
The Specialized High-Performance Network on Anton 3

Keun Sup Shim, Brian Greskamp, Brian Towles,1 Bruce Edwards, J.P. Grossman,1 David E. Shaw2
D. E. Shaw Research, New York, NY 10036, USA.

{Keun.Sup.Shim, Brian.Greskamp, David.Shaw}@DEShawResearch.com

Abstract—Molecular dynamics (MD) simulation, a
computationally intensive method that provides invaluable
insights into the behavior of biomolecules, typically requires
large-scale parallelization. Implementation of fast parallel MD
simulation demands both high bandwidth and low latency for
inter-node communication, but in current semiconductor
technology, neither of these properties is scaling as quickly as
intra-node computational capacity. This disparity in scaling
necessitates architectural innovations to maximize the
utilization of computational units. For Anton 3, the latest in a
family of highly successful special-purpose supercomputers
designed for MD simulations, we thus designed and built a
completely new specialized network as part of our ASIC. Tightly
integrating this network with specialized computation pipelines
enables Anton 3 to perform simulations orders of magnitude
faster than any general-purpose supercomputer, and to
outperform its predecessor, Anton 2 (the state of the art prior to
Anton 3), by an order of magnitude. In this paper, we present
the three key features of the network that contribute to the high
performance of Anton 3. First, through architectural
optimizations, the network achieves very low end-to-end inter-
node communication latency for fine-grained messages,
allowing for better overlap of computation and communication.
Second, novel application-specific compression techniques
reduce the size of most messages sent between nodes, thereby
increasing effective inter-node bandwidth. Lastly, a new
hardware synchronization primitive, called a network fence,
supports fast fine-grained synchronization tailored to the data
flow within a parallel MD application. These application-driven
specializations to the network are critical for Anton 3’s MD
simulation performance advantage over all other machines.

I. INTRODUCTION

With molecular dynamics (MD) simulations, scientists
can study the behavior of biological molecules (e.g., proteins,
lipids, and nucleic acids) by computationally predicting their
motion at the atomic scale. Although these simulations have
provided tremendous value in both basic science and drug
discovery, they require an enormous amount of computation,
and performing simulations at the scale and speed necessary
to address relevant research questions within practical
timelines remains a highly challenging problem [1][2].

The Anton supercomputers are a series of special-purpose
machines designed to accelerate MD simulations. When
Anton 1 and Anton 2 were deployed, each exceeded the
performance of the fastest general-purpose machine of its time
by at least two orders of magnitude [3]–[5]. The latest
generation in the Anton family, Anton 3, achieves order-of-
magnitude improvements in time-to-solution over Anton 2,

1 Current affiliations of authors who contributed to this work while employed by D. E. Shaw Research: B. T., Google LLC, J.P. G., Citadel Securities.
2 David E. Shaw is also affiliated with the Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY 10032.

and outperforms the current state-of-the-art general-purpose
supercomputers by over 100-fold across a wide range of
chemical system sizes [6][7].

Table I shows that compared to the Anton 2 ASIC, the
Anton 3 ASIC delivers roughly 24 times more maximum
throughput for the most computationally expensive task in
MD—computing the forces between two interacting atoms
(we also refer to this as computing pairwise interactions).
Translating this raw intra-node computational throughput into
better overall simulation performance requires a high-
performance network that can utilize the compute resources
efficiently. Scaling the inter-node bandwidth at low latency,
however, is a challenge because packaging constraints limit
the number of high-speed off-chip lanes on the chip, and per-
lane bandwidth is growing slowly for low-latency SERDES
due to the physical limitations of long-distance electrical
signaling (as evidenced by the “Number of SERDES” and
“SERDES Per-Lane Bandwidth” in Table I). Compared to the
24-fold improvement in raw compute bandwidth from
Anton 2 to Anton 3, the 2.1-fold improvement in the total
inter-node bandwidth motivates the need for network
specialization to better utilize the off-chip bandwidth.
Furthermore, the network must enable efficient
synchronization among the large number of compute units in
Anton 3 machines in order to effectively coordinate parallel
computation.

Communication challenges are especially acute in MD
simulation because: (1) parallel implementations of MD
require significant inter-node communication, as atom
positions and computed forces have to be frequently
exchanged between nodes; and (2) some synchronizations are
essential during the MD time steps, and these

 Anton 1 Anton 2 Anton 3

Power-on Year 2008 2013 2020

Process Technology (nm) 90 40 7

Die Size (mm2) 305 408 451

Clock Rate (GHz) 0.970 1.65 2.80

Maximum Pairwise Interaction
Throughput (GOPS) 31 251 5914

Number of SERDES 66 96 96

SERDES Per-Lane Bandwidth (Gb/s) 4.6 14 29

Inter-node Bidir Bandwidth (GB/s) 76 336 696

TABLE I. KEY FEATURES FOR THE THREE ANTON ASICS.

synchronizations contribute to the critical path if not well
optimized. Designing a high-performance network is thus
critical for effective parallelization of MD. To this end, we
designed and implemented the Anton 3 network with the
following features:

1) Fast end-to-end inter-node communication: The
Anton 3 network is designed to minimize inter-node
communication latency for fine-grained messages. The end-
to-end latency between cores can be as low as 55 ns for
neighboring nodes (considerably lower than other high-
performance computing networks), with an off-chip per-hop
latency of 34.2 ns. Fast inter-node communication for fine-
grained messages is key for optimizing MD performance, as
it allows for better overlap of computation and
communication.

2) Application-specific compression: Atom positions in
simulations change slowly and smoothly over time, offering
an opportunity for data compression. We thus designed and
built the particle cache, a lossless compression scheme at off-
chip boundaries. By caching atom positions at both ends of an
I/O channel, it is only necessary to transmit the position
differences for each time step, thereby saving communication
bandwidth. Combining the particle cache with Interleaved
Non-Zero encoding (INZ), a compression scheme we
developed for payloads with small absolute values, the inter-
node communication traffic can be reduced by twofold,
mitigating the off-chip bandwidth scaling problem.

3) Fast fine-grained synchronization: We have
implemented a novel hardware synchronization primitive
within the network, which we call a network fence, that
supports fast synchronization among compute units while
requiring little area on the chip.

II. BACKGROUND

A. Molecular Dynamics Simulation

MD simulation models the motion of atoms in a chemical
system using a series of discrete time steps. A time step
consists of first calculating the forces exerted on each atom by
other atoms in the system, and then updating the velocities and
positions of all atoms according to the classical laws of
motion. MD simulations often require several billion

sequential time steps to reach the timescales at which many
scientifically interesting phenomena start to occur.

One of the most computationally intensive tasks in MD
simulation is the computation of range-limited pairwise
interactions—the forces between all pairs of atoms separated
by less than an established cutoff radius—at every time step.
The MD computation can be parallelized across multiple
nodes by spatially partitioning the chemical system into
boxes, and assigning each box to a node (its Home Node) that
is responsible for updating the positions of the atoms within
the assigned box (the Home Box). Because the computation of
range-limited pairwise interactions requires the positions of
atoms not only within the Home Box, but also within
neighboring boxes (i.e., on remote nodes), substantial inter-
node communication is necessary. This communication
requires significant off-chip bandwidth, ideally with very low
latency.

B. Anton 3 Architecture Overview

Anton 3 machines comprise up to 512 nodes (with a single
ASIC per node) that are physically connected by integrated
high-speed network links to form a 3D torus topology
(Figure 1a). Each ASIC (Figure 1b) contains two types of
tiles: Core Tiles (Figure 1c) and Edge Tiles (Figure 1d). The
Core Tiles, organized as an array of 12 rows and 24 columns,
perform the MD computations. 24 Edge Tiles flank the left
and right sides of the Core Tile array (i.e., 12 on each side),
where they primarily manage inter-node communication. The
chip contains 96 bi-directional SERDES lanes distributed
evenly among the Edge Tiles, each operating at 29 Gb/s per
direction. These lanes connect each ASIC to its six neighbors
(with 16 SERDES per neighbor) in the 3D torus network,
providing a total bandwidth of 5.6 Tb/s.

The Core Tile contains: (1) two MD-optimized general-
purpose processors called Geometry Cores (GCs), each paired
with a globally addressable on-chip memory block with
128 KB of SRAM; (2) two Pairwise Point Interaction
Modules (PPIMs), which include several specialized
arithmetic pipelines responsible for range-limited pairwise
interactions; (3) the Bond Calculator (BC), which computes
forces between pairs of atoms bonded directly, or through one
or two intervening atoms; and (4) the Core Router, which

Figure 1. (a) Anton 3 machines comprise up to 512 ASICs connected in a 3D torus network. (b) The ASIC uses a tiled layout containing a 24 × 12 array
of Core Tiles, with 12 Edge Tiles along each of the left and right edges. X+, X−, Y+, Y−, Z+, and Z− are the six neighbors in the torus. (c) Block diagrams
of the Core Tile and (d) Edge Tile.

connects the components within a Core Tile, and also
connects the Core Routers in neighboring tiles to form a 2D
mesh on-chip network called the Core Network. In addition,
dedicated streaming buses run horizontally across the chip
through PPIMs, carrying atom positions and forces for the
evaluation of pairwise interactions.

Each Edge Tile contains three Edge Routers; the
connections between vertically adjacent Edge Tiles thus form
a mesh network of 12 rows and 3 columns on both the left and
right edges of an ASIC (we refer to these as Edge Networks).
The Edge Networks interface with the SERDES channels
through Channel Adapters (CAs), and with the Core Network
through Row Adapters (RAs). The primary function of the
Edge Networks is to implement routing for the inter-node 3D
torus network. Each Edge Tile also contains two Interaction
Control Blocks (ICBs) that receive packets from their Edge
Network, buffer the packets within local ICB memory, and
send them across their row’s streaming buses to participate in
the calculation of pairwise interactions in the PPIMs. Each
ICB has a Row Adapter to connect to the Edge Network.

C. Data flow for Calculating Pairwise Interactions on
Anton 3

The implementation of parallel MD simulation on Anton 3
guarantees that pairwise interactions between two atoms are
computed on a node that contains either one or both of the
interacting atoms within its Home Box. Below, we describe
the data flow for calculating pairwise interactions of atoms on
Anton 3, with a focus on interactions between atoms that
reside on different nodes.

At the beginning of a time step, each GC holds information
regarding a different subset of the atoms within a given Home
Box. From this point, there are three main steps of data flow
(as illustrated in Figure 2):

1) Each GC broadcasts its atom positions to PPIMs within
its column, where they are held as stored-set atoms. The atom
positions are also sent to the Edge Tiles as stream-set atoms,

3

 Although not discussed in this paper, Anton 3 implements in-network hardware support for stored-set and stream-set atom multicast, as well as in-
network reduction for summing stored-set forces.

and from there they are multicast to ICBs on all nodes on
which those atoms might have an interaction.

2) As positions for these stream-set atoms arrive at the
ICBs, they are streamed through a row of PPIMs using the
streaming bus, and interact with stored-set atoms in PPIMs.
These interactions result in forces being computed on both
sets of atoms; the forces on the stored-set atoms are
accumulated within the PPIM, while those on the stream-set
atoms are streamed back along the streaming bus and returned
to the GCs that originally sent the atom positions (possibly
traveling off-chip).

3) Once all the forces for the stream-set atoms (i.e.,
stream-set forces) are returned, the accumulated forces for the
stored-set atoms (i.e., stored-set forces) are unloaded from
PPIMs and also sent back to their original GC locations for
per-atom summation.3

GCs then perform integration to compute new velocities
for all atoms based on the summed forces, use those velocities
to update atom positions, and proceed to the next time step.

III. FAST END-TO-END INTER-NODE COMMUNICATION

Reducing end-to-end inter-node communication latency is
critical to achieving high performance for parallel MD
simulations. End-to-end latency includes not only the raw
hardware network latency, but also the time required for a
source to initiate transmission of a message, and for the
destination to finish receiving the message and be ready to
perform computation on its contents. In this section, we detail
the hardware elements in Anton 3 that help to minimize this
latency.

A. Counted Write and Blocking Read Synchronization

Counter-based, fine-grained synchronization is a key
communication paradigm for the Anton ASICs [5][8]. The
core principle is that the sender can send a remote memory-
write message that increments an associated hardware counter
at the receiver, and the counter can be used to detect that all

Figure 2. The three main steps in the data flow for computing range-limited pairwise interactions on Anton 3. (The numbers of rows and columns for Core
Tiles (yellow) and Edge Tiles (pink) have been reduced for ease of presentation.) (1) An atom position is multicast from a GC to PPIMs within its column
(as a stored-set atom) and to ICBs on all nodes on which that atom might have an interaction (as a stream-set atom). (2) ICBs stream an atom position
across a row of PPIMs, where pairwise forces are calculated with stored-set atoms. (3) Stream-set and stored-set forces for an atom then return to the
original GC, where all of the forces are summed.

data required has been received. In Anton 3, this functionality
is implemented using an 8-bit counter associated with each of
the quads (each quad comprises four 32-bit values) inside
SRAM memory blocks. Counted remote write messages to
SRAM update the quad data which atomically increments this
per-quad counter. Software running on GCs may issue a
blocking read to a specific quad address within its local
SRAM, and the blocking read will stall until the quad’s
counter has reached the counter threshold specified by the
read; from the GC’s point of view, this operation is no
different than a high-latency read.

The purpose of blocking read synchronization is to
minimize the arrival-to-use latency for data received over the
network. In particular, it allows software handlers to start
running before all of the input data has arrived. When a GC
attempts to read data from SRAM that is not yet ready (i.e.,
the count is below the threshold), the read stalls and is only
completed upon arrival of the data. One common use of
counters during MD simulation is within the integration code,
where each force for a given atom is accumulated into a quad
in SRAM, which increments the corresponding counter. The
integrator knows how many forces to expect for a given atom,
and thus can use a blocking read to wait for the fully
accumulated net force on the atom to be available.

B. Packets and Routing
The Anton 3 network is designed to provide efficient

support and low latency for fine-grained messages, using
small, fixed-size network packets that comprise one or two
flits (each flit contains 192 bits divided into a 64-bit header
and a 128-bit payload). These small packets enable fast and
efficient virtual cut-through flow control with small router
input queues each holding eight flits per virtual channel (VC).
In order to reduce per-hop latency on the critical timing path,
all routers separate their control logic (which performs routing
and arbitration for the next hop) from the packet datapath.
This allows the packet data to lag its corresponding control
information by two cycles.

1) Core Network: As shown in Figure 3, the 2D mesh
Core Network handles intra-chip traffic using fixed U→V
dimension-order routing with virtual cut-through flow control
(we use U and V for the two mesh dimensions in order to
distinguish from X, Y and Z of the inter-node 3D torus
network dimensions). Packets targeting remote ASICs are

routed directly to either edge of the chip, traveling along the
U dimension only.

In order to minimize latency, the Core Router adopts a
partitioning approach similar to a dimension-sliced router [9],
and is implemented using four sub-routers, each of which has
at most four ports. Moreover, just two VCs suffice to avoid
network deadlock between two classes of protocol traffic
(requests and responses). There are three types of sub-
routers—URTR, VRTR, and TRTR—that are
microarchitecturally similar, but have distinct roles in the
network. URTR and VRTR perform the inter-tile routing
along the U and V dimensions, respectively. TRTR connects
the GCs and BCs to the network and provides high bandwidth
for local communication between those endpoints. As a
whole, the Core Router has a per-hop latency of two cycles in
the U direction, and five cycles in the V direction.

2) Edge Network: Inter-node routing in the 3D torus
network of Anton 3 employs minimal, oblivious routing in
which routes are randomized independent of network load,
and packets follow a dimension-order route using any of the
six possible dimension orders (i.e., XYZ, XZY, YXZ, YZX,
ZXY, or ZYX). The routing is implemented within the Edge
Network, which consists of three columns of Edge Routers, as
previously described in Section II-B.

The routing policy for request packets is designed to
achieve low latency through the Edge Network. Figure 4
illustrates examples of request packet routes within the Edge
Network, which is physically partitioned by column between
intra-dimensional traffic and inter-dimensional traffic. The
outermost column of the Edge Routers is reserved for packets
that are injected at the channels and traveling to another
channel in the same torus dimension. This partitioning ensures
that routing along a torus dimension requires minimal hops in
the Edge Network. Other traffic, including packets injected
from the Core Network and packets making a turn in the 3D
torus, can use the remaining two columns in a randomized
fashion for better load balance.

Figure 3. The Core Router within the Core Tile implements U→V
dimension-order routing (as shown by the red arrow), and consists of four
sub-routers (TRTR, URTR, and two VRTRs).

Figure 4. Examples of request packet routes within the Edge Network.
Intra-dimensional traffic (e.g., the blue route) travels only within the
outermost column of the Edge Routers (ERTRs), and the opposite
directions of the same 3D-torus dimension (e.g., X+ and X−) are
connected to adjacent rows. The remaining two columns are used by
inter-dimensional traffic (e.g., the red and green routes).

To avoid network deadlock, the application-level protocol
in Anton 3 requires separate traffic classes for requests and
responses, for which torus routing would normally require
four VCs for each class [10]. Instead, the number of VCs is
reduced by introducing the restriction that all response packets
must follow an XYZ dimension order, and by treating the
torus network as a mesh network from the perspective of
response packets. This enables deadlock avoidance using only
a single VC for the response class, while having negligible
impact on MD performance (as most traffic during
simulations on Anton 3 is architected to belong to the request
class). This amounts to a total of five VCs for the Edge Router,
allowing the Edge Router to achieve a per-hop latency of three
cycles.

C. Evaluation

End-to-end inter-node communication latency was
measured by running a ping-pong test on a real ASIC. The test
starts with software running on one GC (core A) sending a
counted write of 16-byte data to memory associated with
another GC (core B) on a remote ASIC. Software running on
core B issues a blocking read to this local memory location,
and upon receipt, it sends a counted write back to core A. Core
A also has its blocking read issued for this message returned
from core B. The ping-pong is complete when core A receives
this packet and its blocking read is un-stalled, and the one-way
end-to-end latency is computed as half the average time it
takes to complete a single ping-pong.

Figure 5 plots the average one-way end-to-end latency of
Anton 3 as a function of the number of inter-node hops. The

latency was measured on a 128-node machine, and averaged
over all possible GC pairs that are a given number of hops
apart (because the location of cores within a chip affects intra-
chip latency). The measurements were performed at the
Anton 3 ASIC’s typical operating clock frequency of 2.8 GHz
with 29 Gbps channels, and show that a linear fit of 55.9 ns of
fixed overhead plus 34.2 ns of per-hop latency is a good
approximation of the average one-way end-to-end latency,
except for the 0-hop case, which has lower latency because
packets do not have to travel through the Edge Network and
off-chip links.

The minimum inter-node latency measured for a single
hop was approximately 55 ns, almost half that of the Anton 2
network (99 ns). Figure 6 shows how this latency is broken
down among the endpoints and various network components.
The improvement in the inter-node latency results from the
tight integration between the network and the core (e.g., not
using a communication library, such as MPI), which
minimizes the sender and receiver overheads, and from
network optimizations for fine-grained messages that reduce
per-hop latency. Overall, the end-to-end inter-node latency of
Anton 3 is substantially lower than typical inter-node message
latencies on commodity networks, particularly between near-
neighbor nodes (a dominant communication pattern in MD
simulation). InfiniBand [11] and Intel Omni-path Architecture
[12], for example, typically have around 1-μs one-way latency
[13]–[15]. By way of comparison, another specialized custom
network, Tofu interconnect D [16] (adopted in the Fugaku
supercomputer [17][18]), has a minimum one-way latency of
490 ns, about nine times longer than the Anton 3 network.

IV. APPLICATION-SPECIFIC COMPRESSION

In this section, we describe interleaved non-zero encoding
(INZ) and the particle cache, two compression techniques
designed for the MD application to reduce off-chip network
traffic.

A. Interleaved Non-Zero Encoding

In our MD simulations, flit payloads often contain three or
four signed 32-bit word values (representing, for example,
forces, charges, etc.). To reduce both electrical switching
activity in the on-chip network and bandwidth over the I/O
channels, the flit payload encoding is designed to optimize for
the common case in which payloads have small absolute
values. The encoding scheme reduces the number of bytes
required to send data by maximizing the number of leading

Figure 6. Detailed breakdown of the minimum inter-node, end-to-end latency of 55 ns. Abbreviations: ERTR, Edge Router; RA, Row Adapter; CA,
Channel Adapter.

Figure 5. Average one-way end-to-end latency with 16 bytes of payload
plotted against the number of inter-node hops, as measured on a
128-node Anton 3 machine.

zeros in the payload to improve subsequent compression.
Multiple compressed payloads and their accompanying
headers are then densely packed (at byte granularity) into each
fixed-length channel frame that traverses the off-chip
interface. Utilization of off-chip bandwidth is thus improved
by removal of the most significant zero bytes in each payload,
allowing more data to fit into each channel frame.

This encoding scheme, using an example with two 32-bit
words, is illustrated in Figure 7. First, the most significant
non-zero word is determined (there could be 0–4 non-zero
words in our actual quad-word payloads). For each non-zero
word w, the sign bit is moved to the least significant bit and
the non-sign bits are conditionally inverted according to the
sign bit, as in the following SystemVerilog function:

function logic [31:0] invert_word(logic [31:0] w);
 return {{31{w[31]}}ˆw[30:0],w[31]};

endfunction

Next, the non-zero words are interleaved bitwise (hence
the scheme is referred to as interleaved non-zero encoding, or
INZ). If there are no non-zero words, the total number of bytes
in the payload is simply zero. Otherwise, the most significant
non-zero word can be represented using two bits, and these
are concatenated with the bit interleaved words. The number
of non-zero bytes in the resulting vector are counted. If this
vector is greater than 128 bits, the encoding is abandoned and
the original data is used instead. In this special case, the
number of valid bytes is set to 16. For the example in Figure 7,
INZ-encoding of 8-byte data (two words) results in 5 bytes of
leading zeros that can be eliminated during off-chip
communication. In Anton 3, INZ-encoding or decoding of a
16-byte payload is done in a single cycle at 2.8 GHz.

B. Particle Cache

As described in Section II-C, in order to calculate range-
limited pairwise interactions during each MD time step, atom
positions (also referred to as particle positions) need to be
exported to neighbor nodes over I/O channels. The position
export bandwidth is thus a critical factor for performance of
parallel MD simulations, and the off-chip bandwidth should
be utilized as efficiently as possible. To achieve this in
Anton 3, we implemented the particle cache—a hardware
mechanism that significantly reduces the amount of data

required to communicate a particle position over off-chip
channels. This technique was designed to take advantage of
the fact that atom positions are exported over the same
channels on multiple consecutive time steps, and although the
positions themselves are not small values, they change slowly
over time. In addition, there are a few fields in the position
packet that remain static throughout the simulation. We can
thus decrease off-chip communication by caching the atom
information on the receive side, and sending only position
deltas on most time steps. Because position deltas are
generally small values, they exploit INZ compression more
effectively.

1) Implementation: Figure 8 illustrates the high-level
structure and basic operation of the particle cache. The particle
cache is implemented within the Channel Adapter using two
synchronized caches, with each sitting at either end of an I/O
channel; the send-side cache is located before the I/O channel,
and the receive-side cache is located after the I/O channel.
When an atom position packet encounters the send-side cache,
a lookup occurs to determine if the position has been
previously stored in the cache. The upper portion of Figure 8
shows a case in which the position packet C[t] (representing
the position of particle C from simulation time step t) arrives
at the send-side cache and misses. A new entry is allocated if
there is available space, but if no entry is available, the packet
is not compressed. Even if the position is allocated,
compression can not yet occur because the receive-side cache
has no knowledge of the position, and thus, the entire position
packet is transmitted over the I/O channel. The packet will
also miss in the receive-side cache and is allocated the same
entry.

On the subsequent time step (the lower portion of
Figure 8), the position packet C[t+1] (i.e., the updated
position for particle C) arrives at the send-side cache and hits.
On a cache hit, the current particle position is compared to an
estimate of the particle position based on the particle’s
position history. Because the receive-side cache has the same
history and makes the same prediction, only the difference
between the actual position and its estimated position needs to

Figure 7. An example of INZ (interleaved non-zero encoding). The most
significant byte is moved from byte 7 to byte 2 in this 8-byte data example.

Figure 8. An example of particle cache operation. The top half of the
diagram illustrates the case of a cache miss for C[t] (the position of particle
C from time step t). The bottom half illustrates the case of a cache hit in
the subsequent time step, with resulting compression and decompression.

be sent across the channel. (Although we represent this as
C[t+1] − C[t], that is a simplification of the actual prediction
scheme used; details described in Section IV-B2). Static fields
within the position packet are also available at the receive-side
cache, so these can be replaced with a cache index. Ultimately,
a special compressed position packet containing the cache
index and the position difference (compressed using INZ) is
transmitted over the I/O channel. On the arriving node, the
INZ encoded position difference is decoded and the original
copy of the position packet is reconstructed using information
stored in the receive-side cache. It is important to note that the
send-side cache and the receive-side cache always contain the
exact same entries because they see the same cache access
streams in the same order, and they are the same size and have
the same organization.

The particle cache is four-way set associative with 1024
total entries. The eviction of entries from the particle cache is
indirectly controlled by software. When a particle cache entry
is hit by a position packet, it is marked with the current value
of a time step counter maintained within the particle cache.
This counter increments upon receipt of a special packet that
the software sends to mark the end of the time step. Then,
when a packet conflicts with a particle cache entry, that entry
is evicted if the current time step counter value is greater than
the entry’s stored counter value by more than a specific
(configurable) threshold. Otherwise, the particle cache is
designed to be transparent to the software. The packet
delivered to network endpoints will be the same regardless of
whether that packet hit in any particle caches along its route.

2) Position Extrapolation: As described earlier, the
particle cache takes advantage of the fact that particle
positions in an MD simulation tend to follow smooth paths.
By extrapolating a particle’s future position and then only
sending the difference between this extrapolation and the
actual particle position, the number of bits sent over the I/O
channels can be significantly reduced. The particle cache
extrapolates each coordinate of a particle’s position
independently using a simple quadratic extrapolation.

Taking the 𝑥 coordinate of a particle’s position as an
example, let 𝑥[𝑡] be the particle’s 𝑥 coordinate during time
step 𝑡 . The value of 𝑥[𝑡] can be accurately estimated (the
estimate is denoted as 𝑥ො[𝑡]) with the second-order predictor
using the particle’s last position, velocity (𝑣), and acceleration
(𝑎), which can be expressed using the coordinate’s values
from the previous three time steps, as follows:

𝑣 =
𝑥[𝑡 − 1] − 𝑥[𝑡 − 2]

∆𝑡
,

𝑎 =
(𝑥[𝑡 − 1] − 𝑥[𝑡 − 2]) − (𝑥[𝑡 − 2] − 𝑥[𝑡 − 3])

∆𝑡ଶ
,

𝑥ො[𝑡] = 𝑥[𝑡 − 1] + ∆𝑡 (𝑣 + 𝑎 ∆𝑡)

 = 3𝑥[𝑡 − 1] − 3𝑥[𝑡 − 2] + 𝑥[𝑡 − 3].

Both the send-side cache and the receive-side cache store
the particle’s history, so the estimate 𝑥ො[𝑡] is available to both.
As a result, only the quantity 𝑥[𝑡] − 𝑥ො[𝑡] needs to be

transmitted over the I/O channel. The same procedure is
applied to the y and z coordinates of the particle’s position.

The storage requirements for extrapolation can be reduced
by first reformulating the estimator in terms of finite
differences. To create our quadratic estimator, we store three
differences—𝐷଴, 𝐷ଵ, and 𝐷ଶ:

𝐷଴[𝑡] = 𝑥[𝑡],
𝐷ଵ[𝑡] = 𝑥[𝑡] − 𝑥[𝑡 − 1],
𝐷ଶ[𝑡] = 𝑥[𝑡] − 2𝑥[𝑡 − 1] + 𝑥[𝑡 − 2].

Then, the estimate is simply the sum of these differences:

𝑥ො[𝑡] = 3𝑥[𝑡 − 1] − 3𝑥[𝑡 − 2] + 𝑥[𝑡 − 3]
 = 𝐷଴[𝑡 − 1] + 𝐷ଵ[𝑡 − 1] + 𝐷ଶ[𝑡 − 1].

Once an estimate is made, the differences are updated with
the actual particle position according to:

𝐷଴[𝑡] = 𝑥[𝑡],
𝐷ଵ[𝑡] = 𝑥[𝑡] − 𝐷଴[𝑡 − 1],
𝐷ଶ[𝑡] = 𝑥[𝑡] − 𝐷଴[𝑡 − 1] − 𝐷ଵ[𝑡 − 1].

An advantage of this formulation is that the absolute
values of 𝐷ଵ[𝑡] and 𝐷ଶ[𝑡] are expected to be small. Instead of
32 bits per coordinate, we store 12 bits of information per
coordinate for the differences 𝐷ଵ[𝑡] and 𝐷ଶ[𝑡]. When a new
particle-cache entry is allocated, the estimator state is
initialized using the current particle positions, and the
differences 𝐷ଵ[𝑡] and 𝐷ଶ[𝑡] are simply set to zero. As more
particle history is accumulated, the newly initialized estimator
automatically transitions from a constant predictor to a linear
predictor, and then to a quadratic predictor, without any
special-case handling.

C. Evaluation

INZ and the particle cache can be independently disabled
in Anton 3, allowing us to measure the benefits of these
compression schemes separately. For evaluation, we ran a
synthetic water-only benchmark at various atom counts on a
2 × 2 × 2 machine (i.e., 8 total nodes), with and without the
compression features enabled. Figure 9a shows the decrease
in transmitted bits over channels due to INZ alone, and due to
both INZ and the particle cache combined. (Because the real
hardware lacks performance counters for these statistics, the
data in Figure 9a was collected from a detailed full-system
simulator.) With only INZ enabled, the off-chip network
traffic is reduced by 32%–40% across varying sizes of a
water-only benchmark. While INZ alone is an effective and
low-cost compression technique, using the particle cache in
addition to INZ further reduces the number of transmitted bits
at modest additional cost, ranging from 45% up to 62% of
traffic reduction when compared to the baseline without any
compression. The traffic reduction due to the particle cache
decreases with larger atom counts because more atoms per
node result in a higher cache miss rate. The size of the particle
cache was chosen to provide sufficient traffic reduction for the
low-atom-count regime, where the MD application is mostly
communication-bound.

The increase in effective off-chip bandwidth provided by
these compression techniques leads to improved application

performance. Measured on real Anton 3 hardware, Figure 9b
shows that the overall MD application speedup, with all
compression enabled, ranges from 1.18 to 1.62.

V. FAST FINE-GRAINED SYNCHRONIZATION

The data flow for calculating pairwise interactions during
Anton 3 simulations (described in Section II-C) requires
synchronizing communication between a large number of
source and destination pairs, with an unpredictable number of
packets for each pair. Each ICB, for example, needs to be sure
that it has received all the stream-set atoms (of unknown
quantity, and from all GCs in the machine) before it notifies
the PPIMs in its row that streaming is complete for a given
time step; only then can the PPIMs start unloading their
accumulated forces for stored-set atoms. Implementing this
operation using a separate network packet between each pair
would incur significant bandwidth cost that is proportional to
the number of source and destination pairs.

To avoid this cost in Anton 3, we designed and
implemented an in-network synchronization primitive, which
we call a network fence. Network fences are implemented
with fence packets; the receipt of a fence packet notifies the
receiver that all packets sent before that fence packet have
arrived. Fence packets are treated much like other packets,
but with in-network merging and multicast support to reduce
their bandwidth requirement. Each source component sends
a fence packet after sending the packets it wants to arrive at
destinations ahead of that fence packet. The network fence
then guarantees that the destination components will receive
that fence packet only after they receive all packets sent from
all source components prior to that fence packet. The ordering
guarantees for the network fence build upon the Anton 3
network’s underlying ordering property (packets sent along a
given path from source to destination are always delivered in
the order in which they were sent), and the fact that a fence
packet from a particular source is multicast along all possible
paths a packet from that source could take to all possible
destinations for that network fence.

A. Software Interface

Anton 3 supports network fences for pre-defined pairs of
source and destination component types (referred to as fence

patterns), such as GC-to-ICB or GC-to-GC. Software running
on a GC initiates a network fence with a two-argument
instruction, fence(pattern, number_of_hops), that
specifies the fence pattern and the number of inter-node hops
the fence will take through the torus network. For example,
fence(GC_to_ICB,3) sends a 3-hop GC-to-ICB network
fence. The receipt of this fence packet by an ICB indicates it
has received all the position packets sent prior to this fence
packet, from all GCs within three torus hops. This is a
common use-case in MD simulation software because range-
limited pairwise interactions only need to be computed
between atoms that are within a fixed distance, and thus only
require positions from remote ASICs within (at most) k torus
hops away from each node. By limiting the number of network
hops, a network fence can achieve reduced latency for a
limited synchronization domain (whereas setting
number_of_hops to the network diameter will result in
synchronization across the entire machine). It is important to
note that all GCs must send fence packets to complete a given
network fence; network fences do not support a subset of GCs
in the machine participating in the fence operation.

B. Fence Packet Merging and Multicast

Without in-network merging of fence packets,
implementation of the logical concept of network fence would
cause significant bandwidth cost. In the Anton 3 network,
fence packets are thus combined by the network routers.
Below, we describe fence merging and multicast mechanisms
for a single network fence; support for multiple concurrent
fences will be discussed in Section V-D.

Figure 10a illustrates how fence merging is achieved at
router input ports. When a fence packet arrives, instead of
forwarding the packet to the output port, the input port merges
the fence packet. This is implemented by incrementing a fence
counter; when the fence counter reaches the expected value, a
single fence packet is transmitted to each output port. A fence
output mask determines the set of output ports that the fence
should be multicast to; for input port i, bit j of its output mask
is set if the fence packet needs to travel from the input port i
to the output port j within that router. When the fence packet
is sent out, the counter is reset to zero. Because the router can

Figure 9. (a) Reduction in bits transmitted over channels due to INZ alone and INZ plus particle cache (pcache), measured using the architectural simulator;
and (b) Overall application-level MD speedup measured under the same conditions on actual Anton 3 hardware.

continue forwarding non-fence packets while it is waiting for
the last arriving fence packet, normal traffic sent after the
fence packet may reach the destination before the fence packet
(i.e., the network fence works as a one-way barrier).

The expected count and the fence output mask are
preconfigured by software for each fence pattern. For the
example in Figure 10b, the particular input port of the middle
router expects fence packets from two different paths in the
upstream router. Because one fence packet will arrive from
each path due to merging, the input port will receive a total of
two fence packets, thereby setting the expected count to two.
The fence counter width is limited by the number of router
ports (e.g., ⌈logଶ(6 + 1)⌉ = 3 bits for a six-port router). The
fence output mask in this example will have two bits set for
the two output ports to which the fence packets are multicast.

C. Implementing a Network Fence through the Inter-Node
Torus Network

The routing algorithm for the inter-node torus network
exploits the path diversity from six possible dimension orders,
as well as two physical channel slices for each connected
neighbor. In addition, multiple VCs are employed to avoid
network deadlock in the 3D torus, meaning that fence packets
must be sent to all possible VCs along the valid routes that
packets can travel. When the network fence crosses the
channel, fence packets are thus injected to the Edge Network
by the Channel Adapter on all possible request-class VCs.
Although some hops may not necessarily utilize all of these
VCs, this rule ensures that the network fence covers all
possible paths throughout the entire network and simplifies
the fence implementation because an identical set of VCs can
be used regardless of the number of hops the packet has taken.
Within the Edge Router, a separate fence counter must be used
for each VC; only the fence packets from the same VC can be
merged.

D. Concurrent Network Fences

Up to this point, we have only described the
implementation of a single network fence in the network. By
adding more fence counters in routers, the Anton 3 network
supports concurrent outstanding network fences, allowing

software to overlap multiple fence operations (up to 14). To
reduce the size requirement for the fence counter arrays in the
Edge Router, the network adapters (the Channel Adapters and
the Row Adapters) implement flow-control mechanisms,
which control the number of concurrent network fences in the
Edge Network by limiting the injection of new network
fences. These flow-control mechanisms allow the network
fence in Anton 3 to be implemented using only 96 fence
counters per input port of the Edge Router.

E. Global Barrier

A network fence with a GC-to-GC pattern can be used as
a barrier to synchronize all GCs within a given number of
torus hops; once a GC has received a fence, then it knows that
all other GCs have sent one. When the number of inter-node
hops for a GC-to-GC network fence is set to the machine
diameter, it behaves as a global barrier.

When a GC-to-GC network fence arrives at the GC, it
translates into a counted write (described in Section III-A) to
a specified memory address within the local SRAM with a
fixed count. After sending a GC-to-GC fence, each GC can
thus issue a blocking read to the memory location with the
same counter threshold to detect the arrival of the fence
packet, and the blocking read acts as a synchronization barrier
point (as the blocked read will only be unblocked after fences
from all GCs have arrived). It is important to note that the
synchronization barrier implemented with a GC-to-GC
network fence also guarantees that all writes to remote
SRAMs from GCs are complete, as the network fence travels
all the valid paths for those writes.

F. Evaluation
To evaluate the performance of network fence, we

measured the barrier synchronization latency on a real 128-
node Anton 3 machine using a GC-to-GC network fence
across varying hop counts of the network fence (Figure 11).
The 0-hop case represents the intra-node barrier where the
network fence does not travel over off-chip channels, and this
takes about 51.5 ns. The 8-hop case represents the global
barrier across the entire 128-node Anton 3 machine

Figure 10. (a) Fence merging and multicast within a single network
router. (b) An example of the routes that fence packets take through
multiple routers.

Figure 11. Network fence barrier latency, measured on a real 128-node
Anton 3 machine.

(connected as a 4 × 4 × 8 torus), and this takes only about
504 ns. With multiple nodes, the latency comprises
approximately 91.2 ns of fixed overhead and 51.8 ns of per-
hop latency. This per-hop latency is about 17.6 ns longer than
the average per-hop latency of inter-node communication
reported in Section III-C, because fence packets need to travel
through all the valid paths at every hop. Overall, the results
show that the Anton 3 network provides a high-performance
synchronization mechanism that can synchronize a large
number of source-destination pairs with a latency close to the
one-way messaging latency between the pairs. The network
fence barrier latency also scales linearly with the network
diameter.

VI. PERFORMANCE AND COST ANALYSES

A. Machine Activity during MD Simulation

Figure 12 plots a portion of machine activity while
computing range-limited pairwise interactions (for roughly
2500 ns of wall-clock time) from a 32,751-atom, water-only
benchmark on an 8-node Anton 3 machine (data collected
from a detailed full-system simulator). Panel (a) shows the
data with compression features (INZ and particle cache)
disabled, and panel (b) shows the data with those features
enabled. Each column represents a different hardware
component, and each color represents a different type of
computation or network traffic.

As shown in Figure 12a, the inter-node channels are
heavily utilized while the primary compute resources for
pairwise interactions (PPIMs) remain underutilized, thus
motivating our network specializations for bandwidth
reduction. Through our novel compression schemes, the
amount of time required to send packets over the network can
be significantly reduced (as shown in Figure 12b), and the
compression also leads to more efficient utilization of the
PPIMs. As a result, each simulation time step takes about
900 ns with compression enabled, as opposed to roughly
2000 ns with compression disabled. In addition, the fact that
each time step takes only around 900 ns (~2500 cycles) with
compression enabled indicates that any synchronization must

have very low overhead. In Anton 3, we address this need by
implementing the network fence and fine-grained
synchronization with counted write and blocking read. These
network features contribute to Anton 3's overall MD
performance improvement, which is substantial; simulation of
a 2.2-million-atom ribosome, for example, is roughly 19 times
faster on a 512-node Anton 3 than on a 512-node Anton 2
(while consuming approximately one-tenth the energy for a
given simulation), and is 460 times faster than on any general-
purpose machine (comprehensive performance comparisons
available in [6]).

B. Component Area
The Anton 3 network comprises four distinct component

types (excluding SERDES IPs and IP-specific support logic):
(1) the Core Router, (2) the Edge Router, (3) the Channel
Adapter, and (4) the Row Adapter. Table II shows the
individual contributions of these network components to the
total die area, indicated as a percentage of the floorplan area;
about 14.1% of the ASIC’s total area is used by the network
components.

We also examined the implementation costs of the particle
cache and network fence. The major cost of the particle cache
stems from on-die memory for cache storage in each Channel
Adapter, and the major cost of the network fence arises from
fence counter arrays included in all the network routers.
Table III lists the costs of these network features in terms of
die area. The total implementation costs for both the particle
cache and network fence amount to only 1.8% of the total die
area—a small overhead considering the performance benefits
from these features.

TABLE II: NETWORK COMPONENT CONTRIBUTIONS TO THE TOTAL DIE
AREA.

Figure 12. Machine activity plots (data collected from the architectural simulator) showing activity across the ASIC for range-limited pairwise interactions
during simulation of a water-only system on an 8-node Anton 3, with compression schemes either disabled (a) or enabled (b). A time step takes roughly
2000 ns with compression disabled, and 900 ns with compression enabled. Columns representing inter-node network traffic over the channels are shown on
the left of each plot (with position packets in red and force packets in green), the middle columns show integration activities across GCs, and the rightmost
columns show position packets arriving at PPIMs and force packets being returned.

Network component Component count % of total die area

Core Routers 288 9.4%
Edge Routers 72 1.4%
Channel Adapters 24 2.8%
Row Adapters 72 0.5%

Total 14.1%

VII. RELATED WORK

MD Simulation: Over the past few decades, use of MD
simulation has become increasingly popular in the fields of
molecular biology and drug discovery [19]–[22]. In order to
achieve simulation timescales long enough to capture many
interesting biochemical processes, research has focused on
accelerating simulations by improving their underlying
algorithms [23]–[25] and parallelizing them in commodity
hardware like GPUs [26]–[28] or FPGAs [29][30]. Some
researchers have scaled MD software to run on general-
purpose supercomputers [31]–[33], while others have built
supercomputers specialized for MD (such as the MDGRAPE
series [34]–[36] and the Anton series [3]–[6]).

Compression: Many data compression techniques have
been proposed to increase effective cache size and memory
bandwidth. The compression cache [37], for example,
replaces frequently accessed data in a cache with indices to a
table containing the values. Another technique, significance-
based compression [38][39], focuses on the data that contain
information in a few low-order bits, and thus encodes data to
fewer bits. Base-Delta-Immediate compression [40] exploits
the low dynamic range of values in cache lines, and
compresses them using a base and deltas. Bit-Plane
Compression [41] first transforms data to improve the
compressibility of data by increasing the run-length of zeros,
similar to INZ in Anton 3. Like these earlier approaches, the
compression schemes in Anton 3 make use of data
characteristics, but are implemented specifically to reduce off-
chip traffic in MD simulations. Such domain-specific
approaches are also common in GPUs [42][43] and machine
learning (ML) accelerators [44][45].

Synchronization: Several large-scale parallel machines
provide specialized hardware support to accelerate collective
operations, such as synchronization barriers. Blue Gene/L
[46], Blue Gene/P [47], and the Cray T3D [48] contain a
dedicated network for global barriers. Blue Gene/Q [49] and
the Cray T3E [50], on the other hand, embed a virtual tree
network into the regular network, and use special packets and
in-network logic to implement barriers. Using a special fence
packet and extra logic in routers for merging and multicast,
the Anton 3 network implements an all-to-all barrier on the
regular network that achieves low latency and scales linearly
with respect to the network diameter. A similar all-to-all
barrier on an on-chip mesh network was proposed previously
[51]; in that approach, however, packets that are
simultaneously in-flight within a given router are merged
opportunistically, and only synchronization within a given
chip is addressed. One important difference between the

synchronization barrier in Anton 3 and those described in the
works listed above is that the barrier in Anton 3 is supported
by the network fence, which was originally designed to
enforce packet ordering. As a result, unlike the previously
proposed schemes, the barrier in the Anton 3 network also
works as a memory fence, thus guaranteeing that all writes
from GCs to remote on-chip memories are complete across
the entire machine.

VIII. CONCLUSION

As parallel MD simulation requires frequent inter-node
communication, simulation performance can be limited by
both off-chip bandwidth and latency. Due to the slow scaling
of off-chip bandwidth in low-latency networks in current
semiconductor technology, a high-performance network is
critical to maximize performance in large-scale parallel
systems. In Anton 3, we have designed and implemented a
tightly integrated network that provides fast end-to-end inter-
node communication and synchronization for fine-grained
messages. As a result of various design choices in network
components to minimize network latency, and implementing
blocking read synchronization to reduce the arrival-to-use
latency for data received over the network, the end-to-end
one-way latency between cores can be as low as 55 ns for
neighboring nodes.

The Anton 3 network also increases effective off-chip
bandwidth by using two MD-specific compression
techniques: INZ (which efficiently compresses payloads with
small absolute values) and the particle cache (which allows
chips to transmit position differences over the off-chip
channels instead of entire positions). Lastly, the network
implements a novel synchronization mechanism called a
network fence, which supports low-latency, fine-grained
synchronization across a large number of compute units.
Through in-network merging and multicast support, the
bandwidth requirement of the network fence is significantly
reduced. These features, implemented with very little chip
area, improve the utilization of the on-chip compute resources,
helping Anton 3 to massively speed up MD simulations across
a range of problem and machine sizes. We also believe that,
although these network features were designed specifically for
MD simulation, the underlying concepts are applicable to
many other high-performance parallel applications.

ACKNOWLEDGMENTS
We thank Larry Nociolo for his work on signal integrity

analysis for high speed channels of Anton 3; Jeffrey S. Kuskin
for implementing memory modules with blocking read
support; Alistair Bell, Andrew Parker, Michael Wazlowski,
and Michael Theobald for their work on the verification of the
Anton 3 network components; Ken Mackenzie for assistance
in running experiments; Michael Fenn for valuable
discussions; Adam Butts and Mark Moraes for a critical
reading of the manuscript; and Eric Martens and Berkman
Frank for editorial assistance.

Network feature % of total die area

Particle Cache 1.6%

Network Fence 0.2%

Total 1.8%

TABLE III: IMPLEMENTATION COSTS OF NETWORK FEATURES IN THE
ANTON 3 ASIC.

REFERENCES
[1] S. A. Hollingsworth and R. O. Dror, “Molecular dynamics simulation

for all,” Neuron, vol. 99, no. 6, pp. 1129–1143, 2018.

[2] T. Schlick, S. Portillo-Ledesma, C. G. Myers, L. Beljak, J. Chen, S.
Dakhel, D. Darling, S. Ghosh, J. Hall, M. Jan, E. Liang, S. Saju, M.
Vohr, C. Wu, Y. Xu, and E. Xue, “Biomolecular modeling and
simulation: A prospering multidisciplinary field,” Annual Review of
Biophysics, vol. 50, no. 1, pp. 267–301, 2021.

[3] D. E. Shaw, M. M. Deneroff, R. O. Dror, J. S. Kuskin, R. H. Larson, J.
K. Salmon, C. Young, B. Batson, K. J. Bowers, J. C. Chao, M. P.
Eastwood, J. Gagliardo, J.P. Grossman, C. R. Ho, D. J. Ierardi, I.
Kolossváry, J. L. Klepeis, T. Layman, C. McLeavey, M. A. Moraes, R.
Mueller, E. C. Priest, Y. Shan, J. Spengler, M. Theobald, B. Towles,
and S. C. Wang, “Anton, a special-purpose machine for molecular
dynamics simulation,” in Proceedings of the 34th Annual International
Symposium on Computer Architecture (ISCA), pp. 1–12, 2007.

[4] D. E. Shaw, R. O. Dror, J. K. Salmon, J.P. Grossman, K. M.
Mackenzie, J. A. Bank, C. Young, M. M. Deneroff, B. Batson, K. J.
Bowers, E. Chow, M. P. Eastwood, D. J. Ierardi, J. L. Klepeis, J. S.
Kuskin, R. H. Larson, K. Lindorff-Larsen, P. Maragakis, M. A.
Moraes, S. Piana, Y. Shan, and B. Towles, “Millisecond-scale
molecular dynamics simulations on Anton,” in SC ’09: Proceedings of
the Conference on High Performance Computing, Networking, Storage
and Analysis, pp. 1–11, 2009.

[5] D. E. Shaw, J.P. Grossman, J. A. Bank, B. Batson, J. A. Butts, J. C.
Chao, M. M. Deneroff, R. O. Dror, A. Even, C. H. Fenton, A. Forte, J.
Gagliardo, G. Gill, B. Greskamp, C. R. Ho, D. J. Ierardi, L. Iserovich,
J. S. Kuskin, R. H. Larson, T. Layman, L.-S. Lee, A. K. Lerer, C. Li,
D. Killebrew, K. M. Mackenzie, S. Y.-H. Mok, M. A. Moraes, R.
Mueller, L. J. Nociolo, J. L. Peticolas, T. Quan, D. Ramot, J. K.
Salmon, D. P. Scarpazza, U. B. Schafer, N. Siddique, C. W. Snyder, J.
Spengler, P. T. P. Tang, M. Theobald, H. Toma, B. Towles, B. Vitale,
S. C. Wang, and C. Young, “Anton 2: Raising the bar for performance
and programmability in a special-purpose molecular dynamics
supercomputer,” in SC ’14: Proceedings of the International
Conference for High Performance Computing, Networking, Storage
and Analysis, pp. 41–53, 2014.

[6] D. E. Shaw, P. J. Adams, A. Azaria, J. A. Bank, B. Batson, A. Bell, M.
Bergdorf, J. Bhatt, J. A. Butts, T. Correia, R. M. Dirks, R. O. Dror, M.
P. Eastwood, B. Edwards, A. Even, P. Feldmann, M. Fenn,
C. H. Fenton, A. Forte, J. Gagliardo, G. Gill, M. Gorlatova, B.
Greskamp, J.P. Grossman, J. Gullingsrud, A. Harper, W. Hasenplaugh,
M. Heily, B. C. Heshmat, J. Hunt, D. J. Ierardi, L. Iserovich, B. L.
Jackson, N. P. Johnson, M. M. Kirk, J. L. Klepeis, J. S. Kuskin, K. M.
Mackenzie, R. J. Mader, R. McGowen, A. McLaughlin, M. A. Moraes,
M. H. Nasr, L. J. Nociolo, L. O'Donnell, A. Parker, J. L. Peticolas, G.
Pocina, C. Predescu, T. Quan, J. K. Salmon, C. Schwink, K. S. Shim,
N. Siddique, J. Spengler, T. Szalay, R. Tabladillo, R. Tartler, A. G.
Taube, M. Theobald, B. Towles, W. Vick, S. C. Wang, M. Wazlowski,
M. J. Weingarten, J. M. Williams, and K. A. Yuh “Anton 3: Twenty
microseconds of molecular dynamics simulation before lunch,” in SC
’21: Proceedings of the International Conference for High
Performance Computing, Networking, Storage and Analysis, pp. 1-11,
2021.

[7] P. J. Adams, B. Batson, A. Bell, J. Bhatt, J. A. Butts, T. Correia,
B. Edwards, P. Feldmann, C. H. Fenton, A. Forte, J. Gagliardo,
G. Gill, M. Gorlatova, B. Greskamp, J.P. Grossman, J. Hunt,
B. L. Jackson, M. M. Kirk, J. S. Kuskin, R. J. Mader, R. McGowen,
A. McLaughlin, M. A. Moraes, M. H. Nasr, L. J. Nociolo,
L. O'Donnell, A. Parker, J. L. Peticolas, T. Quan, C. Schwink,
K. S. Shim, N. Siddique, J. Spengler, M. Theobald, B. Towles,
W. Vick, S. C. Wang, M. Wazlowski, M. J. Weingarten,
J. M. Williams, and D. E. Shaw, “The Anton 3 ASIC: a Fire-Breathing
Monster for Molecular Dynamics Simulations,” in 2021 IEEE Hot
Chips 33 Symposium (HCS), pp. 1-22, 2021.

[8] R. O. Dror, J.P. Grossman, K. M. Mackenzie, B. Towles, E. Chow, J.
K. Salmon, C. Young, J. A. Bank, B. Batson, M. M. Deneroff, J. S.
Kuskin, R. H. Larson, M. A. Moraes, and D. E. Shaw, “Exploiting 162-
nanosecond end-to-end communication latency on Anton,” in SC ’10:

Proceedings of the 2010 ACM/IEEE International Conference for High
Performance Computing, Networking, Storage and Analysis, pp. 1–12,
2010.

[9] J. Kim, “Low-cost router microarchitecture for on-chip networks,”
in 2009 42nd Annual IEEE/ACM International Symposium on
Microarchitecture (MICRO), pp. 255–266, 2009.

[10] B. Towles, J.P. Grossman, B. Greskamp, and D. E. Shaw, “Unifying
on-chip and inter-node switching within the Anton 2 network,” in 2014
ACM/IEEE 41st International Symposium on Computer Architecture
(ISCA), pp. 1–12, 2014.

[11] “InfiniBand Architecture Specification Volume 1 Release 1.4,”
InfiniBand Trade Association, 2020.

[12] M. S. Birrittella, M. Debbage, R. Huggahalli, J. Kunz, T. Lovett, T.
Rimmer, K. D. Underwood, and R. C. Zak, “Intel Omni-path
Architecture: Enabling scalable, high performance fabrics,” in 2015
IEEE 23rd Annual Symposium on High-Performance Interconnects,
pp. 1–9, 2015.

[13] “MVAPICH: MPI over InfiniBand, Omni-Path, Ethernet/iWARP, and
RoCE.” [Online]. Available: http://mvapich.cse.ohio-
state.edu/performance/pt_to_pt/

[14] D. K. Panda, “Overview of the MVAPICH project: Latest status and
future roadmap,” in MVAPICH2 User Group (MUG) Meeting, 2019.

[15] V. Melesse Vergara, W. Joubert, M. J. Brim, R. Budiardja, D.
Maxwell, M. Ezell, C. Zimmer, S. Boehm, W. Elwasif, H. Oral, C.
Fuson, D. S. Pelfrey, O. Hernandez, D. B. Leverman, J. A. Hanley, M.
Berrill, and A. Tharrington, “Scaling the Summit: Deploying the
world’s fastest supercomputer,” 2019. [Online]. Available:
https://www.osti.gov/biblio/1561654

[16] Y. Ajima, T. Kawashima, T. Okamoto, N. Shida, K. Hirai, T. Shimizu,
S. Hiramoto, Y. Ikeda, T. Yoshikawa, K. Uchida, and T. Inoue, “The
Tofu Interconnect D,” in 2018 IEEE International Conference on
Cluster Computing (CLUSTER), pp. 646–654, 2018.

[17] “Top500: Supercomputer Fugaku.” [Online]. Available:
https://www.top500.org/system/179807/

[18] M. Sato, Y. Ishikawa, H. Tomita, Y. Kodama, T. Odajima, M. Tsuji,
H. Yashiro, M. Aoki, N. Shida, I. Miyoshi, K. Hirai, A. Furuya, A.
Asato, K. Morita, and T. Shimizu, “Co-design for A64FX manycore
processor and Fugaku,” in SC ’20: International Conference for High
Performance Computing, Networking, Storage and Analysis (SC), pp.
1–15, 2020.

[19] J. D. Durrant and J. A. McCammon, “Molecular dynamics simulations
and drug discovery,” BMC Biology, vol. 9, no. 71), 2011.

[20] A. Ganesan, M. L. Coote, and K. Barakat, “Molecular dynamics-driven
drug discovery: leaping forward with confidence,” Drug Discovery
Today, vol. 22, no. 2, pp. 249–269, 2017.

[21] A. Acharya, R. Agarwal, M. B. Baker, J. Baudry, D. Bhowmik, S.
Boehm, K. G. Byler, S. Y. Chen, L. Coates, C. J. Cooper, O.
Demerdash, I. Daidone, J. D. Eblen, S. Ellingson, S. Forli, J. Glaser, J.
C. Gumbart, J. Gunnels, O. Hernandez, S. Irle, D. W. Kneller, A.
Kovalevsky, J. Larkin, T. J. Lawrence, S. LeGrand, S.-H. Liu, J.
Mitchell, G. Park, J. Parks, A. Pavlova, L. Petridis, D. Poole, L.
Pouchard, A. Ramanathan, D. M. Rogers, D. Santos-Martins, A.
Scheinberg, A. Sedova, Y. Shen, J. C. Smith, M. D. Smith, C. Soto, A.
Tsaris, M. Thavappiragasam, A. F. Tillack, J. V. Vermaas, V. Q.
Vuong, J. Yin, S. Yoo, M. Zahran, and L. Zanetti-Polzi,
“Supercomputer-based ensemble docking drug discovery pipeline with
application to Covid-19,” Journal of Chemical Information and
Modeling, vol. 60, no. 12, pp. 5832–5852, 2020.

[22] L. Casalino, A. C. Dommer, Z. Gaieb, E. P. Barros, T. Sztain, S.-H.
Ahn, A. Trifan, A. Brace, A. T. Bogetti, A. Clyde, H. Ma, H. Lee, M.
Turilli, S. Khalid, L. T. Chong, C. Simmerling, D. J. Hardy, J. D. Maia,
J. C. Phillips, T. Kurth, A. C. Stern, L. Huang, J. D. McCalpin, M.
Tatineni, T. Gibbs, J. E. Stone, S. Jha, A. Ramanathan, and R. E.
Amaro, “AI-driven multiscale simulations illuminate mechanisms of
SARS-CoV-2 spike dynamics,” The International Journal of High
Performance Computing Applications, 2021.

[23] U. Essmann, L. Perera, M. L. Berkowitz, T. Darden, H. Lee, and L. G.
Pedersen, “A smooth particle mesh Ewald method,” The Journal of
Chemical Physics, vol. 103, no. 19, pp. 8577–8593, 1995.

[24] Y. Shan, J. L. Klepeis, M. P. Eastwood, R. O. Dror, and D. E. Shaw,
“Gaussian split Ewald: A fast Ewald mesh method for molecular
simulation,” The Journal of Chemical Physics, vol. 122, no. 5, p.
054101, 2005.

[25] D. E. Shaw, “A fast, scalable method for the parallel evaluation of
distance-limited pairwise particle interactions,” Journal of
Computational Chemistry, vol. 26, pp. 1318–28, 2005.

[26] R. Salomon-Ferrer, A. W. Götz, D. Poole, S. Le Grand, and R. C.
Walker, “Routine microsecond molecular dynamics simulations with
AMBER on GPUs. 2. Explicit Solvent Particle Mesh Ewald,” Journal
of Chemical Theory and Computation, vol. 9, no. 9, pp. 3878–3888,
2013.

[27] S. Páll, A. Zhmurov, P. Bauer, M. Abraham, M. Lundborg, A. Gray,
B. Hess, and E. Lindahl, “Heterogeneous parallelization and
acceleration of molecular dynamics simulations in GROMACS,” The
Journal of Chemical Physics, vol. 153, no. 13, p. 134110, 2020.

[28] M. Bergdorf, A. Robinson-Mosher, X. Guo, K.-H. Law, and D. E.
Shaw, “Desmond/GPU performance as of April 2021,” D. E. Shaw
Research, Tech. Rep. DESRES/TR–2021-01, Apr. 2021.

[29] C. Yang, T. Geng, T. Wang, R. Patel, Q. Xiong, A. Sanaullah, C. Wu,
J. Sheng, C. Lin, V. Sachdeva, W. Sherman, and M. Herbordt, “Fully
integrated FPGA molecular dynamics simulations,” in SC ’19:
Proceedings of the International Conference for High Performance
Computing, Networking, Storage and Analysis, 2019.

[30] M. Schaffner and L. Benini, “On the feasibility of FPGA acceleration
of molecular dynamics simulations,” 2018. [Online]. Available:
http://arxiv.org/abs/1808.04201

[31] B. Acun, D. J. Hardy, L. V. Kale, K. Li, J. C. Phillips, and J. E. Stone,
“Scalable molecular dynamics with NAMD on the Summit system,”
IBM Journal of Research and Development, vol. 62, no. 6, pp. 4:1–4:9,
2018.

[32] J. C. Phillips, D. J. Hardy, J. D. Maia, J. E. Stone, J. V. Ribeiro, R. C.
Bernardi, R. Buch, G. Fiorin, J. Henin, W. Jiang, R. McGreevy, M. C.
Melo, B. K. Radak, R. D. Skeel, A. Singharoy, Y. Wang, B. Roux, A.
Aksimentiev, Z. Luthey-Schulten, L. V. Kale, K. Schulten, C. Chipot,
and E. Tajkhorshid, “Scalable molecular dynamics on CPU and GPU
architectures with NAMD,” The Journal of Chemical Physics, vol.
153, no. 4, p. 044130, 2020.

[33] J. Jung, C. Kobayashi, K. Kasahara, C. Tan, A. Kuroda, K. Minami, S.
Ishiduki, T. Nishiki, H. Inoue, Y. Ishikawa, M. Feig, and Y. Sugita,
“New parallel computing algorithm of molecular dynamics for
extremely huge scale biological systems,” Journal of Computational
Chemistry, vol. 42, no. 4, pp. 231–241, 2021.

[34] T. Narumi, R. Susukita, T. Koishi, K. Yasuoka, H. Furusawa, A.
Kawai, and T. Ebisuzaki, “1.34 Tflops molecular dynamics simulation
for NaCl with a special-purpose computer: MDM,” in Proceedings of
the ACM/IEEE Conf. Supercomputing, 2000

[35] T. Narumi, Y. Ohno, N. Okimoto, T. Koishi, A. Suenaga, N. Futatsugi,
R. Yanai, R. Himeno, S. Fujikawa, M. Taiji, and M. Ikei, “A 55
TFLOPS simulation of amyloid-forming peptides from yeast prion
Sup35 with the special-purpose computer system MDGRAPE-3,” in
Proceedings of the ACM/IEEE Conf. Supercomputing, 2006

[36] I. Ohmura, G. Morimoto, Y. Ohno, A. Hasegawa, and M. Taiji,
“MDGRAPE-4: a special-purpose computer system for molecular

dynamics simulations,” Philosophical Transactions of the Royal
Society A: Mathematical, Physical and Engineering Sciences, vol. 372,
no. 2021, p. 20130387, 2014.

[37] J. Yang, Y. Zhang, and R. Gupta, “Frequent value compression in data
caches,” in Proceedings 33rd Annual IEEE/ACM International
Symposium on Microarchitecture, pp. 258–265, 2000.

[38] R. Canal, A. Gonzalez, and J. Smith, “Very low power pipelines using
significance compression,” in Proceedings 33rd Annual IEEE/ACM
International Symposium on Microarchitecture (MICRO), pp. 181–
190, 2000.

[39] A. R. Alameldeen and D. A. Wood, “Frequent pattern compression: A
significance-based compression scheme for L2 caches,” in Technical
Report 1500, Computer Sciences Department, University of
Wisconsin- Madison, 2004.

[40] G. Pekhimenko, V. Seshadri, O. Mutlu, P. B. Gibbons, M. A. Kozuch,
and T. C. Mowry, “Base-delta-immediate compression: Practical data
compression for on-chip caches,” in Proceedings of the 21st
International Conference on Parallel Architectures and Compilation
Techniques, pp. 377–388, 2012.

[41] J. Kim, M. Sullivan, E. Choukse and M. Erez, “Bit-Plane Compression:
Transforming Data for Better Compression in Many-Core
Architectures,” in 2016 ACM/IEEE 43rd Annual International
Symposium on Computer Architecture (ISCA), pp. 329–340, 2016.

[42] “GeForce GTX 1080 whitepaper,” NVIDIA Corporation, 2016.

[43] “RDNA architecture whitepaper,” AMD, 2019. [Online]. Available:
https://www.amd.com/system/files/documents/rdna-whitepaper.pdf

[44] S. Han, H. Mao, and W. J. Dally, “Deep compression: Compressing
deep neural network with pruning, trained quantization and Huffman
coding,” in 4th International Conference on Learning Representations,
ICLR, 2016. [Online]. Available: http://arxiv.org/abs/1510.00149

[45] Y.-H. Chen, T. Krishna, J. S. Emer, and V. Sze, “Eyeriss: An energy
efficient reconfigurable accelerator for deep convolutional neural
networks,” IEEE Journal of Solid-State Circuits, vol. 52, no. 1, pp.
127–138, 2017.

[46] G. Almási, P. Heidelberger, C. J. Archer, X. Martorell, C. C. Erway, J.
E. Moreira, B. Steinmacher-Burow, and Y. Zheng, “Optimization of
MPI collective communication on BlueGene/L systems,” in
Proceedings of the 19th Annual International Conference on
Supercomputing, pp. 253–262, 2005.

[47] “Overview of the IBM Blue Gene/P project,” IBM Journal of Research
and Development, vol. 52, no. 1.2, pp. 199–220, 2008.

[48] “Cray T3D system architecture overview,” Cray Research Inc., 1993.

[49] D. Chen, N. A. Eisley, P. Heidelberger, R. M. Senger, Y. Sugawara, S.
Kumar, V. Salapura, D. L. Satterfield, B. Steinmacher-Burow, and J. J.
Parker, “The IBM Blue Gene/Q interconnection network and message
unit,” in SC ’11: Proceedings of 2011 International Conference for
High Performance Computing, Networking, Storage and Analysis, pp.
1–10, 2011.

[50] S. L. Scott, “Synchronization and communication in the T3E
multiprocessor,” in Proceedings of the Seventh International
Conference on Architectural Support for Programming Languages and
Operating Systems, pp. 26–36, 1996.

[51] X. Chen, Z. Lu, A. Jantsch, S. Chen, Y. Guo, and H. Liu, “Cooperative
communication for efficient and scalable all-to-all barrier
synchronization on mesh-based many-core NoCs,” IEICE Electronics
Express, vol. 11, no. 18, 2014.

