
Dynamic Management of TurboMode in Modern Multi-core Chips

David Lo and Christos Kozyrakis
Stanford University

{davidlo, kozyraki}@stanford.edu

Abstract
Dynamic overclocking of CPUs, or TurboMode, is a feature

recently introduced on all x86 multi-core chips. It leverages ther-
mal and power headroom from idle execution resources to over-
clock active cores to increase performance. TurboMode can ac-
celerate CPU-bound applications at the cost of additional power
consumption. Nevertheless, naive use of TurboMode can signif-
icantly increase power consumption without increasing perfor-
mance. Thus far, there is no strategy for managing TurboMode
to optimize its use across all workloads and efficiency metrics.

This paper analyzes the impact of TurboMode on a wide
range of efficiency metrics (performance, power, cost, and com-
bined metrics such as QPS/W and ED2) for representative
server workloads on various hardware configurations. We de-
termine that TurboMode is generally beneficial for performance
(up to +24%), cost efficiency (QPS/$ up to +8%), energy-delay
product (ED, up to +47%), and energy-delay-squared product
(ED2, up to +68%). However, TurboMode is inefficient for work-
loads that exhibit interference for shared resources. We use this
information to build and validate a model that predicts the opti-
mal TurboMode setting for each efficiency metric. We then im-
plement autoturbo, a background daemon that dynamically man-
ages TurboMode in real time without any hardware changes. We
demonstrate that autoturbo improves QPS/$, ED, and ED2 by
8%, 47%, and 68% respectively over not using TurboMode. At
the same time, autoturbo virtually eliminates all the large drops
in those same metrics (-12%, -25%, -25% for QPS/$, ED, and
ED2) that occur when TurboMode is used naively (always on).

1 Introduction
There is a constant need for higher performance in computer

systems. This is particularly the case for large-scale datacenters
(DCs) that host demanding popular services such as social net-
working, webmail, streaming video, websearch, and cloud com-
puting. These applications demand both high throughput to sup-
port large number of users and low latency to meet Quality of
Service constraints for each user. Nevertheless, performance
is not the only efficiency metric. A large concern for datacen-
ter operators is the total cost of ownership (TCO) for a certain
level of service, including both capital and operational expenses.
The two largest TCO components are the cost of servers and the
cost to power them, which can be 53% and 19% respectively
[10]. Therefore, any optimization should also target metrics that
capture energy and cost efficiency such QPS/W or QPS/$ for
throughput workloads and energy-delay products (ED or ED2)
for latency sensitive applications.

This paper focuses on dynamic CPU overclocking (Turbo-
Mode) as a method to increase the efficiency of server computers.
While our work focuses on server workloads, the techniques we
present can be used in any kind of computer system that uses Tur-
boMode. TurboMode has been recently introduced on x86 multi-

core chips from Intel and AMD. It overclocks a cores by utiliz-
ing available thermal headroom from idle execution resources
[12, 1]. Current chips can dynamically overclock a core by up
to 40% or more, which can lead to an increase in performance
by up to 40%. As the number of cores per chip increases over
time, the overclocking range and the performance implications
of TurboMode will also increase. TurboMode is controlled by
firmware using an embedded hardware controller that sets the
exact clock frequency based on the thermal headroom available
and the expected performance benefits. Software has little con-
trol over TurboMode, except for the ability to enable/disable it.

Unfortunately, TurboMode is not always beneficial and de-
ciding when to enable it is quite complex. As seen in Section 3,
the optimal TurboMode setting varies across different applica-
tions, hardware platforms, and efficiency metrics. There is no
clear static setting or simple heuristic for TurboMode manage-
ment. Naively turning on TurboMode (i.e., relying solely on the
firmware controller) can actually lead to energy waste of up to
28% and decrease cost efficiency in some cases. At the same
time, disabling TurboMode all the time misses opportunities for
huge gains in energy and cost efficiency. We need an automatic
system that manages TurboMode intelligently, maximizing its
benefits when applicable and masking its impact otherwise.

Towards this goal, we make the following contributions:
1. We characterize the impact of TurboMode on performance,

power, cost and energy efficiency metrics for various server
workloads on several hardware platforms (Intel and AMD).
We demonstrate that turning on TurboMode can greatly im-
prove such metrics (ED2 up to 68%) but can also significantly
degrade the same metrics in the presence of workload interfer-
ence (ED2 up to 25%). The wide variability in TurboMode’s
efficiency necessitates a dynamic control scheme.

2. We develop a predictive model that utilizes machine learning
to predict the proper TurboMode setting. We demonstrate that
our modeling technique is effective for a wide range of effi-
ciency metrics and different hardware configurations. It can
accurately predict the optimal TurboMode setting for various
application configurations.

3. We implement autoturbo, a daemon that uses the model to dy-
namically control TurboMode. The daemon requires neither
hardware modifications nor a priori knowledge of the work-
load. We demonstrate that it improves both energy efficiency
(ED by 47% and ED2 by 68%) and cost efficiency (QPS/$
by 8%). More importantly, it eliminates nearly all the cases
where TurboMode causes efficiency drops.

We expect the utility of autoturbo to be even greater with future
multi-core chips. With more cores per chip, the frequency range
and potential of TurboMode will be larger. At the same time,
there will be increased interference for shared resources such as
caches, memory channels, and on-chip or off-chip interconnects.

The rest of the paper will be organized as follows. Section 2

describes TurboMode and current implementations of it from
x86 server CPU vendors. Section 3 analyzes the impact of Tur-
boMode for various workloads, metrics, and machine configura-
tions. Section 4 describes our implementation of autoturbo and
Section 5 evaluates its efficacy. Section 6 presents related work
and Section 7 concludes the paper.

2 TurboMode Background
TurboMode (TM) is a form of dynamic voltage frequency

scaling (DVFS). Unlike prior applications of DVFS which de-
crease CPU clock frequency and voltage to save power, TM oper-
ates in the opposite direction. Namely, TM increases CPU clock
frequency in the active cores when a multi-core processor has
idle resources. Thus, previous DVFS control schemes ([15, 24])
are inadequate in managing TM, as they do not account for the
dependency between CPU clock frequency and the presence of
idle resources. The processor is able to overclock active cores be-
cause the CPU’s thermal design power (TDP) is the worst case
power at maximum load. When a workload idles some resources
of a core, there will be thermal and power headroom available.
Since in practice applications do not fully utilize all execution
units of a core, TM functions even if all cores are active. TM
exploits this available headroom by increasing the operating fre-
quency of the processor [12, 1]. Increasing the CPU’s frequency
will then speed up the applications running on the CPU, poten-
tially leading to better performance. The frequency boost en-
abled by TM is already significant on current processors. In one
of our evaluation machines, TM can boost the CPU from a nom-
inal frequency of 2.50GHz to 3.60GHz, a 44% gain that could
lead to a 44% performance increase.

All current implementations of TM are controlled via a feed-
back controller implemented in firmware. The firmware con-
troller monitors the CPU to determine the frequency boost that
should be applied. The final operating frequency of the proces-
sor is determined by several factors that include CPU power con-
sumption, the number of idle cores, and CPU temperature. The
only way for software to manage TM for all modern x86 server
CPUs is to enable/disable its use. One way to do so is to stati-
cally enable/disable TM from the BIOS. However, this approach
is extremely coarse-grained, as turning on TM from a disabled
state would require a machine reboot. Instead, we use an on-
line approach by utilizing the operating system to dynamically
enable or disable TM through existing ACPI power management
functions. In our work, we use the Linux kernel’s built-in CPU
frequency scaling support to set the maximum frequency allowed
for the CPU. By setting the maximum CPU frequency at the nom-
inal frequency, or one step lower, the CPU will be prevented from
entering the TM regime. However, the CPU frequency scaling fa-
cility cannot set the maximum allowable TM frequency. For in-
stance, if a CPU can scale from a nominal 2.50GHz to 3.60GHz,
setting the maximum CPU frequency to 3.20GHz will not pre-
vent the firmware TM controller from setting the CPU frequency
to 3.60GHz. However, for the same processor, setting the maxi-
mum frequency at 2.50GHz will prevent TM from activating. We
will show later in the paper that adjusting this one simple switch
can have profound performance, power, and cost implications.

Both major x86 server CPU vendors, AMD and Intel, have
implemented TM in their latest generation processors. AMD’s
version is named Turbo CORE, while Intel’s version is called

TurboBoost. For this paper, we use “TM” as an umbrella term
for both versions. At a high level, both implementations are quite
similar. Both overclock the processor beyond its base frequency
when there is thermal and power headroom, and both have a max-
imum TM boost frequency that is prescribed by the number of ac-
tive cores. At the hardware level, there are significant differences
between AMD’s and Intel’s TM controller. AMD’s implementa-
tion reacts to current and temperature sensors on the CPU die to
adjust the frequency boost. Intel’s version predicts the power uti-
lization based on the instruction mix and uses that information to
determine the frequency boost. Intel’s TM is also subject to ther-
mal throttling, but unlike AMD’s version, it is not the primary
method to control frequency gain. Theoretically, Intel’s imple-
mentation has a more repeatable TM boost, while AMD’s imple-
mentation is more sensitive to external factors such as ambient
temperature. However, in our experiments, we have observed
that the frequency boost from AMD’s TM does not experience
wide variance between experiment runs. This is due to our test
machines being situated in a climate controlled environment that
would be found in a datacenter. Finally, we also observe that TM
appears to be frequency limited and not power limited.

Another difference between Intel’s and AMD’s TM con-
trollers is that Intel’s version attempts to address energy effi-
ciency. It does this by applying differing amounts of frequency
boost depending on the “memory scalability” of the workload
and a user configurable parameter for the aggressiveness of TM
(MSR_IA32_ENERGY_PERF_BIAS) [28]. In practice, we find
that this setting is hard to use effectively. We have observed
that setting the parameter to “energy efficient” can still lead to
degradation in energy efficiency metrics. Therefore, in our study,
we leave this parameter at the setting for “highest performance”
to avoid interference between the firmware controller and our
software controller for TM. Intel also exposes a MSR that al-
lows software to control the maximum achievable TM boost
(MSR_TURBO_RATIO_LIMIT); however, we do not evaluate it
because there is no equivalent MSR for the AMD platform.

A software TM controller is motivated further by the fact that
improving the firmware TM controller does not guarantee im-
provements in energy efficiency. This is because it is infeasible
to pre-program firmware to be aware of the impact of TM on all
workloads and workload combinations. In addition, the firmware
does not have information on the other aspects of the system that
affect cost and power (e.g. cooling system, component costs,
etc.), nor does it know which metric to optimize for. Thus, an
entire system needs to be assembled and operated before it can
be determined whether TM will improve efficiency metrics.

3 TurboMode Analysis
We now examine the highly variable impact of TM on perfor-

mance, energy, and cost efficiency for a variety of workloads on
a wide-range of hardware platforms.

3.1 Methodology
Hardware We selected several very different hardware plat-

forms that represent a wide selection of server parameters that
are seen in practice [18, 6] in order to reach conclusions that are
not specific to one hardware configuration. We use real hardware
for our evaluation in order to accurately capture the complex be-
havior of TM.

Name Base Max TM HW CPU
Freq. boost % Cost TDP

SBServer (Intel) 3.20GHz 19% $2000 130W
ILServer (AMD) 1.90GHz 59% $1700 115W
SBMobile (Intel) 2.50GHz 44% $1300 45W
IBServer (Intel) 3.30GHz 12% $1500 69W
HServer (Intel) 3.10GHz 13% $1500 80W

Table 1. Machine configuration summary.

1. Sandy Bridge Server (SBServer) has a Sandy Bridge EP (Core
i7 3930k) processor with 6 cores that share a 12MB L3 cache.
The granularity of TM control is chip-wide. This configuration
is representative of a low-end Sandy Bridge server.

2. Interlagos Server (ILServer). This system contains an AMD
Opteron 6272 processor, mimicking a low-end Interlagos
based server. The processor can logically be viewed as a dual
socket part, since it is composed of two dies that share a pack-
age. Each die has 4 modules, where each module has 2 inte-
ger cores that share a front-end. All modules on the same die
share 8MB of L3 cache. We lower the base frequency from
2.1GHz to 1.9GHz in order to be able to dynamically control
TM. Unlike Sandy Bridge and Ivy Bridge CPUs, the Interlagos
architecture allows for control of TM at the module level.

3. Sandy Bridge Laptop (SBMobile). The laptop contains an
Intel Core i7 2860QM processor with 4 cores that share a 8MB
L3 cache. We use a mobile part in order to understand the
implications of TM on a more energy-proportional system. In
addition, the larger frequency boost of this CPU gives insight
into future CPUs with a larger TM frequency swing.

4. Ivy Bridge Server (IBServer) and Haswell Server (HServer).
We also performed a partial evaluation on Ivy Bridge (Xeon
E3-1230v2) and Haswell (Xeon E3-1220v3) CPUs. Due to
space constraints we do not present a full evaluation of TM
on these platforms; however, we will demonstrate that our dy-
namic controller works well on these platforms.

All machines use Ubuntu 12.04 LTS as the operating system with
Linux 3.2.0-26. We summarize the machine configurations used
in this study in Table 1. For our experiments, we disable Hy-
perThreading on both Intel CPUs and the second core in each
Interlagos module to avoid performance counter interference.

We monitor the frequency of the CPU throughout our ex-
periments using turbostat to verify that TM is functioning as
expected. We measure the total system power by interpos-
ing a power meter between the power supply and the power
plug. This enables us to determine the impact of TM on to-
tal system power, which is important to DC operators. In ad-
dition, we also measure the power of the system when idle in
order to approximate the system active power for a completely
energy-proportional system (e.g. ActivePower ≈ TotalPower−
IdlePower). We apply the energy-proportional approximation to
SBServer, ILServer, and SBMobile and denote the resulting the-
oretical configurations as SBServer†, ILServer†, and SBMobile†.
We make energy-proportional approximations because scenarios
that are not energy-proportional heavily favor the use of TM.
This is because high system idle power masks the power in-
crease from TM. The idle power of SBServer, ILServer, and
SBMobile is 83W, 60W, and 25W, respectively. Utilizing a sin-
gle core is a non-energy-proportional scenario because it adds
approximately 50W, 30W, and 20W to the power consumed by

SBServer, ILServer, and SBMobile, respectively. ActivePower
is underestimated due to the inclusion of CPU active idle power
in IdlePower. Since TM will always increase TotalPower, the
ratio ActivePowerT M/ActivePowerbaseline will be overestimated.
Thus QPS/W , QPS/$, ED, and ED2 results for the energy-
proportional approximation conservatively underestimate the
benefits of TM.

Workloads We evaluate the performance, power, and cost
implications for a variety of applications on each of the differ-
ent hardware configurations. A wide ranging set of benchmarks
were chosen in order to capture the behavior of TM for compute-
driven datacenter applications. For our study, we focus mainly
on the CPU and the memory subsystem and ignore interactions
with the disk, network, and I/O subsystems. We use SPEC-
CPU2006 applications (SPECCPU) as single-threaded work-
loads and mixes of SPECCPU applications to emulate multi-
programmed workloads. SPECCPU application mixes are cho-
sen similar to the process used in [29]. Applications are cate-
gorized based on cache sensitivity, and a mix is created by ran-
domly choosing categories and then randomly choosing an ap-
plication for each category. The number of applications in a mix
is 4, 6, 8, 4, and 4 for SBMobile, SBServer, ILServer, IBServer,
and HServer respectively. We generate 35 random application
mixes for each hardware configuration. We use PARSEC[3] as a
multi-threaded benchmark application. We evaluate all PARSEC
applications for all thread counts from 1 to the number of cores
on each machine.

For enterprise class workloads, we use SPECpower_ssj2008
that is run with enough threads to utilize the entire machine. We
also construct websearch, a representative latency-critical web
application, by using the query serving component of Nutch
[19, 9] with an in-memory index. The index for websearch is
generated by indexing a 250GB dump of 14.4 million pages from
2005 Wikipedia, which generates a 37GB index. We then use a
4GB portion of that index, which captures approximately 27GB
and 1.6 million pages of the original data. Websearch is driven by
simulated search queries that are generated by a model that uses
an exponential distribution for query arrival times and a query
term model that is representative of web search queries seen at
search engines [30]. Websearch must also satisfy a Quality of
Service (QoS) constraint that 95% of the queries must be pro-
cessed in less than 500ms [22]. Nutch is configured such that at
100% utilization it will use all available CPU cores.

Single SPECCPU workloads and application mixes from
SPECCPU can be considered to be either throughput-oriented
or latency-oriented. These benchmarks represent throughput-
oriented applications if the number of benchmarks executed per
second is the primary metric. Similarly, if the metric of interest is
how long each benchmark takes to execute, then SPECCPU is an
analogue for latency-oriented applications. SPECpower_ssj2008
is a throughput-oriented benchmark that scores the system by
how many queries per second it can handle. Thus, we do not
compute latency metrics for SPECpower_ssj2008. Finally, while
websearch is both sensitive to throughput and latency, it can be
optimized for either one. To optimize websearch for through-
put, one would measure the maximum sustained QPS that can
be achieved without violating QoS. To optimize for latency, one
would reduce the 95%-ile latencies for a fixed QPS rate. In
addition, since SPECpower_ssj2008 and websearch are request-

Workload QPS
W

QPS
$ ED ED2

SB
Se

rv
er SPECCPU On On On On

SPECCPU mixes Off ? Off ?
PARSEC Off ? Off ?
SPECpower_ssj2008 Off On N/A N/A
websearch Off On On On

SB
Se

rv
er

† SPECCPU Off On On On
SPECCPU mixes Off Off Off ?
PARSEC Off Off Off ?
SPECpower_ssj2008 Off On N/A N/A
websearch Off On On On

IL
Se

rv
er SPECCPU On On On On

SPECCPU mixes On On On On
PARSEC On On On On
SPECpower_ssj2008 Off On N/A N/A
websearch On On On On

IL
Se

rv
er

† SPECCPU Off On On On
SPECCPU mixes Off Off ? On
PARSEC Off On ? On
SPECpower_ssj2008 Off On N/A N/A
websearch On On On On

SB
M

ob
ile SPECCPU Off On On On

SPECCPU mixes Off ? ? ?
PARSEC Off On ? ?
SPECpower_ssj2008 Off On N/A N/A
websearch Off On On On

SB
M

ob
ile

† SPECCPU Off On Off ?

Table 2. Optimal TM settings for each metric/workload
class/hardware configuration. On/Off indicates a static optimal
TM setting of On/Off. ? indicates that there is no optimal static
TM setting. The results for SPECpower˙ssj2008 are reported at
100% QPS rate achieved with TM on. The QPS/W and QPS/$
for websearch are reported at 100% QPS rate with TM on, and
ED and ED2 metrics are reported at 100% QPS rate with TM
off. SBMobile† only has SPECCPU listed because all other
workloads are energy-proportional on SBMobile.

driven workloads, we sweep the input QPS rate from 10% to
100% of the maximum QPS rate on each server configuration.
This is done because datacenters are not always utilized at 100%.

3.2 TurboMode for Different Metrics
There are many metrics that are useful when dealing with per-

formance, power, and cost. All of the metrics that we examine
are legitimate metrics when applied to different workload sce-
narios. For instance, under periods of high load, the metric of
interest will be performance, but under normal load conditions,
QPS/$ is more important. Even the same workload can have
different metrics of interest. Take websearch for example. If
one has a fixed 95%-ile latency target, the metric of interest is
QPS/W or QPS/$. On the other hand, if one wants to optimize
for a lower 95%-ile target, then ED and ED2 are more relevant.
We list the metrics that we analyze below:
1. Performance measures the raw performance of a workload

and is useful when application throughput and latency is criti-

ILServer/† SPECpower_ssj2008

0

20

40

60

80

0 50 100 150 200

Q
P

S
/$

QPS (thousands)

QPS/$ vs. QPS

0

1000

2000

3000

0 100 200

Q
P

S
/W

QPS (thousands)

QPS/W vs. QPS

0

1000

2000

3000

0% 50% 100%

Q
P

S
/W

QPS %

QPS/W vs. QPS %

0

20

40

60

80

0% 50% 100%

Q
P

S
/$

QPS %

QPS/$ vs. QPS %

TM off TM onILServer †

TM off TM onILServer

Figure 1. Impact of TM on QPS/W and QPS/$ for
SPECpower˙ssj2008 on ILServer and ILServer†. The graphs
in the upper half are for absolute QPS numbers, while the
graphs in the lower half are for QPS numbers relative to the
maximum QPS rate that can be supported for each setting of
TM. Higher numbers are better for QPS/W and QPS/$.

cal. This metric will obviously be improved by the use of TM,
and we include other metrics to see the true cost of using TM.

2. Power measures the total system power consumed while exe-
cuting the workloads. This metric is for situations where min-
imal power is needed, even at the expense of performance.

3. Energy Delay Product and Energy Delay Squared Product:
Energy Delay Product is calculated as the product of the en-
ergy it takes to complete an operation with the time it takes to
complete the operation, and Energy Delay Squared Product is
found in a similar way. These metrics are commonly used as a
way of finding the optimal tradeoff between performance and
energy. This tradeoff is important for latency sensitive appli-
cations in an energy constrained environment. [4]

4. Queries Per Second Over Power (QPS/W): The efficiency of
throughput-oriented batch workloads running on power con-
strained systems are best measured by this metric. QPS/W is
inversely proportional to the amount of energy needed to exe-
cute one job; thus, this metric is the same as energy efficiency
which is important in a large-scale DC [2].

5. QPS/$ is a direct measure of cost efficiency. The fiscally
conscious system operator will find this metric to be most rel-
evant for throughput-oriented workloads. We use a standard 3
year depreciation cycle, and we assume an electricity cost of
$0.15/kWHr. We use the cost model found in [25, 26] in our
calculations. This metric is commonly used to measure the
cost-efficiency of large-scale DCs [2].
We measured the changes in performance and power caused

by the use of TM and calculated the above metrics the workloads
on various hardware platforms. In Figure 2, we show the impact
of TM on the various metrics for a subset of applications. For
completeness, we show TM’s impact on all metrics in Table 2.

Using TM will always have a positive impact on performance,
as speeding up the clock frequency of the processor should not
degrade application performance. Similarly, TM will certainly
increase power consumption. As a case study of the optimal TM

setting for QPS/W and QPS/$ for a throughput driven work-
load, we examine SPECpower_ssj2008’s behavior on ILServer
and ILServer† as illustrated in Figure 1. SPECpower_ssj2008 is
amenable to the use of TM, as enabling TM increases the max-
imum QPS rate by 25%. To optimize for both relative and ab-
solute QPS/W , TM should be kept off. This is because QPS
will typically scale only as much as frequency, but the power
consumed scales faster than frequency. This is due to the fact
that P ∝ V 2 f and that higher frequencies require increased sup-
ply voltage [5]. Figure 1 shows this effect when idle power is
removed (ILServer†), as QPS/W when TM is on always falls
below the QPS/W for when TM is off.

On the other hand, if TM can produce a performance gain,
then it should almost always be enabled to optimize for QPS/$.
This effect can be explained in a straightforward manner by re-
viewing the hardware and energy costs associated with the TCO.
For ILServer, the cost of the hardware is about the same as the
cost of electricity and infrastructure for power delivery and cool-
ing. Since the use of TM does not increase power consumption
by an inordinately large factor, it is always more advantageous to
enable TM if it enables more performance out of the same piece
of hardware. In Figure 1, the QPS/$ for absolute QPS numbers
seems to show that TM degrades this metric. However, in real-
ity, if each machine can handle more work, then fewer machines
need to be provisioned. Thus, TM improves QPS/$ not for an in-
dividual machine, but rather for the entire datacenter, as reflected
in the graph for QPS/$ vs. relative QPS.

Table 2 shows that our observations for QPS/W and QPS/$
based on SPECpower_ssj2008 running on ILServer also gener-
alizes to many other workloads and platforms. There are some
exceptions to the rule. Using TM can actually improve QPS/W
in situations that are not energy-proportional, such as when run-
ning only a single instance of a SPECCPU application. When
the idle power is removed (e.g., SBServer† and ILServer†), then
the optimal TM setting for QPS/W for the single SPECCPU ap-
plication workload is to turn TM off. In addition, there are times
when TM should be disabled to optimize for QPS/$, such as
when TM does not appreciably increase the QPS rate.

TM has a variable effect on applications for ED and ED2 in
energy-proportional scenarios. In the single application work-
load scenario, ED and ED2 always benefit from the use of TM;
but tradeoffs emerge when the energy-proportional approxima-
tion is applied. When multiple cores are being utilized, there is
no optimal setting for ED and ED2 across all workloads. As we
will discuss in Section 3.3, the optimal TM setting for ED and
ED2 depends on whether the workload exhibits interference for
shared resources. In Section 4, we will combine our observa-
tions from this section to build an effective system to select the
optimal TM setting for ED, ED2, and QPS/$.

3.3 TurboMode for Different Workloads
As seen in Table 2, the optimal TM setting depends on the

workload. We now focus on ED and ED2 as a case study for how
TM can affect those metrics depending on workload. In Figure 2,
we show a subset of workloads that exhibit large swings for ED
and ED2 on the different machine configurations.

We study the ED and ED2 metrics for websearch on SB-
Mobile; the conclusions we arrive at also apply to SBServer†.
ILServer† can mostly be explained in the same way as well, ex-

cept for TM’s large positive effect on QPS/W and QPS/$. We
sweep the QPS rate for websearch from 10% to 100% of the max-
imum QPS that it can support with both TM on and TM off and
plot the effect of TM on various metrics in Figure 3. 95%-ile la-
tency is improved by 30%-35% across the same QPS range that
websearch can support if TM is not enabled. The reason why
the 95%-ile latency is reduced by a factor larger than the QPS
gain can be explained by queuing theory. A significant compo-
nent of 95%-ile latency is due to a query being held up by ear-
lier queries; thus, reducing the processing time for an individual
query will have an amplified effect on reducing 95%-ile latency.
Due to this effect, the ED and ED2 metrics, which are based on
95%-ile latency, are always improved significantly through the
use of TM. However, on the relative QPS graph, it may appear
that enabling TM degrades ED and ED2 when the utilization of
the machine goes over 80%. This is misleading, because running
websearch at that same absolute QPS rate with TM disabled will
violate the QoS constraint. Thus, a direct comparison is invalid
beyond that point. TM also provides a 24% boost to the maxi-
mum QPS, and its behavior for QPS/W and QPS/$ mirrors that
of SPECpower_ssj2008 and are explained in the same way. On
ILServer, TM actually increases the maximum QPS by 180%,
due to ILServer struggling to meet the QoS constraint when run-
ning with TM off. Because of the queuing delay effect, increas-
ing the clock frequency leads to a large increase in maximum
QPS, QPS/W , and QPS/$. If the QoS constraint was relaxed to
1 second, then the large increase in maximum QPS vanishes and
TM no longer benefits QPS/W or QPS/$ as much.

We now turn our attention to the SPECCPU application mixes.
Mix 1 is composed of lbm, xalancbmk, lbm, and milc. Mix 2 is
composed of namd, hmmer, gobmk, and bzip2. These mixes
were created by a random process as previously described. On
SBMobile, using TM on Mix 1 increases the CPU frequency by
20%, but only produces an average performance increase of 0.2%
with a 29% increase in power. On the other hand, enabling TM
for Mix 2 boosts the core frequency by 13% for a 13% increase
in performance and a 22% increase in power. The reason for
the disparate behavior is due to the composition of the mixes.
Mix 1 is composed of applications that either fit in the last level
cache, or exhibit cache thrashing behavior, while Mix 2 is com-
posed of applications that are classified as cache insensitive or
cache friendly [29]. Mix 1 incurs interference in the LLC and is
a completely memory-bound workload that cannot benefit from
TM. Enabling TM increases the CPU’s power consumption, even
if that increase does not translate into a performance gain. For
workloads not dominated by memory accesses (e.g., Mix 2), TM
will speed up the workload with modest power increases, result-
ing in a win for QPS/$, ED, and ED2. However, interference
can occur in other shared resources external to the CPU, such
as disk, network, and I/O. While dealing with interference for
those resources is beyond the scope of this paper, we expect that
workloads that interfere in those resources will also experience
large efficiency degradations when TM is enabled. TM has many
benefits but also runs the risk of increasing energy consumption
without realizing gains in performance. This strongly motivates
the construction of an intelligent controller that determines when
TM should be enabled. In Section 4, the observation that signif-
icant memory interference causes TM to burn extra energy will
be leveraged to build an intelligent TM controller.

-50%

0%

50%

100%

Mix 1 Mix 2 Websearch

%
 im

p
ro

v
e

m
e

n
t

Workload

SBMobile

-50%

0%

50%

100%

Mix 1 Mix 2 Websearch

%
 im

p
ro

v
e

m
e

n
t

Workload

ILServer†

ED ED² QPS/W QPS/$

-50%

0%

50%

100%

Mix 1 Mix 2 Websearch

%
 im

p
ro

v
e

m
e

n
t

Workload

SBServer†
127%

Figure 2. TM impact on ED, ED2, QPS/W , and QPS/$ metrics for a subset of workloads.

TM off TM on

SBMobilewebsearch

0

0.5

1

0 20 40 60

Q
P

S
/W

QPS

QPS/W vs. QPS

0

0.01

0.02

0.03

0 20 40 60

Q
P

S
/$

QPS

QPS/$ vs. QPS

0

10

20

30

0 20 40 60

E
D

QPS

ED vs. QPS

0

5

10

15

0 20 40 60

E
D

²

QPS

ED² vs. QPS

0

200

400

600

0 20 40 609
5

%
 la

te
n

cy
 (

m
s)

QPS

95% latency vs. QPS

0

0.5

1

0% 50% 100%

Q
P

S
/W

QPS %

QPS/W vs. QPS %

0

0.01

0.02

0.03

0% 50% 100%

Q
P

S
/$

QPS %

QPS/$ vs. QPS %

0

10

20

30

0% 50% 100%

E
D

QPS %

ED vs. QPS %

0

5

10

15

0% 50% 100%

E
D

²

QPS %

ED² vs QPS %

0

200

400

600

0% 50% 100%9
5

%
 la

te
n

cy
 (

m
s)

QPS

95% latency vs. QPS

Figure 3. TM impact on QPS/W , and QPS/$, 95%-ile latency, ED, and ED2 metrics for websearch on SBMobile. The 95%-ile
latency, ED, and ED2 numbers are absolute, meaning that lower is better.

Core 1

Core NCore N-1

Core 2 Sample perf
counters per core

Classifier

TurboMode
heuristic

App properties
per core

Enable/disable TurboMode Metric

Training data

Figure 4. Block diagram of online component autoturbo.

4 Dynamic TurboMode Management
4.1 Overview

We have demonstrated earlier that the use of TM can signifi-
cantly increase efficiency for some workloads while also causing
major degradations for others. We want the best of both worlds,
where the system intelligently uses TM only in situations that
produce an efficiency improvement. To achieve this goal, we
implement a software controller for TM named autoturbo.

The block diagram for autoturbo is shown in Figure 4. It runs
as a periodic background daemon in order to minimize resource
usage. autoturbo starts by collecting system wide per-core per-
formance counters for a configurable fixed time period, set to 5
seconds in our experiments. After it has collected counters, it
uses a machine learning classifier to predict application charac-
teristics for the workload on each active core. These results are
then used by heuristics to determine whether TM should be en-
abled or disabled to optimize for a certain metric. The heuristic
can be as simple as enabling TM if the classifier predicts that the

workload benefits from the use of TM for a certain metric, to a
more complicated heuristic that is used when several workloads
are running at the same time. The TM setting from the heuristic
is applied, and the process repeats from the beginning.

Since TM impacts each metric differently, we build a classi-
fier and heuristic for each metric of interest. Every metric re-
quires a separate classifier since TM will affect each metric dif-
ferently. The process to build the classifier and heuristic can be
automated and is described in Section 4.2. As autoturbo is an
open-loop controller, having accurate models is very important.

4.2 Offline Classifier Training
The online component of autoturbo uses models that are gen-

erated offline for the various metrics. The modeling parameters
only need to be generated once per server type. The offline train-
ing can be done by the system integrator, who then provides this
information to all their customers for a plug-n-play solution that
works right out of the box. The offline training can also be done
by the DC operator for a more customized solution, as they can
use their own metrics and workloads for the training phase. An-
other advantage of the DC operator performing offline training
is that they can provide a more accurate TCO model for their
infrastructure and cooling costs.

Classifying Individual Workloads Creating a model that
predicts the impact of TM on individual workloads for a specific
machine is fairly straightforward. We first use SPECCPU and
two other memory intensive benchmarks, stream and lmbench-
lat_mem, as the training applications. stream and lmbench-
lat_mem are selected because they exhibit streaming and cache

Machine Accuracy Metric Classifier Features
SBServer† 100.0% Naive % cycles

ED2 Bayes w/ mem.
SBMobile† 96.8% requests
Table 3. Classifier building results for metrics of interest on
various hardware configurations.

thrashing behaviors. These applications are then run on the ma-
chine that we wish to model, and performance, power, and var-
ious performance counters are measured when TM is on and
when it is off. We then calculate the effect TM has on the power,
performance, and cost metrics of interest.

As seen earlier, an application tends to benefit from TM if
it is not memory bound. Therefore, to predict if an individual
workload benefits from TM, we need only predict if it is mem-
ory bound. We build such a predictor by applying machine
learning techniques on a wide array of performance counters
that capture memory boundness, such as IPC, L3 loads/misses,
TLB misses, memory requests, etc. We first use feature selec-
tion to find the performance counters that best capture memory
boundness, and to reject performance counters that have poor sig-
nal to noise ratio or that simply don’t function correctly. Then,
we train a model based on those features to pick the proper
parameters for the model. We fit a model to each metric and
machine, due to cost/hardware variation between different con-
figurations. We use the Orange data mining package [7] for
this because manually tuning the model is both time consum-
ing and error prone. The model is then used in an online classi-
fier that predicts whether TM will benefit a metric. The results
of the feature selection and the accuracy of the classifiers are
shown in Table 3. We show the results for the ED2 metric on
SBServer† and SBMobile† only since these are the only config-
urations where the optimal setting for TM varies depending on
application. All other metrics on other hardware configurations
have a static optimal setting, e.g., TM should always be off to
optimize for QPS/W on SBServer†. For the remaining hardware
configurations and metric, we show that using a single perfor-
mance counter that tracks the fraction of time there is a memory
request outstanding provides excellent prediction power.

Classifying Application Mixes Predicting the optimal TM
setting for a given metric on a mix of applications is more compli-
cated. The naive approach would be to model the interactions be-
tween workloads running on every core in the system. However,
this approach is unscalable for large core counts, as the number
of parameters for the classifier would scale with the square of the
number of cores. Training such a classifier would also require a
prohibitively large training set of application mixes.

Instead, we use a heuristic approach to determine the opti-
mal TM setting for application mixes. In Section 3.3 we ob-
serve that memory interference (L3 for ILServer, main mem-
ory for SBServer and SBMobile) causes TM to consume extra
power without a corresponding performance gain. Thus, we de-
veloped a heuristic that dynamically detects excessive memory
interference and disables TM. While we examine only memory
interference for this work, extending the heuristic to detect other
types of interference is straightforward. To aid in the detection
of memory interference, we build classifiers using the same pro-
cess previously discussed to predict if a workload is sensitive to
memory interference (Sensitive) and if it causes memory inter-

ference (Interfering). This classification scheme was inspired by
[17]. These two properties are independent from each other. For
example, a workload that is memory latency bound but causes
the prefetcher to trash the L3 cache is Interfering, but not Sensi-
tive. To build each machine-specific classifier for Interfering and
Sensitive, we run each SPECCPU application in tandem with the
stream benchmark and measure the performance degradation for
the SPECCPU application and for stream. Applications that de-
grade significantly when run in parallel with stream are marked
as Sensitive, and applications that significantly slow down stream
are marked as Interfering. The results of the application classifi-
cation are shown in Table 5. We then build predictors using this
data and show the results in Table 4. Misclassifications occur
when applications with different properties have similar inputs to
the classifier, which is caused by the use of indirect features (e.g.,
performance counters) to measure memory behavior. However,
these cases are rare, as seen by the high classification accuracy.

The performance counters automatically selected by feature
selection are intimately related to the architectures of the differ-
ent CPUs. For SBServer and SBMobile, applications that are fre-
quently stalled on memory (a high portion of cycles with a mem-
ory request pending and a high portion of cycles where the front
end is stalled) are sensitive to memory interference. Similarly,
applications that have intensive memory activity, as measured by
a large fraction of cycles with pending memory requests, cause
significant amounts of memory interference. For ILServer, since
the L3 cache is exclusive of the L2, applications with high L2
MPKI are sensitive to memory interference. Similarly, applica-
tions with high L3 MPKI and memory access intensity cause
memory interference. Since the best performance counters vary
by processor architecture, it would have been difficult to man-
ually pinpoint the precise performance counters to use even if
the general theme of “performance counters related to memory”
is known. Adding more performance counters to the classifiers
causes the prediction accuracy to drop, indicating that all other
performance counters have poor signal to noise ratios. In addi-
tion, measuring too many performance events would require sam-
pling over a limited number of physical hardware event counter
registers, degrading their accuracy.

The next step is to determine the maximum amount of in-
terference before TM no longer provides a win. This process
is controlled via static policy, which is determined by the max-
imum number of interfering workloads that can be co-located
before the use of TM degrades a metric. To find the proper pol-
icy for each metric, we measure the power and performance in-
crease caused by TM for different numbers of active cores. For
example, TM increases power by 23% for a 4 core workload
on SBMobile with a 12% frequency boost. Thus TM must sig-
nificantly increase the performance of applications running on at
least 2 cores in order to not degrade the ED2 metric for SBMobile.
This heuristic applies TM conservatively, as it pessimistically as-
sumes that Sensitive workloads will not benefit at all from TM in
the presence of memory interference. To determine the number
of applications that will be degraded, the heuristic looks at the
application properties of the workload on each core in a NUMA
node. If there is more than one Interfering application, then the
number of degraded applications will be the number of Sensitive
applications. If there is one Interfering application, the number
of degraded applications is the number of Sensitive applications

Machine Classifier Counters used Accuracy

Se
ns

iti
ve

SBServer Logistic Regression % cycles with outstanding memory requests 83.9%
% cycles front end is idle

ILServer Naive Bayes L2-load-misses / instruction 93.5%
SBMobile Naive Bayes % cycles with outstanding memory requests 87.1%

% cycles front end is idle
In

te
rf

er
in

g SBServer Logistic Regression % cycles with outstanding memory requests 87.1%
ILServer Naive Bayes L3-misses 93.5%

requests to memory / instruction
SBMobile Logistic Regression % cycles with outstanding memory requests 87.1%

Table 4. Classifier building and validation results for Sensitive and Interfering on various hardware configurations.

Property SPECCPU apps with property
Sensitive mcf, milc, cactusADM, soplex, GemsFDTD,

libquantum, lbm, omnetpp, astar, sphinx3,
xalancbmk

Interfering bwaves, milc, leslie3d, soplex, GemsFDTD,
libquantum, lbm

Table 5. SPECCPU application properties on SBServer and SB-
Mobile. ILServer is the same as SBServer except that leslie3d
is also in Sensitive.

on cores other than the one hosting the Interfering workload, as
a workload cannot interfere with itself.

4.3 Online autoturbo Operation
We implement the online component of autoturbo as a Python

program to have convenient access to the Orange machine learn-
ing library. However, this portion could also be implemented in
the CPU firmware to offload the computational load of the classi-
fier. This would require the CPU firmware to expose an interface
to input training data and to declare the metric that autoturbo
should be optimizing for.

The pseudocode for autoturbo is given below:

loadModels(systemType, metric)
while (true) {
perfCounters = sampleCounters()
if (numCoresActive() == 1)
setTM(singleAppModel(perfCounters))
else if (numCoresActive() > 1)
setTM(multipleAppModel(perfCounters))

}

First, the system operator sets the system type and the metric
that autoturbo should be optimizing for. This loads the appropri-
ate models that were generated by the training phase as described
in Section 4.2. Next, autoturbo samples the appropriate perfor-
mance counters available on the system for 5 seconds. From this
data, it can determine the number of cores that were active in the
sampling period. If there were no active cores, then there is noth-
ing to optimize for. If there is one active core, then the single
application classifier is used to predict the optimal TM setting
for that application. If there is more than one active core, then
the multiple application classifier is used to predict if there is sig-
nificant workload interference that would negate the benefits of
TM. The predicted optimal TM setting is then set via cpufreq-set,
and the process repeats.

The choice of a 5 second sampling period was done after con-

sidering the tradeoff between increased reactiveness of autoturbo
at shorter sampling periods and lower power consumption of au-
toturbo at longer sampling periods. Running the predictive clas-
sifiers, like any other application, consumes CPU resources and
power. When there is a workload present, each sampling period
will invoke at least one classifier, and so increased sampling in-
creases the overhead of autoturbo. However, if the sampling
period is too long, then changes in the workload composition
or changes in the workload phase will not be quickly detected.
We chose 5 seconds as a time period that is long enough to
not increase CPU utilization or power by an appreciable amount,
while being short enough such that the typical workload will not
change drastically within most sampling windows.

As autoturbo runs as a background daemon, it can be eas-
ily deployed across the entire datacenter by standard application
deployment procedures. autoturbo can be easily extended with
remote management features, such as providing real-time report-
ing on when TM is enabled and the frequency boost of TM. The
architecture of autoturbo also allows for real time switching of
metrics to be optimized for, which is useful for large virtualized
datacenters where workloads with different optimization targets
can shift between physical machines. In addition, autoturbo can
also be extended to manually disable TM on a node, which is
invaluable in case of a thermal or power emergency in the data-
center. While remote management is currently not available in
autoturbo, it is planned as future work.

While TM can be controlled at a module granularity, in prac-
tice we find that controlling TM at such a fine granularity on the
Interlagos platform is not worthwhile. This is due to the Inter-
lagos chip not being energy-proportional. For example, if two
cores (on two separate dies) are active with TM on, the power
draw is 53W above idle power. If TM is disabled on one core,
then the power draw only drops by 3W. However, disabling TM
on both cores drops the power by an additional 20W. Thus, auto-
turbo controls TM on ILServer at a chip-level granularity.

5 Evaluation
We evaluate autoturbo for all workloads on all hardware plat-

forms across all metrics by running autoturbo on top of the
workload. We measure the power consumption of the machine
and the performance of the workload to determine how effec-
tively autoturbo can use TM to optimize for a given metric.
We show the results of using autoturbo on a subset of work-
loads/metrics/hardware platforms in Figure 5. Each line shows
the metric of interest for the workload, normalized to the baseline
case of when TM is always off. We compare autoturbo against

-10%

-5%

0%

5%

10%
Q

P
S

/$
 im

p
ro

v
e

m
e

n
t

App Mix

SBMobileMix QPS/$

-15%

-10%

-5%

0%

5%

10%

Q
P

S
/$

 im
p

ro
v

e
m

e
n

t

App Mix

SBServerMix QPS/$

-60%

-40%

-20%

0%

20%

E
D

²
im

p
ro

v
e

m
e

n
t

App Mix

SBServer† Mix ED²

0

50

100

0 50 100 150 200

Q
P

S
/$

QPS (k)

SBMobile SPECpower_ssj2008 QPS/$

-40%

-20%

0%

20%

E
D

²
im

p
ro

v
e

m
e

n
t

App Mix

SBMobileMix ED²

0

0.01

0.02

0.03

0 20 40 60

Q
P

S
/$

QPS

SBMobilewebsearch QPS/$

0

200

400

600

0 20 40 609
5

%
 la

te
n

cy
 (

m
s)

QPS

SBMobile websearch 95% latency

0

5

10

15

0 20 40 60

E
D

²

QPS

SBMobilewebsearch ED²

-40%

-20%

0%

20%

40%

E
D

²
im

p
ro

v
e

m
e

n
t

App Mix

SBServerMix ED²

-30%

-20%

-10%

0%

10%

E
D

 im
p

ro
v

e
m

e
n

t

App Mix

SBMobileMix ED

-10%

0%

10%

20%

30%

40%

E
D

²
im

p
ro

v
e

m
e

n
t

App

SBServer† SPECCPU ED²

-10%

-5%

0%

5%

10%

15%

E
D

 im
p

ro
v

e
m

e
n

t

App Mix

ILServer† Mix ED

-40%

-20%

0%

20%

40%

E
D

 im
p

ro
v

e
m

e
n

t

Workload

ILServer† PARSEC ED

-20%

0%

20%

40%

60%

E
D

²
im

p
ro

v
e

m
e

n
t

App Mix

SBMobileMix (2-cores) ED²

-20%

-10%

0%

10%
E

D
²

im
p

ro
ve

m
en

t

App Mix

HServerMix ED²

-10%

-5%

0%

5%

10%

15%

E
D

²
im

p
ro

ve
m

en
t

App Mix

IBServerMix ED²

Naïve Auto Static Oracle

Figure 5. autoturbo’s effect on various application/workload/hardware configurations.

2.40

2.50

2.60

2.70

2.80

2.90

3.00

215 235 255 275 295

F
re

q
u

e
n

cy
 (

G
H

z)

Time (s)

autoturbo dynamic adjustment

Memory interference
occurs mid-workload

Figure 6. autoturbo detecting a phase change and adjusting
TM for a SPECCPU mix made of gromacs, bwaves, gromacs,
and GemsFDTD. autoturbo is optimizing for ED2 on SBMo-
bile.

two other management strategies for TM. The Naive manager
naively uses TM all the time. The Static Oracle has prior knowl-
edge of which setting of TM should be applied for the entire
duration of the workload to optimize for a given metric. The
Static Oracle required several profiling runs and as such is not
practical for scheduling unknown workloads. For each line, the
workloads (X axis) are sorted by the improvement achieved in
ascending order. The behavior of autoturbo on the single SPEC-
CPU workload running on SBMobile† is similar to SBServer†.
In addition, autoturbo also has the same behavior for websearch
and SPECpower_ssj2008 for all metrics measured on all ma-
chines. We compare the performance of autoturbo on websearch
and SPECpower_ssj2008 against naively enabling TM, as that is
the optimal setting for those workloads. Even though autoturbo
was trained on SPECCPU applications, we can still use them as

test applications because autoturbo was trained on performance
counters for the entire run, while the classifier uses counters ob-
tained from 5 second windows as its inputs.

SBMobile autoturbo is able to use TM to intelligently im-
prove QPS/$ and ED2 for the workload consisting of SPECCPU
application mixes. We show results for when all cores are used
and when half the cores are used. When all cores are used, the
naive approach can improve the QPS/$ ratio and ED2 metrics
for approximately 40% of the mixes compared to the baseline.
However, the other 60% of the time it will cause degradations
for those metrics. This degradation can be severe, up to 8% for
QPS/$ and 25% for ED2. These degradations are due to appli-
cations within the mix interfering with each other, causing the
naive use of TM to consume extra power to provide a frequency
boost that does not translate into improved performance. auto-
turbo’s heuristic to avoid the use of TM in such interference sce-
narios is clearly effective, as autoturbo virtually eliminates all
cases of metric degradation. However, the heuristic trades off a
low rate of false positives for a low rate of false negatives. au-
toturbo’s heuristic is conservative in managing interference, as
it preemptively disables TM in the face of predicted interference
even if that interference turns out to be mild. This effect is shown
by autoturbo failing to match the same level of metric improve-
ment as the Static Oracle. One avenue of future work is to build
a regression model that predicts the amount of interference and
to only disable TM if that interference is above a threshold. In-
terestingly, there are also cases where autoturbo outperforms the
Static Oracle. This occurs in situations where the SPECCPU
application has phases in its execution that vary between CPU-

intensive and memory-intensive. The Static Oracle cannot take
advantage of this dynamism, since it chooses a TM setting for
the entire workload duration. On the other hand, autoturbo can
detect and account for these phase changes, as seen in Figure 6.
When half the cores are used, we see larger gains in ED2 because
TM provides a larger frequency boost. autoturbo functions prop-
erly in this case, and is able to enable TM when ED2 is improved
while disabling it for mixes with heavy memory interference.

For SPECpower_ssj2008, not only is autoturbo able to prop-
erly apply TM, but its CPU footprint is small enough such that it
does not interfere with it. Even as QPS is swept from low to high,
autoturbo does not have a detrimental effect on the efficiency of
SPECpower_specssj2008, as the QPS/$ for autoturbo closely
tracks the behavior of naive TM. For websearch, the use of auto-
turbo generally does not degrade performance or efficiency met-
rics compared to the naive use of TM. The only exception is
when websearch is run at 100% QPS and autoturbo slightly de-
grades the 95%-ile latency and the associated ED2 metric. When
autoturbo wakes up to classify the applications, it will cause the
OS to switch out a websearch thread, degrading the response la-
tency. If the classifier component of autoturbo is integrated into
firmware, then this performance penalty will disappear. auto-
turbo is also able to properly optimize for the ED2 metric for the
single application SPECCPU workload for SBMobile†, disabling
TM for the one workload (milc) that does not benefit from TM.

While not shown, we observed that autoturbo is able to im-
prove QPS/$ and ED2 for PARSEC as well.

SBServer autoturbo is also able to optimize the SPECCPU
application mixes for QPS/$ and ED2 for SBServer and ED2

for SBServer†. While the degradation of TM for QPS/$ can be
-12%, autoturbo is able to select the proper TM setting to ensure
that it only degrades QPS/$ by a maximum of -3%. Likewise,
autoturbo is also able to disable TM in cases where workload
interference would degrade ED2 significantly. autoturbo is quite
successful at preventing significant degradation of metrics, as it
has strictly better worse case performance compared to the Naive
TM manager. However, like SBMobile, the interference heuristic
in TM is overly conservative, causing autoturbo to miss some
opportunities for improving ED2. For ED2 on SBServer†, where
there is no idle power to buffer the ED2 of workloads with inter-
ference, the conservative heuristic in autoturbo pays off by being
strictly better than the Naive use of TM to improve ED2. auto-
turbo does have a few minor false positives that degrade ED2

by at most -7%. These false positives arise when autoturbo mis-
classifies applications as not being Sensitive or Interfering when
they actually are. autoturbo also is able to successfully optimize
the single application SPECCPU workload running SBServer†

for ED2. It successfully tracks the performance of the Static
Oracle, demonstrating that the theoretical accuracy of the single
workload ED2 classifier is realized in a practical setting. While
not shown, autoturbo successfully optimizes PARSEC for ED2

on SBServer† as well. Like SBMobile, autoturbo also correctly
turns on TM for SPECpower_ssj2008 and websearch to take ad-
vantage of TM improving QPS/$, ED, and ED2 while exhibiting
negligible interference with those workloads.

ILServer For the SPECCPU application mix workload, we
use autoturbo to optimize the ED metric on ILServer†, since all
other metrics on ILServer† and all metrics on ILServer have a
statically optimal TM setting. This is because an 8 application

SPECCPU mix fails to saturate memory bandwidth, a result of
the low clock frequency and the low IPC on the ILServer. Thus,
running many interfering applications together still leads to a
small but non-negligible speedup for SPECCPU mixes for a rel-
atively small increase in power. Like SBServer†, autoturbo suc-
cessfully eliminates major degradations in ED but also misses
some opportunities to improve ED. For PARSEC on ILServer†,
autoturbo is able to eliminate most of the degradations to ED
while keeping the benefits of TM. The only case where it failed to
do so was when autoturbo activated TM for streamcluster at low
thread counts, because it could not predict that the performance
gain was too small to be worthwhile. autoturbo is also able to
successfully optimize SPECpower_ssj2008 for QPS/$ and web-
search for QPS/$, ED, and ED2 by turning on TM consistently
and by not interfering with those workloads.

IBServer and HServer We observe the generality of auto-
turbo by demonstrating that it functions across several genera-
tions of architectures from the same CPU vendor. A surprising
result for HServer is that while Haswell has independent fre-
quency domains for each core, once TM is activated, all cores
will run at the same frequency, thus autoturbo is still useful. Due
to space constraints, we omit the results from the entire metric
and workload evaluation and only show results for autoturbo op-
timizing the ED2 metric for SPECCPU application mixes. Just
like with the other hardware configurations, autoturbo intelli-
gently enables TM to optimize for ED2. However, autoturbo
will occasionally disable the use of TM even when it is optimal
to use TM. Again, this is because of the conservative heuristic
used to determine if there is too much interference.

6 Related Work
While the management of TM is a developing field, there

is much prior work on dynamic power management for CMPs.
[15] proposes the use of a global manager that selects the proper
power mode with the help of DVFS to minimize power with re-
spect to a given performance target. However, they assume that
the underlying hardware supports software managed per-core
DVFS, which is not available from current implementations of
TM. [20] studies the use of on-chip regulators for DVFS and con-
clude that CMPs can benefit greatly from its use. Per-core DVFS
would allow autoturbo to selectively enable TM for cores host-
ing workloads that benefit from the extra frequency boost. [8]
proposes a hardware mechanism that can be used to accurately
model the profitability of DVFS at various operating points. If
this hardware mechanism was available on our evaluation hard-
ware, then we could accurately use it to predict the optimal set-
ting of TM as opposed to using our ML model to approximate the
benefits of TM. [13] also proposes using performance counters to
decide when to use low-power and high-power DVFS states. We
use a machine learning to extend this idea to create a more robust
predictor that can handle workload interference from executing
several workloads on the same CMP. A key enabler for TM is
per-core power gating [21], which creates large amounts of ther-
mal and electrical headroom that is used to boost the frequency
of the remaining active cores. Another enabling technology is
for the CPU to estimate its power consumption when deciding
if there is sufficient headroom to activate TM [14]. Computa-
tional sprinting [27] utilizes thermal capacitance to temporarily
overclock the CPU to achieve increased performance for a short

period of time. This is different from TM in that TM can achieve
sustained overclocking if there are idle resources on the CPU.

The field of evaluating and managing TM is nascent, as the
technology was only recently introduced. [5] evaluate TM on an
Intel Nehalem processor and determine that TM improves execu-
tion time at the cost of power. We extend their work by demon-
strating that although QPS/W is not improved, the use of TM
can still improve other metrics of interest. In addition, we also
implement a software TM controller that is able to prevent the
activation of TM in suboptimal scenarios.

There has been much prior work on detecting and manag-
ing workload interference caused by memory contention. [16]
quantifies destructive interference between separate processes
on CMPs and concludes that most of the performance penalty
comes from contention for the shared memory bus, supporting
our strategy for detecting workload interference. [23] propose
Cross-core interference Profiling Environment (CiPE) as a way
of directly detecting cross-core interference in an accurate fash-
ion, as opposed to indirect detection of autoturbo. CiPE uses
offline profiling, which is infeasible for DCs that can accept any
workload, such as Amazon EC2. However, CiPE is a viable
method for characterizing applications as Sensitive and/or Inter-
fering during the offline training phase for autoturbo. [24] also
deals with resource contention with an eye towards optimizing
for the ED metric. Their focus is more on scheduling, although
they also use DVFS as a fallback attempt to deal with energy inef-
ficiency in the case of memory contention that scheduling cannot
resolve. autoturbo complements this work, as it can optimize for
energy efficiency in the newly introduced TM regime that can-
not be controlled in the same way as DVFS. [29] proposes Van-
tage, an effective cache partitioning scheme. autoturbo can use
Vantage to partition the last level cache to shield Sensitive appli-
cations from Interfering applications to maximize the benefit of
TM. [11] manages interference between contending workloads
on a CMP by using clock modulation, which is another knob
autoturbo can use to selectively enable TM for workloads that
benefit from a faster clock.

7 Conclusions
Modern servers must carefully balance performance gains

against energy consumption and cost increases. We showed that
TurboMode, the dynamic overclocking of multi-core chips when
thermal and power headroom exists, can greatly improve perfor-
mance. However, its impact on efficiency metrics that include
energy and cost is not always positive and depends significantly
on the characteristics of the application and underlying hardware.
We developed autoturbo, a software daemon that utilizes predic-
tive models to understand the impact of TurboMode on the cur-
rent workload and to decide if TM should be turned on or off. au-
toturbo allows workloads to get the maximum benefit from Tur-
boMode when possible (up to 68% efficiency increase for ED2),
while eliminating virtually all the cases where TurboMode leads
to efficiency drop (up to -25% for ED2). We also demonstrate
that autoturbo is a general solution that works for many different
hardware configurations.

Acknowledgements
We sincerely thank Adam Belay, Caroline Suen, Christina De-

limitrou, Jacob Leverich, and the anonymous reviewers for their
useful feedback on earlier versions of this manuscript. This work
was partially supported by a Google grant and the Stanford Per-
vasive Parallelism Lab.

References
[1] AMD. (2011) The New AMD Opteron

TM
Processor Core Technology.

[2] L. A. Barroso et al., The Datacenter as a Computer: An Introduction
to the Design of Warehouse-Scale Machines, 2009.

[3] C. Bienia et al., “The parsec benchmark suite: characterization and
architectural implications,” in PACT 2008, 2008.

[4] D. Brooks et al., “Power-aware microarchitecture: design and modeling
challenges for next-generation microprocessors,” Micro, IEEE, vol. 20,
no. 6, 2000.

[5] J. Charles et al., “Evaluation of the intel R© core
TM

i7 turbo boost
feature,” in IISWC 2009, 2009.

[6] B.-G. Chun et al., “An energy case for hybrid datacenters,” SIGOPS
Oper. Syst. Rev., vol. 44, no. 1, 2010.

[7] T. Curk et al., “Microarray data mining with visual programming,”
Bioinformatics, vol. 21, 2005.

[8] S. Eyerman et al., “A counter architecture for online dvfs profitability
estimation,” Computers, IEEE Transactions on, vol. 59, no. 11, 2010.

[9] M. Ferdman et al., “Clearing the clouds: a study of emerging scale-out
workloads on modern hardware,” in ASPLOS 2012, 2012.

[10] J. Hamilton, “Keynote,” in ISCA 2011, 2011.
[11] A. Herdrich et al., “Rate-based qos techniques for cache/memory in

cmp platforms,” in ICS-23, 2009.

[12] Intel. (2008) Intel R© Turbo Boost Technology in Intel R© Core
TM

Mi-
croarchitecture (Nehalem) Based Processors.

[13] C. Isci et al., “Long-term workload phases: duration predictions and
applications to dvfs,” in MICRO-38, 2005.

[14] C. Isci et al., “Runtime power monitoring in high-end processors:
methodology and empirical data,” in MICRO-36, 2003.

[15] C. Isci et al., “An analysis of efficient multi-core global power manage-
ment policies: Maximizing performance for a given power budget,” in
MICRO-39, 2006.

[16] M. Jahre et al., “A quantitative study of memory system interference in
chip multiprocessor architectures,” in HPCC 2009, 2009.

[17] A. Jaleel et al., “Adaptive insertion policies for managing shared
caches,” in PCT 2008, 2008.

[18] V. Janapa Reddi et al., “Web search using mobile cores: quantifying
and mitigating the price of efficiency,” SIGARCH Comput. Archit. News,
vol. 38, no. 3, 2010.

[19] R. Khare et al., “Nutch: A flexible and scalable open-source web search
engine,” Tech. Rep., 2004.

[20] W. Kim et al., “System level analysis of fast, per-core dvfs using
on-chip switching regulators,” in HPCA 2008, 2008.

[21] J. Leverich et al., “Power management of datacenter workloads using
per-core power gating,” Computer Architecture Letters, vol. 8, no. 2,
2009.

[22] K. Lim et al., “Understanding and designing new server architectures
for emerging warehouse-computing environments,” SIGARCH Comput.
Archit. News, vol. 36, no. 3, 2008.

[23] J. Mars et al., “Directly characterizing cross core interference through
contention synthesis,” in HiPEAC 2011. ACM, 2011.

[24] A. Merkel et al., “Resource-conscious scheduling for energy efficiency
on multicore processors,” in EuroSys 2010, 2010.

[25] C. D. Patel et al., “Enterprise Power and Cooling: A Chip-to-
DataCenter Perspective,” HotChips 19, 2007.

[26] C. D. Patel et al., “Cost Model for Planning, Development and Opera-
tion of a Data Center,” 2005.

[27] A. Raghavan et al., “Computational sprinting,” in HPCA-2012, 2012.
[28] E. Rotem et al., “Power management architecture of the 2nd generation

intel R© core
TM

microarchitecture, formerly codenamed sandy bridge,”
2011.

[29] D. Sanchez et al., “Scalable and Efficient Fine-Grained Cache Parti-
tioning with Vantage,” IEEE Micro’s Top Picks from the Computer
Architecture Conferences, vol. 32, no. 3, 2012.

[30] Y. Xie et al., “Locality in search engine queries and its implications for
caching,” in IEEE Infocom 2002, 2002.

