

for(uint256 y = 0; y < dag.
length; y++) {
if(exist(dag[y],current))

dag[y].removeByValue(current); }
}

}
}
function dispatchNext(Register_SC

register_addr, uint256 Action_id)
returns(bool _success){
Act_SC act_addr=register_addr.getAct

(Action_id);
bool success=act_addr.execute(

Action_id);
uint256[] memory res=act_addr.

getCompletedList();
CompletedListLength=res.length;
loglist(res,"completed_list_updated"

);
return success;

}
}

Listing 3: Plan API

7.3. Act Smart Contract

pragma solidity ˆ0.4.0;
import "github.com/oraclize/ethereum-api/

oraclizeAPI.sol";
contract Act_SC is usingOraclize{

event display(string x);
event display(string x,uint[] s);
event abort(string s,uint256 actionID);
event completed(string s,uint256

actionID);
event displayActionName(uint256 x);
struct Action{

uint256 Action_id;
string Action_URI;
bytes32 [] precond;
bytes32[] effects;

}
Action private action_1,....,action_6;
mapping(uint256 => Action)

actionid_ActionMap;
uint256[] public completedList;

function Act_SC(uint[] memory
action_names){
for(uint256 x = 0; x < action_names.

length; x++) {
if(action_names[x]==1){
action_1.Action_id=action_names[x];
action_1.Action_URI="http://a1.com";
action_1.precond.push("precond1_0");
action_1.effects.push("effects1_0");
actionid_ActionMap[1]=action_1;
}//Similarly initialise other

actions
}

}
function getCompletedList() external

returns(uint256[] list) {
return completedList;

}
function getPreCondition(uint256

Action_id) public returns (bytes32
[] preCond){
return actionid_ActionMap[Action_id

].precond;
}
function getEffect(uint256 Action_id)

public returns(bytes32[] effect) {
return actionid_ActionMap[

Action_id].effects;
}
function checkPreCondition(bytes32[]

preCond,bytes32[] preCond_orac)
returns(bool cond) {
return true;

}
function checkEffect(bytes32[] eff,

bytes32[] eff_orac) public returns(
bool cond) {
return true;

}
//oraclize start from here...
bytes32 [] orac_res;// for storing

preCond and effects
function __callback(bytes32 myid,

bytes32 [] result) {
if (msg.sender != oraclize_cbAddress

()) throw;

orac_res = result;
}
function getPredicatesValues(uint256

Action_id,string s)returns(bytes32
[] effect){

string action_url=actionid_ActionMap
[Action_id].Action_URI;

oraclize_query("URL", action_url);//
will call __callback

return orac_res;
}
function execute(uint256 Action_id)

external returns(bool success){
bytes32[] memory preCond=

getPreCondition(Action_id);
bytes32[] memory preCond_orac=

getPredicatesValues(Action_id,"
preCond");

if(checkPreCondition(preCond,
preCond_orac)){
display("callAPI(action_api_map[

actionID])");
}
else{

abort("Transaction_Rollback",
Action_id);

return false;
}
bytes32[] memory eff=getEffect(

Action_id);
bytes32[] memory eff_orac=

getPredicatesValues(Action_id,"
eff");

if(checkEffect(eff,eff_orac)){
completedList.push(Action_id);
completed("Action_Completed",

Action_id);
return true;

}
else

abort("Transaction_Rollback",
Action_id);

return false;
}

}

Listing 4: Act API

	1 Introduction
	2 Background
	2.1 Planning
	2.2 Multi-agent Planning
	2.3 Blockchain & Smart Contract

	3 System Model
	3.1 Distributed Plan Execution in Centralized Mode
	3.2 Distributed Plan Execution in Decentralized Mode
	3.3 Issues with multi-agent plan execution in an untrusted environment

	4 Distributed Plan Execution with Smart Contracts
	4.1 Smart contracts for plan execution in centralized mode
	4.1.1 Outline of the smart contracts
	4.1.2 Oracle SC from Oraclize
	4.1.3 Deployment and Running

	4.2 Smart Contracts based plan execution in decentralized mode

	5 Related Work
	6 Conclusion
	References
	7 Appendix
	7.1 Register Smart Contract
	7.2 Plan Smart Contract
	7.3 Act Smart Contract

