
Decreasing the Computing Time of Bayesian
Optimization using Generalizable Memory Pruning

Alexander E. Siemenn
Department of Mechanical Engineering

Massachusetts Institute of Technology
Cambridge, MA, USA

asiemenn@mit.edu

Tonio Buonassisi
Department of Mechanical Engineering

Massachusetts Institute of Technology
Cambridge, MA, USA

buonassisi@mit.edu

Abstract—Bayesian optimization (BO) suffers from long com-
puting times when processing highly-dimensional or large data
sets. These long computing times are a result of the Gaussian
process surrogate model having a polynomial time complex-
ity with the number of experiments. Running BO on high-
dimensional or massive data sets becomes intractable due to
this time complexity scaling, in turn, hindering experimentation.
Alternative surrogate models have been developed to reduce
the computing utilization of the BO procedure, however, these
methods require mathematical alteration of the inherit surrogate
function, pigeonholing use into only that function. In this paper,
we demonstrate a generalizable BO wrapper of memory pruning
and bounded optimization, capable of being used with any
surrogate model and acquisition function. Using this memory
pruning approach, we show a decrease in wall-clock computing
times per experiment of BO from a polynomially increasing
pattern to a sawtooth pattern that has a non-increasing trend
without sacrificing convergence performance. Furthermore, we
illustrate the generalizability of the approach across two unique
data sets, two unique surrogate models, and four unique acqui-
sition functions. All model implementations are run on the MIT
Supercloud state-of-the-art computing hardware.

Index Terms—efficient computing, bounded search, time com-
plexity scaling, generalizable optimization, data pruning

I. INTRODUCTION

Bayesian optimization (BO) is a data-based global optimiza-
tion tool that discovers optima without an analytical model
of the response function [1]–[3]. A standard BO procedure
consists of two primary steps: (1) using a surrogate model to
estimate the topology of the target response function given
a collection of input data and (2) acquiring new suggested
experimental conditions to run based on the estimated surro-
gate model means and variances [4], [5]. For the first step,
a common surrogate model used in BO is a Gaussian Pro-
cess (GP) regression. GPs model complex, multi-dimensional
input-output response relationships using a mixture of kernel
functions that interpolate the missing space between collected
experiments [6]–[8]. For the second step, a mathematical figure
of merit called an acquisition function (AF), acquires new
experimental conditions to run, governed by balancing the

A.E.S. and T.B. thank First Solar and the Acceleration Consortium for
their support and fruitful discussions. The authors acknowledge the MIT
SuperCloud and Lincoln Laboratory Supercomputing Center for providing
HPC resources that have contributed to the research results reported within
this paper.

exploitation of regions of low predicted response function
means (for a minimization problem) and the exploration of
regions of high predicted response function variances [4], [6],
[9]. The interleaving steps of response function estimation via
surrogate model computation and acquisition of new experi-
ments leverage the estimation power of the surrogate model
to discover the optima of challenging experimental problems
where it may be otherwise intractable to develop an analytical
model representative of the response function [10]–[12].

However, as the complexity or dimensionality of the re-
sponse function increases, more experimental data points, N ,
are required for accurate estimation of the response function’s
surrogate model [13], [14]. This increased data requirement
of the surrogate model becomes problematic because the time
required to compute a GP regression increases polynomially
following the scaling law O(N3) [7], [8], [15]–[17]. Both in
silico and in situ optimization experiments can be significantly
bottlenecked by this unfavorable scaling law if large volumes
of data are being collected, hence, by selectively processing
subsets of this data in tandem with bounded optimization, the
computing times of the BO process can be reduced.

In this study, we explore the use of memory pruning and
bounded surrogate models as a method to decrease the number
of required experimental data points needed to accurately run
an online BO procedure, therefore, decreasing the computing
time of optimization. We benchmark the computing times of
two surrogate models: (1) a GP and (2) a pre-trained neural
network, each with four acquisition functions: (1) expected
improvement (EI), (2) lower confidence bound (LCB), (3) EI
Abrupt, and (4) LCB Adaptive, all run on the MIT Supercloud,
a high-performance supercomputer consisting of Nvidia Volta
V100 GPUs [18]. Existing literature on decreasing the com-
puting time of BO conventionally alters the mathematics of a
surrogate model to make computation more efficient [5], [7],
[9], [19], [20], however, this constrains the user to only this
newly developed surrogate for optimization.

In this contribution, we demonstrate the use of a generalized
method of memory pruning and search space bounding to
efficiently decrease BO computing times without constraining
the procedure to a single surrogate model or AF. Furthermore,
we demonstrate the reduction of computing times on two
relevant problems: (1) optimization of a 6-dimensional ana-

ar
X

iv
:2

30
9.

04
51

0v
1

 [
cs

.L
G

]
 8

 S
ep

 2
02

3

lytical Ackley function to demonstrate relevance for in silico
experimentation and (2) optimization of a 5-dimensional real-
world data set of inorganic crystalline material band gaps to
demonstrate relevance for in situ experimentation.

II. RELATED WORK

Existing literature exists on decreasing the computing time
of BO, however, most of this literature requires significant
changes to the mathematical structure of the GP or AF. For
example, a common method of decreasing the computing time
of BO is to implement a Sparse Pseudo-input GP (SPGP) [7],
[19]–[21]. A standard GP is non-parametric in nature, meaning
that when constructing a prediction, the entire prior training
data set is required to compute the response function of a target
variable [7]. Instead of using the full number of training data,
N , to compute this response function, an SPGP uses a pseudo
data set of size M < N , such that

XSPGP = {XGP}Mm=1, (1)

where XSPGP is the set of input data used to compute the
prediction in an SPGP and XGP is the set of input data used
to compute the predicted response in a standard GP. Hence,
the spacing between pseudo data points is known. Moreover,
||XSPGP|| = M and ||XGP|| = N . This reforged structure of
a GP into an SPGP enables computing time decreases on the
order of O(N3) → O(NM2) since M < N .

Another method to decrease the computing time of BO is
efficient global optimization (EGO) [5], [9], [22]. Similar to
standard BO, EGO implements a surrogate model to generate
the input-output response function, however, EGO can acquire
a global optimum in fewer online iterations than BO by
bounding the derivatives of the acquisition function relative
to either the target variable or the surrogate standard error [5]:

δEI(X)

δy(X)
< 0 and

δEI(X)

δs(X)
> 0,

(2)

where EI is the Expected Improvement acquisition function
defined in the next section, y is the target response variable
and s is the standard error of the surrogate. Additionally, van
Stein et al. [23] further decrease the computing time of EGO
by parallelizing the computation of the gradients.

In order to decrease the computing time of BO, the methods
mentioned above either (1) make significant changes to the
surrogate model or (2) rely on computing the gradients of
the AF to bound the search space. A downfall of computing
the gradients of an AF is immediately constraining the AF
of choice to be differentiable. Thus, the EGO studies above
are constrained to using only the expected improvement AF
and cannot use other AFs, even if it may be more advan-
tageous. Therefore, in this study, we implement methods of
decreasing the computing time of BO that do not constrain
the user to select a certain surrogate model or AF to run
the procedure. Instead, the method used in this paper is
a lightweight implementation of a simple space-bounding

method, not requiring gradients, from which new experiments
are acquired. Furthermore, selective pruning of memory data
from outside the bounded search space drives a significant
decrease in BO compute time relative to standard BO. Hence,
the method described in the next section supports the use of
any surrogate model or AF. In this paper, we illustrate the
computing times achieved using a GP surrogate model and
four different AFs.

III. METHODS

In this paper, we extend the implementation of a BO
wrapper developed by Siemenn et al. [24] that bounds the
acquisition and search space while pruning old memory data
that lay outside of these computed bounds. This approach
is entitled Zooming Memory-Based Initialization (ZoMBI)
and is described further in [24] with code publicly available.
In brief, for a minimization objective, f , the bounds for
each dimension, d, are computed uniquely based on the
min(Xd) and the max(Xd) of the m best-performing memory
points, i.e., the points that achieve the m lowest target f
values, from the set X. For every loop, all data points that
lie outside of the constrained space will be pruned from
memory. This is computationally favorable because as the
search bounds iteratively zoom in, the target space inside the
bounds increases in resolution by the surrogate model while all
other space decreases in resolution. A standard GP surrogate
model as well as a neural network (NN) surrogate model are
used in the ZoMBI optimization procedure to demonstrate its
generalizability to several unique surrogate models.

The computing times of four unique AFs implemented using
ZoMBI are benchmarked against their standard BO counter-
parts. These four AFs are expected improvement (EI), lower
confidence bound (LCB), EI Abrupt, and LCB Adaptive. Each
of these mathematical figures of merit uniquely balances the
exploitation of surrogate posterior means and the exploration
of surrogate posterior variances.

EI is defined as [25]–[27]:

aEI(X,Y; ξ, η) = (µ(X)−min(Y)− ξ) Φ(Z) + σ(X)ψ(Z),

where Z =
µ(X)−min(Y)− ξ

σ(X)
,

(3)

where X is the set of input data {x1, x2, ...xN}, xj ∈ Rd

for d dimensions, Y is the set of corresponding response
values {y1, y2, ...yN}, yj ∈ R, ξ is a hyperparameter tuned
to favor exploration or exploitation of the surrogate, and
Φ(·) and ψ(·) are the normal cumulative and probability
density functions, respectively. EI strikes a balance between
exploration and exploitation while considering the prior best-
performing response variable of the set, min(Y).

LCB is defined as [28], [29]:

aLCB(X;β) = µ(X)− βσ(X), (4)

where β is a hyperparameter tuned to factor exploration or
exploitation of the surrogate means, µ, and variances σ. A

(A) Gaussian Process Surrogate

(B) Gaussian Process Surrogate + Acquisition

LCB Adaptive

LCB Adaptive

Co
m

pu
te

Co
m

pu
te

Co
m

pu
te

Co
m

pu
te

Co
m

pu
te

Co
m

pu
te

Co
m

pu
te

Co
m

pu
te

Fig. 1: Computing times of a Bayesian optimization procedure with a Gaussian process surrogate model. (A) Wall-clock
computing times per experiment for only the GP computation component across N data points on a 6D analytical Ackley
function. (B) Wall-clock computing times per experiment for the acquisition of new data from a GP computed across a mesh
grid of 10k data points on a 6D analytical Ackley function. Each panel represents the computing times of four AFs, from top
to bottom: EI, LCB, EI Abrupt, and LCB Adaptive. The colored scatter points represent the compute times per experiment of
twelve independent optimization procedures using the memory pruning ZoMBI method for each AF. The black scatter points
represent the benchmark compute times per experiment of one independent optimization using standard BO for each AF. For
ZoMBI, N ≤ 20 via memory pruning and for standard BO, N is the number of experiments. All compute times are wall-clock
compute times measured from the MIT Supercloud Nvidia Volta V100 GPUs. The y-axes are shown in log scale.

higher β favors exploration of surrogate variances while a
lower β favors exploitation of surrogate means.

EI Abrupt is defined as [24]:

aEI Abrupt(X,Y;β, ξ, η) ={
aEI(X,Y; ξ, η), if |∆{yN−3...N}| ≤ η

aLCB(X;β), otherwise

(5)

where the mode of acquisition is abruptly switched between
EI and LCB depending on if the finite difference between the
{yN−3...N} previous response values is below a hyperparam-

eter threshold, η. EI Abrupt provides another level of tunable
exploration-exploitation by actively swapping between these
modes as more data is collected.

LCB Adaptive is defined as [24], [30], [31]:

aLCB Adaptive(X, N ;β, ϵ) = µ(X)− ϵNβσ(X), (6)

where the hyperparameter, β, is actively tuned as the number
of collected data points, N = ||X||, increases. LCB Adaptive
exponentially decays from being more explorative to then
becoming more exploitative as N increases. Since ZoMBI

actively prunes the set X, which decreases N until more
experiments are collected, LCB Adaptive is always switching
acquisition modes throughout the optimization procedure.

In this paper, we demonstrate the computing times of each
of these AFs implemented with the ZoMBI bounding and
pruning method as well as implemented with just standard
BO. The computing times are further bifurcated into (1) the
surrogate model compute times per experiment alone on N
data points and (2) the surrogate + AF compute times per
experiment on a mesh grid of 10k data points since acquisition
of new data points requires the computation of the surrogate
across a mesh grid of points in the space.

First, the computing times of each AF with a GP surrogate
model are measured on a 6-dimensional analytical Ackley
function [32] for 1000 experiments for both ZoMBI and
standard BO implementations. Second, the computing times
of just the ZoMBI AF implementations with a NN surrogate
model for 200 experiments are measured on a real-world 5-
dimensional data set of inorganic crystalline material band
gaps, available as open-access from Materials Project [33].
Both of these experiments are run on the high-performance
supercomputer, MIT Supercloud to measure the wall-clock
computing times of both the surrogate models and the ac-
quisition functions [18].

IV. RESULTS

A. Gaussian Process Surrogate on a 6D Analytical Data Set

In this section, we demonstrate a decrease in BO computing
times, relative to standard BO, using the ZoMBI method of
memory pruning on an in silico optimization experiment of
an analytical 6-dimensional Ackley function [24], [32]. This
in silico optimization experiment is run on the MIT Supercloud
Nvidia Volta V100 GPU [18].

Figure 1 illustrates (A) the time to compute a GP surrogate
model for each iterative experiment and (B) the time to acquire
new data points by computing the GP surrogate across a mesh
grid for each iterative experiment. One operation is included in
the measurement of GP compute time: (1) the fitting of training
data, X, to a GP model using a mixture of kernel functions,
in this case, Matern 5/2 kernels. Two operations are included
in the measurement of GP + acquisition compute time: (1) the
prediction and storage of the response values Y from the GP
for a mesh grid of 10k data points from a bounded set of X and
(2) the computation of the acquisition figure of merit from one
of Equations 3–6, hence, GP + acquisition computing times
are higher than just GP computing times alone.

In Figure 1(A), a square wave pattern in ZoMBI computing
times is shown by the colored scatter points. This is a result
of the ZoMBI process selecting the top performing acquired
experiments every N = 20 experiments and pruning the
rest from the memory to bound the surrogate mesh grid
computation. Hence, for every 20 experiments, a drop in
computing times is noted for ZoMBI, whereas computing
times for standard BO continue to increase polynomially per
experiment as additional experiments are collected to calculate
the GP. As a result of this memory pruning, ZoMBI computing

Fig. 2: Loss of standard and ZoMBI Bayesian optimization
on a 6-dimensional Ackley function. (A) Loss traces over the
1000-experiment optimization procedure from Figure 1. Only
the minimum standard BO loss trace is shown for clarity.
(B) Final loss values after 1000 sampled experiments. The
colored bars and traces illustrate the median minimum values
discovered by twelve independent trials of the memory pruning
ZoMBI method for each AF with the 5th and 95th percentile
indicated by (A) the shaded region and (B) the error bars. The
grey bars illustrate the minimum values discovered by one
independent trial of standard BO for each AF.

times per experiment demonstrate a non-increasing trend, even
after 1000 experiments are acquired. Therefore, the memory
pruning procedure significantly decreases the computing time
per experiment relative to standard BO. Furthermore, a low
spread between scatter points plotted from each of the twelve
independent trials demonstrates the high reproducibility of
results using the MIT Supercloud GPUs.

Similar to the GP surrogate computing time results, a
significant decrease in computing times using memory pruning
is demonstrated for the acquisition of new data points, shown
in Figure 1(B). A log-transformed sawtooth pattern is shown
between memory pruning steps where a drop in compute time
occurs. Again, low variance between the twelve independent
trials is demonstrated due to the high overlap between scatter

(A) Neural Network Surrogate

(B) Neural Network Surrogate + Acquisition

LCB Adaptive

LCB Adaptive

Co
m

pu
te

Co
m

pu
te

Co
m

pu
te

Co
m

pu
te

Co
m

pu
te

Co
m

pu
te

Co
m

pu
te

Co
m

pu
te

Fig. 3: Computing times of a Bayesian optimization procedure with a pre-trained neural network surrogate model. (A) Wall-
clock computing times per experiment for only the NN computation component across N data points on a 5D real-world
materials data set. (B) Wall-clock computing times per experiment for the acquisition of new data from a NN computed across
a mesh grid of 10k data points on a 5D real-world materials data set. Each panel represents the computing times of four AFs,
from top to bottom: EI, LCB, EI Abrupt, and LCB Adaptive. The median values are shown by the solid line and the 5th and
95th percentile range is shown by the shaded region. All compute times are wall-clock compute times measured from the MIT
Supercloud Nvidia Volta V100 GPUs.

points. Using ZoMBI, the time to compute the GP surrogate
alone is approximately 0.2 seconds per experiment (Figure
1(A)), while the time to compute and acquire new data
points from the surrogate model takes approximately 1 second
per experiment (Figure 1(B)). This difference arises due to
the number of computations being performed: Figure 1(A)
computes the GP across only N ≤ 20 points while Figure
1(B) computes the GP and the acquisition value (Equations 3–
6) across 10k points in a mesh grid to acquire new data points.
After 1000 experiments are collected, the ZoMBI method
still achieves computing times of 1 second per experiment,
however, the standard BO method polynomially approaches

compute times of 100 seconds per experiment, a factor of 100x
slower. Therefore, computing times of BO are significantly
reduced using a memory pruning and bounded optimization
approach. But, does this pruning and bounding process ad-
versely impact optimization performance?

Figure 2 illustrates the convergence of ZoMBI and standard
BO on the global minimum of the 6-dimensional Ackley
function. Not only does this memory pruning and bounded
optimization procedure not adversely impact optimization per-
formance, but it is also demonstrated to outperform standard
BO on the 6-dimensional Ackley function. ZoMBI EI achieves
the lowest function values after 1000 experiments with LCB,

then EI Abrupt, then LCB Adaptive following, in that order.
The reverse is noted for standard BO. This implies that without
the memory pruning and search space bounding features of
ZoMBI, the actively adapting acquisition functions, EI Abrupt
and LCB Adaptive, perform better than the conventional
EI and LCB acquisition functions. Moreover, we note that
standard BO, shown as the black trace in Figure 2(A), stops
learning after fewer than 50 experiments due to local minima
and the sharpness of the Ackley function global minimum
[32], [34] while all ZoMBI methods continue to learn by
continuously zooming in the search space bounds.

B. Neural Network Surrogate on a 5D Real-world Data Set

In this section, we demonstrate a decrease in BO computing
times, relative to standard BO, using the ZoMBI method of
memory pruning on an optimization problem translatable to in
situ experimentation. The data set optimized is a 5-dimensional
open-access data set of inorganic crystals with the objective
of optimizing the properties density, formation energy, energy
above hull, Fermi energy to find a material with 1.4eV band
gap [33], [35]. A pre-trained NN is used as the surrogate model
instead of the GP to demonstrate the generalizability of the
memory pruning method to various surrogate models.

Figure 3 illustrates the time to fit a pre-trained NN to the
set X on the MIT Supercloud [18]. Figure 3(A) illustrates
fitting the NN surrogate to a maximum of N = 20 points
using ZoMBI, whereas Figure 3(B) illustrates fitting the NN
and computing the respective AF to a mesh grid of 10k points
using ZoMBI. The combination of the NN fitting to few data
and also being pre-trained produces a noisy trace of computing
times in Figure 3(A). However, as the number of fitting points
increases from 20 to 10k, a much clearer trend in computing
times can be seen in Figure 3(B).

Similar to the GP surrogate results on the 6D Ackley
function in Figure 1, a sawtooth pattern, resetting every 20
experiments is shown for the NN + AF computing times in
Figure 3 for the 5D real-world data set. Although each of these
AFs has a similar structure to their compute time curves, each
y-axis has a different scale, and LCB is noted to have the
highest computing time. This is likely due to LCB’s explo-
rative nature constantly generating a wide search bound which
encompasses many more data points when compared to any of
the greedier AF methods. Furthermore, an interesting pattern
is seen in the EI Abrupt curves where the first rising segment
has a different structure than the second rising segment, this is
the abrupt switch between EI and LCB sampling modes that
changes the bounding and, in turn, changes the number of data
points kept in memory.

Overall, the NN surrogate run on the 5D real-world data
set produces similar non-increasing computing times per ex-
periment to the GP surrogate run on the 6D analytical Ackley
function. Hence, demonstrating the potential for the ZoMBI
memory pruning and bounding optimization method to be gen-
eralizable to various surrogate models, without modification,
to decrease the computing time of BO.

V. SUMMARY & CONCLUSIONS

In this paper, we demonstrate the capabilities of search
space bounding and memory pruning in Bayesian optimization
to significantly decrease the optimization procedure’s comput-
ing time. We demonstrate this decrease in compute time by
up to 100x across two unique data sets, two unique surrogate
models, and four unique acquisition functions, all of which are
run on the high-performance MIT Supercloud supercomputer
[18].

The method of bounding and memory pruning using Zoom-
ing Memory-Based Initialization (ZoMBI) [24] implemented
in this paper takes the best-performing memory points and
uses those values to construct a constrained search region for
the acquisition function to sample from. Upon consecutive
constraints, prior data points that lay outside of these bounds
are pruned from memory, decreasing the number of data points
used to fit a surrogate model, in turn, decreasing the time
required to compute the surrogate model and its acquisition
function.

We demonstrate that this iterative constraining and pruning
process achieves a sawtooth computing time pattern per ex-
periment, relative to standard BO that exhibits a polynomially
increasing computing time trend following O(N3) for N
experiments. The sawtooth computing time pattern is shown
to reset back to near-zero after each memory pruning update,
hence, producing a non-increasing computing time trend per
experiment. Furthermore, this decreased computing time is
shown to persist across analytical and real-world data sets,
across Gaussian Process regression and neural network surro-
gate models, and across four acquisition functions: expected
improvement, lower confidence bound, abrupt expected im-
provement, and adaptive lower confidence bound. The results
demonstrated in this paper are also shown to be reproducible
with low variance across several independent trials by being
run on the MIT Supercloud supercomputer. Hence, in this
paper, we demonstrate the reproducibility and generalizability
of the proposed ZoMBI memory pruning and bounded opti-
mization method to decrease the computing times of Bayesian
optimization across a variety of data sets, surrogate models,
and acquisition functions.

REFERENCES

[1] H. J. Kushner, “A new method of locating the maximum point of an
arbitrary multipeak curve in the presence of noise,” Journal of Basic
Engineering, vol. 86, pp. 97–106, 3 1964.

[2] S. Greenhill, S. Rana, S. Gupta, P. Vellanki, and S. Venkatesh, “Bayesian
optimization for adaptive experimental design: A review,” IEEE Access,
vol. 8, pp. 13 937–13 948, 2020.

[3] B. Shahriari, K. Swersky, Z. Wang, R. P. Adams, and N. D. Freitas,
“Taking the human out of the loop: A review of bayesian optimization,”
Proceedings of the IEEE, vol. 104, pp. 148–175, 1 2016.

[4] E. Brochu, V. M. Cora, and N. de Freitas, “A Tutorial on Bayesian
Optimization of Expensive Cost Functions, with Application to Active
User Modeling and Hierarchical Reinforcement Learning,” 2010.

[5] D. R. Jones, M. Schonlau, and W. J. Welch, “Efficient Global Optimiza-
tion of Expensive Black-Box Functions,” J. Glob. Optim., vol. 13, pp.
455–492, 1998.

[6] M. Seeger, “Gaussian processes for machine learning.” Int. J. Neural
Syst., vol. 14, no. 2, pp. 69–106, 2004.

[7] E. Snelson and Z. Ghahramani, Sparse Gaussian Processes using
Pseudo-inputs, Y. Weiss, B. Schölkopf, and J. Platt, Eds. MIT Press,
2005, vol. 18.

[8] C. E. Rasmussen and C. K. I. Williams, Gaussian Processes for Machine
Learning. The MIT Press, 2005.

[9] P. Hennig and C. J. Schuler, “Entropy search for information-efficient
global optimization,” Journal of Machine Learning Research, vol. 13,
pp. 1809–1837, 2012.

[10] J. R. Deneault, J. Chang, J. Myung, D. Hooper, A. Armstrong,
M. Pitt, and B. Maruyama, “Toward autonomous additive manufacturing:
Bayesian optimization on a 3d printer,” MRS Bulletin, vol. 46, pp. 566–
575, 7 2021.

[11] A. E. Siemenn, E. Shaulsky, M. Beveridge, T. Buonassisi, S. M. Hashmi,
and I. Drori, “A Machine Learning and Computer Vision Approach
to Rapidly Optimize Multiscale Droplet Generation,” ACS Appl. Mater.
Interfaces, vol. 14, no. 3, pp. 4668–4679, 2022.

[12] Z. Liu, N. Rolston, A. C. Flick, T. W. Colburn, Z. Ren, R. H. Dauskardt,
and T. Buonassisi, “Machine learning with knowledge constraints for
process optimization of open-air perovskite solar cell manufacturing,”
Joule, vol. 6, no. 4, pp. 834–849, 2022.

[13] H. Sayama, I. Pestov, J. Schmidt, B. J. Bush, C. Wong, J. Yamanoi,
and T. Gross, “Modeling complex systems with adaptive networks,”
Computers & Mathematics with Applications, vol. 65, no. 10, pp. 1645–
1664, 2013.

[14] D. H. Wolpert and D. R. Wolf, “Estimating functions of probability
distributions from a finite set of samples,” Physical Review E, vol. 52,
no. 6, p. 6841, 1995.

[15] C. Li, S. Gupta, S. Rana, V. Nguyen, S. Venkatesh, and A. Shilton,
“High Dimensional Bayesian Optimization Using Dropout,” Proc. 26th
Int. Jt. Conf. Artif. Intell. IJCAI, 2017.

[16] Z. Wang, C. Li, S. Jegelka, and P. Kohli, “Batched High-dimensional
Bayesian Optimization via Structural Kernel Learning,” Proc. 34th Int.
Conf. Mach. Learn. Sydney, Aust. PMLR, vol. 70, 2017.

[17] G. Lan, J. M. Tomczak, D. M. Roijers, and A. E. Eiben, “Time Efficiency
in Optimization with a Bayesian-Evolutionary Algorithm,” 2020.

[18] A. Reuther, J. Kepner, C. Byun, S. Samsi, W. Arcand, D. Bestor,
B. Bergeron, V. Gadepally, M. Houle, M. Hubbell, M. Jones, A. Klein,
L. Milechin, J. Mullen, A. Prout, A. Rosa, C. Yee, and P. Michaleas,
“Interactive supercomputing on 40,000 cores for machine learning and
data analysis,” 2018 IEEE High Perform. Extrem. Comput. Conf., pp.
1–6, 2018.

[19] F. Leibfried, V. Dutordoir, S. T. John, and N. Durrande, “A Tutorial on
Sparse Gaussian Processes and Variational Inference,” 2021.

[20] M. Titsias, “Variational learning of inducing variables in sparse gaussian
processes,” Proc. Mach. Learn. Res., vol. 5, pp. 567–574, 16–18 Apr
2009.

[21] M. McIntire, D. Ratner, and S. Ermon, “Sparse gaussian processes
for bayesian optimization,” in Conference on Uncertainty in Artificial
Intelligence, 2016.

[22] S. Jeong and S. Obayashi, “Efficient global optimization (ego) for
multi-objective problem and data mining,” 2005 IEEE Congress on
Evolutionary Computation, IEEE CEC 2005. Proceedings, vol. 3, pp.
2138–2145, 2005.

[23] B. van Stein, H. Wang, and T. Back, “Automatic configuration of deep
neural networks with parallel efficient global optimization,” 2019 Int.
Jt. Conf. Neural Networks, pp. 1–7, 2019.

[24] A. E. Siemenn, Z. Ren, Q. Li, and T. Buonassisi, “Fast bayesian
optimization of needle-in-a-haystack problems using zooming memory-
based initialization (zombi),” npj Computational Materials, vol. 9, pp.
1–13, 5 2023.

[25] J. Mockus, V. Tiesis, and A. Zilinskas, “The application of bayesian
methods for seeking the extremum,” pp. 117–129, 1978.

[26] V. R. Šaltenis, “One method of multiextremum optimization,” Automatic
Control and Comput. Sci., pp. 33–38, 1971.

[27] D. Zhan and H. Xing, “Expected improvement for expensive optimiza-
tion: a review,” Journal of Global Optimization, vol. 78, pp. 507–544,
11 2020.

[28] P. Auer, “Using confidence bounds for exploitation-exploration trade-
offs,” J. Mach. Learn. Res., vol. 3, pp. 397–422, 2002.

[29] D. D. Cox and S. John, “A statistical method for global optimization,”
Conference Proceedings - IEEE International Conference on Systems,
Man and Cybernetics, vol. 1992-January, pp. 1241–1246, 1992.

[30] N. Srinivas, A. Krause, S. Kakade, and M. Seeger, “Gaussian process
optimization in the bandit setting: No regret and experimental design,”

Proc. 27th Int. Conf. Mach. Learn. Haifa, Isr. 2010, pp. 1015–1022,
2010.

[31] F. Häse, L. M. Roch, C. Kreisbeck, and A. Aspuru-Guzik, “Phoenics:
A bayesian optimizer for chemistry,” ACS Cent. Sci., vol. 4, pp. 1134–
1145, 2018.

[32] D. H. Ackley, A connectionist machine for genetic hillclimbing. Kluwer
Academic Publishers, 1987.

[33] A. Jain, S. P. Ong, G. Hautier, W. Chen, W. D. Richards, S. Dacek,
S. Cholia, D. Gunter, D. Skinner, G. Ceder, and K. A. Persson,
“Commentary: The Materials Project: A materials genome approach to
accelerating materials innovation,” APL Mater., vol. 1, no. 1, p. 011002,
2013.

[34] G. Merkuryeva and V. Bolshakovs, “Benchmark fitness landscape
analysis,” International Journal of Simulation Systems, Science and
Technology, vol. 12, no. 2, pp. 38–45, 2011.

[35] M. De Jong, W. Chen, T. Angsten, A. Jain, R. Notestine, A. Gamst,
M. Sluiter, C. K. Ande, S. Van Der Zwaag, J. J. Plata, C. Toher,
S. Curtarolo, G. Ceder, K. A. Persson, and M. Asta, “Charting the
complete elastic properties of inorganic crystalline compounds,” Sci.
Data, vol. 2, no. 1, pp. 1–13, 2015.

	Introduction
	Related Work
	Methods
	Results
	Gaussian Process Surrogate on a 6D Analytical Data Set
	Neural Network Surrogate on a 5D Real-world Data Set

	Summary & Conclusions
	References

