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Abstract

Mutual adaptation is critical for effective team collaboration. This paper presents a formalism for 

human-robot mutual adaptation in collaborative tasks. We propose the bounded-memory 
adaptation model (BAM), which captures human adaptive behaviors based on a bounded memory 

assumption. We integrate BAM into a partially observable stochastic model, which enables robot 

adaptation to the human. When the human is adaptive, the robot will guide the human towards a 

new, optimal collaborative strategy unknown to the human in advance. When the human is not 

willing to change their strategy, the robot adapts to the human in order to retain human trust. 

Human subject experiments indicate that the proposed formalism can significantly improve the 

effectiveness of human-robot teams, while human subject ratings on the robot performance and 

trust are comparable to those achieved by cross training, a state-of-the-art human-robot team 

training practice.

I. Introduction

The development of new robotic systems that operate in the same physical space as people 

highlights the emerging need for robots that can integrate into human teams. Such systems 

can achieve significant economic and ergonomic benefits in manufacturing, as well as 

improve the quality of life of people at home. Previous work in human teaming has shown 

that mutual adaptation can significantly improve team performance [1]; we believe that the 

same holds for human-robot teams in collaborative tasks.

In previous work, human-robot cross-training has been shown to significantly improve 

subjective measures of team performance and metrics of team fluency [2]. The focus has 

been the computation of a robot policy aligned with the human preference, without taking 

into account the quality of that preference. This can result in the team executing sub-optimal 

policies, if for instance the human has an inaccurate model of the robot capabilities. On the 

other hand, given a known optimal way to execute the task, one could simply program the 

robot to always follow the optimal path, ignoring the actions of the human teammate. This, 

however, can have a negative effect on the human trust in the robot, affecting the willingness 
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of people to work with their robotic teammates and ultimately damaging the overall team 

performance [3]–[5].

For instance, Fig. 1 illustrates a collaborative task, where human and robot are carrying a 

table outside of the room. There are two ways to finish the task, one with the robot facing 

the door (Goal 1, Fig. 1a-top) and one with the robot facing the room (Goal 2, Fig. 1a-

bottom). We assume that Goal 1 is better, since the robot has a clear view of the door using 

its on-board sensor and the team is more likely to succeed in executing the task. The human 

does not have this information and may prefer to rotate the table towards Goal 2. Intuitively, 

if the human insists on the suboptimal goal, the robot should comply in order to finish the 

task. If the human is willing to adapt, the robot should guide them towards the optimal goal.

In this paper, we describe a formalism for human and robot mutual adaptation, where the 

robot builds a model of human adaptation to guide the human teammate towards more 

efficient strategies, while maintaining human trust to the robot. We first present Bounded 

memory Adaptation Model (BAM), a model based on a bounded memory assumption which 

limits the history length that the human team member considers in their decision making. 

BAM additionally assumes that each human teammate has an a priori willingness to adapt to 

the robot, which we define as adaptability. The adaptability of a participant is unknown 

beforehand and cannot be directly observed. Therefore, we denote it as a partially observable 

variable in a mixed-observability Markov decision process (MOMDP) [6]. The MOMDP 

formulation enables the robot to infer the adaptability of a human teammate through 

interaction and observation, and reason in a probabilistic sense over the ways the human can 

change their strategy.

We conducted a human subject experiment (n = 69) on a simulated table carrying task (Fig. 

1). Fig. 2 shows different human and robot behaviors. If human and robot disagree on their 

strategies within an interaction history of 3 time-steps and the human insists in their strategy 

in the next time-step, then the MOMDP belief is updated so that smaller values of 

adaptability α have higher probability (lower adaptability). If the human switches to the 

robot strategy, larger values become more likely. The belief remains the same once human 

and robot agree on their strategies. If the robot infers the human to be non-adaptive, it 

complies to the human strategy. Otherwise, it guides them towards the optimal goal.

In the experiment, participants were significantly more likely to adapt to the robot strategy 

when working with a robot utilizing the proposed formalism (p = 0.036), compared to cross-

training with the robot. Additionally, participants found the performance as a teammate of 

the robot executing the learned MOMDP policy to be not worse than the performance of a 

robot that cross-trained with the participants. Finally, the robot was found to be more 

trustworthy with the learned policy, compared with executing an optimal strategy while 

ignoring the adaptability of the human teammate (p = 0.048).

II. Relevant Work

There has been extensive work on one-way robot adaptation to the human. Approaches 

involve a human expert providing demonstrations to teach the robot a skill or a specific task 
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[7]–[12]. Robots have also been able to infer the human preference online through 

interaction. In particular, partially observable Markov decision process (POMDP) models 

have allowed reasoning over the uncertainty on the human intention [13], [14]. The 

MOMDP formulation [6] has been shown to achieve significant computational efficiency, 

and has been used in motion planning applications [15]. Recent work has also inferred 

human intention through decomposition of a game task into subtasks for game AI 

applications [16]. Alternatively, Macindoe et al. proposed the partially observable Monte-

Carlo cooperative planning system, in which human intention is inferred for a turn-based 

game [17]. Nikolaidis et al. proposed a formalism to learn human types from joint-action 

demonstrations, infer online the type of a new user and compute a robot policy aligned to 

their preference [18]. Simultaneous intent inference and robot adaptation has also been 

achieved through propagation of state and temporal constraints [19]. Another approach has 

been the human-robot cross-training algorithm, where the human demonstrates their 

preference by switching roles with the robot, shaping the robot reward function [2]. 

Although it is possible that the human changes strategies during the training, the algorithm 

does not use a model of human adaptation that can enable the robot to actively influence the 

actions of its human partner.

There have also been studies in human adaptation to the robot. Previous work has focused 

on operator training for military, space and search-and-rescue applications, with the goal of 

reducing the operator workload and operational risk [20]. Additionally, researchers have 

studied the effects of repeated interactions with a humanoid robot on the interaction skills of 

children with autism [21], on language skills of elementary school students [22], as well as 

on users’ spatial behavior [23]. Human adaptation has also been observed in an assistive 

walking task, where the robot uses human feedback to improve its behavior, which in turn 

influences the physical support provided by the human [24]. While the changes in the human 

behavior are an essential part of the learning process, the system does not explicitly reason 

over the human adaptation throughout the interaction. On the other hand, Dragan and 

Srinivasa proposed a probabilistic model of the inference made by a human observer over 

the robot goals, and introduced a motion generating algorithm to maximize this inference 

towards a predefined goal [25].

We believe that the proposed formalism for human-robot mutual adaptation closes the loop 

between the two streams of research. The robot reasons in a probabilistic sense over the 

different ways that the human may change their strategy, based on a model of human 

adaptation parameterized by the participant's willingness to adapt. It updates the model 

through interaction and guides participants towards more efficient strategies, while 

maintaining human trust to the robot.

Mutual adaptation between two agents has been extensively explored in the field of game 

theory [26]. Economic theory relies significantly on on strong assumptions about the 

rationality of the agents and the knowledge of the payoff functions. Such assumptions are 

not necessary applicable in settings where the players are not involved in a full computation 

of optimal strategies for themselves and the others [27]. We believe that this is particularly 

true in a human-robot team setting, where the human is uncertain on how the robot will act 

and has little time to respond. Therefore, we propose a model of human adaptive behavior 
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based on a bounded memory assumption [28]–[30] and integrate it into robot decision 

making.

III. Problem Setting

We formally describe the evolution of the human-robot collaborative task as a Multi-Agent 

Markov Decision Process (MMDP) [17] with a set of states Q: Xworld × Ht, robot actions ar 

∈ Ar(xworld) and human actions ah ∈ Ah(xworld). Xworld is a set of world states and Ht is the 

set of all possible histories of interactions until time t: ht = {xworld(0), ar(0), 

ah(0), . . . ,xworld(t – 1), ar (t – 1), ah(t – 1)}. The MMDP has a state transition function T : Q 

× Ar × Ah → Π(Q) and an immediate reward function R : R(xworld, ar, ah) ↦ r ∈ ℝ+.

We assume that the human is enacting a stochastic policy πh unknown to the robot. The 

human policy can be arbitrarily nuanced: πh : Xworld × Ht → Π(Ah).

The robot's goal is to compute its optimal policy πr : Xworld × Ht → Ar that maximizes the 

expected discounted accumulated reward:

πr
∗ = arg max

πr
𝔼πh

∑
t = 0

∞
γtr t (1)

where γ ∈ [0, 1) is a discount factor that downweighs future rewards. Note here that because 

the human policy is unknown to the robot, it has no choice but to reason (and take 

expectations over) all possible human policies πh.

In this work, we present BAM, a model of human adaptation which specifies a 

parameterization of the human policy πh. We define a set of modal policies or modes M, 

where m ∈ M is a deterministic policy mapping states and histories to joint human-robot 

actions: m : Xworld × Ht × Ar × Ah → {0, 1}. At the time-step, the human has a mode mh ∈ 
M and perceives the robot as following a mode mr ∈ M. Then, in the next time-step the 

human may switch to mr with some probability α. If mh maximizes the expected 

accumulated reward, the robot optimal policy would be to take actions ar specified by mh. If 

mh is suboptimal and α = 1, the robot optimal policy would be to follow mr, expecting the 

human to adapt. In the general case of an unknown α, how can we compute πr
∗ in Eq. (1)? 

We approach this problem using a MOMDP formulation, wherein α is an unobserved 

variable. This formulation allows us to estimate α through interaction and integrate 

predictions of the human actions into robot action selection (Fig 3).

IV. The Bounded Memory Adaptation Model

We model the human policy πh as a probabilistic finite-state automaton (PFA), with a set of 

states Q : Xworld × Ht. A joint human-robot action ah, ar triggers an emission of a human and 

robot modal policy f : Q × M × M → {0, 1}, as well as a transition to a new state P : Q → 
Π(Q).
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A. Bounded Memory Assumption

Herbert Simon proposed that people often do not have the time and cognitive capabilities to 

make perfectly rational decisions, in what he described as “bounded rationality” [31]. This 

idea has been supported by studies in psychology and economics [32]. In game theory, 

bounded rationality has been modeled by assuming that players have a “bounded memory” 

or “bounded recall” and base their decisions on recent observations [28]–[30]. In this work, 

we introduce the bounded memory assumption in a human-robot collaboration setting. 

Under this assumption, humans will choose their action based on a history of k-steps in the 

past, so that Q : Xworld × Hk.

B. Feature Selection

The size of the state-space in the PFA can be quite large (|Xworld|k+1|Ar|k|Ah|k|). Therefore, 

we approximate it using a set of features, so that ϕ(q) = {ϕ1(q), ϕ2(q), ..., ϕN(q)}. We can 

choose as features the frequency counts ϕm
h , ϕm

r  of the modal policies followed in interaction 

history, so that:

ϕm
h = ∑

i = 1

k
mh

i = m ϕm
r = ∑

i = 1

k
mr

i = m ∀m ∈ M (2)

mh
i  and mr

i  is the modal policy of the human and the robot i time-steps in the past. We note 

that k defines the history length, with k = 1 implying that the human will act based only on 

the previous interaction. Drawing upon insights from previous work which assumes 

maximum likelihood observations for policy computation in belief-space [33], we used as 

features the modal policies with the maximum frequency count: mh = arg max
m

ϕm
h , 

mr = arg max
m

ϕm
r .

The proposed model does not require a specific feature representation. For instance, we 

could construct features by combining modal policies mh
i , mr

i  using an arbitration function 

[34]. Additionally, rather than using frequency counts, we could maintain a probability 

distribution over human and robot modes given the history, but we leave this for future work.

C. Human Adaptability

We define the adaptability as the probability of the human switching from their mode to the 

robot mode. It would be unrealistic to assume that all users are equally likely to adapt to the 

robot. Instead, we account for individual differences by parameterizing the transition 

function P by the adaptability α of an individual. Then, at state q the human will transition 

to a new state by choosing an action specified by mr with probability α, or an action 

specified by mh with probability 1 – α (Fig. 4). We include noise in the model, by assuming 

that the human can take any other action uniformly with some probability ϵ.
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V. Robot Planning

In this section we describe the integration of BAM in the robot decision making process 

using a MOMDP formulation. A MOMDP uses proper factorization of the observable and 

unobservable state variables S : X × Y with transition functions 𝒯x and 𝒯y, reducing the 

computational load [6]. The set of observable state variables is X : Xworld × Mk × Mk, where 

Xworld is the finite set of task-steps that signify progress towards task completion and M is 

the set of modal policies followed by the human and the robot in a history length k. The 

partially observable variable y is identical to the human adaptability α. We assume finite sets 

of human and robot actions Ah and Ar, and we denote as πh the stochastic human policy. 

The latter gives the probability of a human action ah at state s, based on the BAM human 

adaptation model.

Given ar ∈ Ar and ah ∈ Ah, the belief update becomes:

b′ y′ = ηO s′, ar, o ∑
y ∈ Y

𝒯x s, ar, ah, x′

𝒯y s, ar, ah, s′ πh s, ah b y
(3)

We use a point-based approximation algorithm to solve the MOMDP for a robot policy πr 

that takes into account the robot belief on the human adaptability, while maximizing the 

agent's expected total reward.

The policy execution is performed online in real time and consists of two steps (Fig. 3). 

First, the robot uses the current belief to select the action ar specified by the policy. Second, 

it uses the human action ah to update the belief on α (Eq. 3). Fig. 2 shows different user 

behaviors in the human subject experiment described in Sec. VI. Fig. 5 shows the 

corresponding paths on the MOMDP policy tree.

VI. Human Subject Experiment

We conducted a human subject experiment on a simulated table-carrying task (Fig. 1) to 

evaluate the proposed formalism. We were interested in showing that integrating BAM into 

the robot decision making can lead to more efficient policies than state-of-the-art human-

robot team training practices, while maintaining human satisfaction and trust.

On one extreme, we can “fix” the robot policy so that the robot always moves towards the 

optimal goal, ignoring human adaptability. This will force all users to adapt, since this is the 

only way to complete the task. However, we hypothesize that this will significantly impact 

human satisfaction and trust in the robot. On the other extreme, we can efficiently learn the 

human preference [2]. This can lead to the human-robot team following a sub-optimal 

policy, if the human has an inaccurate model of the robot capabilities. We show that the 

proposed formalism achieves a trade-off between the two: When the human is non-adaptive, 

the robot follows the human strategy. Otherwise, the robot insists on the optimal way of 
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completing the task, leading to significantly better policies compared to learning the human 

preference, while maintaining human trust.

A. Independent Variables

We had three experimental conditions, which we refer to as “Fixed,” “Mutual-adaptation” 

and “Cross-training.”

Fixed session—The robot executes a fixed policy, always acting towards the optimal goal. 

In the table-carrying scenario, the robot keeps rotating the table in the clockwise direction 

towards Goal 1, which we assume to be optimal (Fig. 1). The only way to finish the task is 

for the human to rotate the table in the same direction as the robot, until it is brought to the 

horizontal configuration of Fig. 1a-top.

Mutual-adaptation session—The robot executes the MOMDP policy computed using 

the proposed formalism. The robot starts by rotating the table towards the optimal goal 

(Goal 1). Therefore, adapting to the robot strategy corresponds to rotating the table to the 

optimal configuration.

Cross-training session—Human and robot train together using the human-robot cross-

training algorithm [2]. The algorithm consists of a forward phase and a rotation phase. In the 

forward phase, the robot executes an initial policy, which we choose to be the one that leads 

to the optimal goal. Therefore, in the table-carrying scenario, the robot rotates the table in 

the clockwise direction towards Goal 1. In the rotation phase, human and robot switch roles, 

and the human inputs are used to update the robot reward function. After the two phases, the 

robot policy is recomputed.

B. Hypotheses

H1—Participants will agree more strongly that the robot is trustworthy, and will be more 

satisfied with the team performance in the Mutual-adaptation condition, compared to 

working with the robot in the Fixed condition. We expected users to trust more the robot 

with the learned MOMDP policy, compared with the robot that executes a fixed strategy 

ignoring the user's willingness to adapt. In prior work, a task-level executive that adapted to 

the human partner significantly improved perceived robot trustworthiness [35]. Additionally, 

working with a human-aware robot that adapted its motions had a significant impact on 

human satisfaction [36].

H2—Participants are more likely to adapt to the robot strategy towards the optimal goal in 

the Mutual-adaptation condition, compared to working with the robot in the Cross-training 

condition. The computed MOMDP policy enables the robot to infer online the adaptability 

of the human and guides adaptive users towards more effective strategies. Therefore, we 

posited that more subjects would change their strategy when working with the robot in the 

Mutual-adaptation condition, compared with cross-training with the robot. We note that in 

the Fixed condition all participants ended up changing to the robot strategy, as this was the 

only way to complete the task.
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H3—The robot performance as a teammate, as perceived by the participants in the Mutual-

adaptation condition, will not be worse than in the Cross-training condition. The learned 

MOMDP policy enables the robot to follow the preference of participants that are less 

adaptive, while guiding towards the optimal goal participants that are willing to change their 

strategy. Therefore, we posited that this behavior would result on a perceived robot 

performance not inferior to that achieved in the Cross-training condition.

C. Experiment Setting: A Table Carrying Task

We first instructed participants in the task, and asked them to choose one of the two goal 

configurations (Fig. 1a), as their preferred way of accomplishing the task. To prompt users to 

prefer the sub-optimal goal, we informed them about the starting state of the task, where the 

table was slightly rotated in the counter-clockwise direction, making the suboptimal Goal 2 

appear closer. Once the task started, the user chose the rotation actions by clicking on 

buttons on a user interface (Fig. 1b). If the robot executed the same action, a video played 

showing the table rotation. Otherwise, the table did not move and a message appeared on the 

screen notifying the user that they tried to rotate the table in a different direction than the 

robot. In the Mutual-adaptation and Fixed conditions participants executed the task twice. 

Each round ended when the team reached one of the two goal configurations. In the Cross-

training condition, participants executed the forward phase of the algorithm in the first round 

and the rotation phase, where human and robot switched roles, in the second round. We 

found that in this task one rotation phase was enough for users to successfully demonstrate 

their preference to the robot. Following [2], the robot executed the updated policy with the 

participant in a task-execution phase that succeeded the rotation phase. We asked all 

participants to answer a post-experimental questionnaire that used a five-point Likert scale to 

assess their responses to working with the robot. They also responded to open-ended 

questions about their experience.

D. Subject Allocation

We chose a between-subjects design in order to not bias the users with policies from 

previous conditions. We recruited participants through Amazon's Mechanical Turk service. 

Since we are interested in exploring human-robot mutual adaptation, we disregarded 

participants that had as initial preference the robot goal. To ensure reliability of the results, 

we asked all participants a control question that tested their attention to the task and 

eliminated data associated with wrong answers to this question, as well as incomplete data. 

To test their attention to the Likert questionnaire, we included a negative statement with the 

opposite meaning to its positive counterpart and eliminated data associated with positive or 

negative ratings to both statements, resulting in a total of 69 samples.

E. MOMDP Model

The observable state variables x of the MOMDP formulation were the discretized table 

orientation and the human and robot modes for each of the three previous time-steps. We 

specified two modal policies, each deterministically selecting rotation actions towards each 

goal. The size of the observable state-space X was 734 states. We set a history length k = 3 

in BAM. We additionally assumed a discrete set of values of the adaptability α : {0.0, 0.25, 
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0.5, 0.75, 1.0}. Therefore, the total size of the MOMDP state-space was 5 × 734 = 3670 

states. The human and robot actions ah, ar were deterministic discrete table rotations. We set 

the reward function R to be positive at the two goal configurations based on their relative 

cost, and 0 elsewhere. We computed the robot policy using the SARSOP solver [37], a point-

based approximation algorithm which, combined with the MOMDP formulation, can scale 

up to hundreds of thousands of states [15].

VII. Results and Discussion

A. Subjective Measures

We consider hypothesis H1, that participants will agree more strongly that the robot is 

trustworthy, and will be more satisfied with the team performance in the Mutual-adaptation 

condition, compared to working with the robot in the Fixed condition. A two-tailed Mann-

Whitney-Wilcoxon test showed that participants indeed agreed more strongly that the robot 

utilizing the proposed formalism is trustworthy (U = 180, p = 0.048). No statistically 

significant differences were found for responses to statements eliciting human satisfaction: 

“I was satisfied with the robot and my performance” and “The robot and I collaborated well 

together.” One possible explanation is that participants interacted with the robot through a 

user interface for a short period of time, therefore the impact of the interaction on user 

satisfaction was limited.

We were also interested in observing how the ratings in the first two conditions varied, 

depending on the participants’ willingness to change their strategy. Therefore, we conducted 

a post-hoc experimental analysis of the data, grouping the participants based on their 

adaptability. Since the true adaptability of each participant is unknown, we estimated it by 

the mode of the belief formed by the robot at the end of the task on the adaptability α:

α = arg max
α

b α (4)

We considered only users whose mode was larger than a confidence threshold and grouped 

them as very adaptive if α > 0.75, moderately adaptive if 0.5 < α ≤ 0.75 and non-adaptive if 

α ≤ 0.5. Fig. 7b shows the participants’ rating of their agreement on the robot 

trustworthiness, as a function of the participants’ group for the two conditions. In the Fixed 

condition there was a trend towards positive correlation between the annotated robot 

trustworthiness and participants’ inferred adaptability (Pearson's r = 0.452, p = 0.091), 

whereas there was no correlation between the two for participants in the Mutual-adaptation 

condition (r = −0.066). We attribute this to the MOMDP formulation allowing the robot to 

reason over its estimate on the adaptability of its teammate and change its own strategy 

when interacting with non-adaptive participants, therefore maintaining human trust.

Interestingly, when asked to comment on the robot behavior, several adaptive participants in 

both conditions attempted to justify the robot actions, stating that “probably there was no 

room to rotate [counter-clockwise],” and that “maybe the robot could not move backwards.” 

Some non-adaptive participants in the Fixed condition used stronger language, noting that 
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“the robot is incapable of adapting to my efforts,” and that it was “stubborn and would not 

let us turn in the direction that would make me do the least amount of work.” On the other 

hand, non-adaptive participants in the Mutual-adaptation condition mentioned that the robot 

“attempted to anticipate my moves” and “understood which way I wanted to go.”

Recall hypothesis H3: that the robot performance as a teammate in the Mutual-adaptation 

condition, as perceived by the participants, would not be worse than in the Cross-training 

condition. We define “not worse than” similarly to [38] using the concept of “non-

inferiority” [39]. An one-tailed unpaired t-test for a non-inferiority margin Δ = 0.5 and a 

level of statistical significance α = 0.025 showed that participants in the Mutual-adaptation 

condition rated their satisfaction on robot performance (p = 0.006), robot intelligence (p = 

0.024), robot trustworthiness (p < 0.001), quality of robot actions (p < 0.001) and quality of 

collaboration (p = 0.002) not worse than participants in the Cross-training condition. This 

supports hypothesis H3 of Sec. VI-B.

B. Quantitative Measures

To test hypothesis H2, we consider the ratio of participants that changed their strategy to the 

robot strategy towards the optimal goal in the Mutual-adaptation and Cross-training 

conditions. A change was detected when the participant stated as preferred strategy a table 

rotation towards Goal 2 (Fig. 1a-bottom), but completed the task in the configuration of Goal 

1 (Fig. 1a-top) in the final round of the Mutual-adaptation session, or in the task-execution 

phase of the Cross-training session. As Fig. 7a shows, 57% of participants adapted to the 

robot in the Mutual-adaptation condition, whereas 26% adapted to the robot in the Cross-

training condition. A Pearson's chi-square test showed that the difference is statistically 

significant (χ2(1, N = 46) = 4.39, p = 0.036). Therefore, participants that interacted with the 

robot of the proposed formalism were more likely to switch to the robot strategy towards the 

optimal goal, than participants that cross-trained with the robot, which supports our 

hypothesis.

In Sec. VII-C, we discuss the robot behavior for different values of history length k in BAM.

C. Selection of History Length

The value of k in BAM indicates the number of time-steps in the past that we assume 

humans consider in their decision making on a particular task, ignoring all other history. 

Increasing k results in an exponential increase of the state space size, with large values 

reducing the robot responsiveness to changes in the human behavior. On the other hand, very 

small values result in unrealistic assumptions on the human decision making process.

To illustrate this, we set k = 1 and ran a pilot study of 30 participants through Amazon-Turk. 

Whereas most users rated highly their agreement to questions assessing their satisfaction and 

trust to the robot, some participants expressed their strong dissatisfaction with the robot 

behavior. This occurred when human and robot oscillated back and forth between modes, 

similarly to when two pedestrians on a narrow street face each other and switch sides 

simultaneously until they reach an agreement. In this case, which occurred in 23% of the 

samples, when the human switched back to their initial mode, which was also the robot 
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mode of the previous time-step, the robot incorrectly inferred them as adaptive. However, 

the user in fact resumed their initial mode followed before two time-steps, implying a 

tendency for non-adaptation. This is a case where the 1-step bounded memory assumption 

did not hold.

In the human subject experiment of Sec VI, we used k = 3, since we found this to describe 

accurately the human behavior in this task. Fig. 6 shows the belief update and robot behavior 

for k = 1 and k = 3, in the case of mode oscillation.

D. Discussion

These results show that the proposed formalism enables a human-robot team to achieve 

more effective policies, compared to state-of-the-art human-robot team training practices, 

while achieving subjective ratings on robot performance and trust that are comparable to 

those achieved by these practices. It is important to note that the comparison with the 

human-robot cross-training algorithm is done in the context of human adaptation. Previous 

work [2] has shown that switching roles can result in significant benefits in team fluency 

metrics, such as human idle time and concurrent motion [40], when a human executes the 

task with an actual robot. Additionally, the proposed formalism assumes as input a set of 

modal policies, as well as a quality measure associated with each policy. On the other hand, 

cross-training requires only an initialization of a reward function of the state space, which is 

then updated in the rotation phase through interaction. It would be very interesting to 

explore a hybrid approach between learning the reward function and guiding the human 

towards an optimal policy, but we leave this for future work.

E. Generalization to Complex Tasks

The presented table-carrying task can be generalized without any modifications in the 

proposed mathematical model, with the cost of increasing the size of the state-space and 

action-space. In particular, we made the assumptions: (1) discrete time-steps, where human 

and robot apply torques causing a fixed table-rotation. (2) binary human-robot actions. We 

discuss how we can relax these assumptions:

1) We can approximate a continuous-time setting by increasing the resolution of 

the time discretization. Assuming a constant displacement per unit time v and a 

time-step dt, the size of the state-space increases linearly with (1/dt): O(|Xworld||

M|2k) = O ((θmax – θmin) * (1/v)*(1/dt)* |M|2k), where θ is the rotation angle of 

the table.

2) The proposed formalism is not limited to binary actions. For instance, we can 

allow torque inputs of different magnitudes. The action-space of the MOMDP 

increases linearly with the number of possible inputs.

Finally, we note that the presented formalism does not rely on any features of the table-

carrying task. For instance, we could apply our formalism in the case where human and 

robot cross a hallway and coordinate to avoid collision, and the robot guides the human 

towards the right side of the corridor. Alternatively, in an assembly manufacturing task the 

robot could lead the human to strategies that require less time or resources.
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VIII. Conclusion

We presented a formalism for human-robot mutual adaptation, which enables guiding the 

human teammate towards more efficient strategies, while maintaining human trust in the 

robot. First, we proposed BAM, a model of human adaptation based on a bounded memory 

assumption. The model is parameterized by the adaptability of the human teammate, which 

takes into account individual differences in people's willingness to adapt to the robot. We 

then integrated BAM into a MOMDP formulation, wherein the adaptability was a partially 

observable variable. In a human subject experiment (n = 69), participants were significantly 

more likely to adapt to the robot strategy towards the optimal goal when working with a 

robot utilizing our formalism (p = 0.036), compared to cross-training with the robot. 

Additionally, participants found the performance as a teammate of the robot executing the 

learned MOMDP policy to be not worse than the performance of the robot that cross-trained 

with the participants. Finally, the robot was found to be more trustworthy with the learned 

policy, compared with executing an optimal strategy while ignoring human adaptability (p = 

0.048). These results indicate that the proposed formalism can significantly improve the 

effectiveness of human-robot teams, while achieving subjective ratings on robot 

performance and trust comparable to those of state-of-the-art human-robot team training 

strategies.

We have shown that BAM can adequately capture human behavior in a collaborative task 

with well-defined task-steps on a relatively fast-paced domain. However, in domains where 

people typically reflect on a long history of interactions, or on the beliefs of the other agents, 

such as in a Poker game [41], people are likely to demonstrate much more complex adaptive 

behavior. Developing sophisticated predictive models for such domains and integrating them 

into robot decision making in a principled way, while maintaining computational tractability, 

is an exciting area for future work.
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Fig. 1. 
(a) Human-robot table carrying task. Rotating the table so that the robot is facing the door 

(top, Goal 1) is better than the other direction (bottom, Goal 2), since the exit is included in 

the robot's field of view and the robot can avoid collisions. (b) UI with instructions.
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Fig. 2. 
(Top row) MOMDP belief update on human adaptability α ∈ {0, 0.25, 0.5, 0.75, 1.0} for 

three different users in the human subject experiment of Sec. VI. Larger values of α indicate 

higher adaptability. (Second, third and bottom row) The rows correspond to Users 1, 2 and 3 

and show the table configuration at each time-step of task execution. Columns indicate 

different time-steps. Red color indicates human and robot disagreement in their actions, in 

which case the table does not rotate. User 1 (teal dot) insists on their initial strategy 

throughout the task and the robot (black dot) complies, whereas Users 2 and 3 (orange and 

magenta dot) adapt to the robot.
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Fig. 3. 
Integration of BAM into MOMDP formulation.
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Fig. 4. 
The BAM human adaptation model.
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Fig. 5. 
(Left) Different paths on MOMDP policy tree for human-robot (white/black dot) table-

carrying task. The circle color represents the belief on α, with darker shades indicating 

higher probability for smaller values (less adaptability). The white circles denote a uniform 

distribution over α. User 1 is non-adaptive, whereas Users 2 and 3 are adaptive. (Right) 

Instances of different user behaviors in the first round of the Mutual-adaptation session. A 

horizontal/vertical line segment indicates human and robot disagreement/agreement on their 

actions. A solid/dashed line indicates a human rotation towards the sub-optimal/optimal 

goal. The numbers denote the most likely estimated value of α.
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Fig. 6. 
(Top row) Belief update for the 1-step and 3-step bounded memory models at successive 

time-steps. (Middle/bottom row) Table configuration in the 1-step/3-step trial. (T = 1) After 

the first disagreement and in the absence of any previous history, the belief remains uniform 

over α. The human (white dot) follows their modal policy from the previous time-step, 

therefore at T = 2 the belief becomes higher for smaller values of α in both models (lower 

adaptability). (T = 2) The robot (orange dot for 1-step, blue dot for 3-step) adapts to the 

human and executes the human modal policy. At the same time, the human switches to the 

robot mode, therefore at T = 3 the probability mass moves to the right. (T = 3) The human 

switches back to their initial mode. In the 3-step model the resulting distribution at T = 4 has 

a positive skewness: the robot estimates the human to be not adaptive. In the 1-step model 

the robot incorrectly infers that the human adapted to the robot mode of the previous time-

step, and the probability distribution has a negative skewness. (T = 4, 5) The robot in the 3-

step trial switches to the human modal policy, whereas in the 1-step trial it does not adapt to 

the human, who insists on their mode.
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Fig. 7. 
(a) Number of participants that adapted to the robot for the Mutual-adaptation and Cross-

training conditions. (b) Rating of agreement to statement “The robot is trustworthy.” Note 

that the figure does not include participants, whose mode of the belief on their adaptability 

was below a confidence threshold and therefore were not clustered into any of the three 

groups.
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