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Abstract—Biped running can be conceptually reduced to
a set of simple and quasi-independent tasks such as weight
bearing, upper-body balancing, and energy injection through
ankle push-off. We show in this paper that by appropriately
designing multi-articular elastic actuators for biped robots in
a manner inspired by human biomechanics, these tasks can
be favorably expressed in a set of coordinates, in which the
system is elastically decoupled. In these coordinates, the robot
can be easily controlled by a set of simple and independent
control laws. By exploiting the natural dynamics of the specially
designed robot, the proposed controller requires only minimal
model knowledge (mainly in terms of kinematic and static
parameters) and is therefore robust to model uncertainties.
It requires only state measurements and no measurement or
model based computation of higher order state derivatives.
Moreover, since the system is operated at a frequency dictated
by the natural resonance, the running gait is energy efficient and
resembles to a large extent natural human motion. Simulations
validate the concept and demonstrate the independence of the
approach from the knowledge of dynamics parameters.

I. INTRODUCTION

To cope with limitations of energy, peak force and velocity,
humans exploit their passive-dynamics to perform highly
dynamical walking and running tasks in an effective and
highly efficient manner [1]. Since both, energy sources and
peak-power of actuators, are limited in humanoid robots
too, understanding and transferring this knowledge to robotic
design and control is crucial. From experimentally supported
hypotheses of biologists which reveal that high-dimensional,
nonlinear dynamics in animals can be represented by simple
template dynamics [2], it becomes evident that a robotic
design capable of performing efficient locomotion needs
to address two complementary aspects: the basic dynamics
of an efficient gait and a mechatronic implementation that
intrinsically fits to this specific dynamics. These two “ingre-
dients” lead to what we call natural dynamics exploitation.

The approaches based on the inverted pendulum model
and the zero moment point (ZMP) [3], [4], [5] are mainly
intended for walking gaits. These approaches apply to fully
actuated rigid robots which cannot handle high peak forces as
potentially appearing in running gaits. To evolve from walk-
ing to running, the introduction of elastic actuation elements
helps to reduce the impact forces and offers energy saving
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capabilities for bouncing and swing motions of the legs [6].
On the basis of these insights, the conceptual spring loaded
inverted pendulum (SLIP) models [7], [8], [9], [10] or the
compliant hybrid zero dynamics framework [11] have been
introduced. Both, the template dynamics of SLIP model and
the hybrid zero dynamics resulting from a virtual constraint
substantially differ from the dynamics of a humanoid robot
with segmented legs having non-negligible mass. Therefore,
the desired SLIP behavior has to be imposed to the plant,
e.g., by feedback linearization [11] or virtual model control
[12], [13], [14]. The robotic control implementations of
legged locomotion hence require to substantially change the
dynamics of the plant.

A main conflict in the above implementations is that the
template dynamics considers elasticities, but the plant has
usually none (or intrinsic elasticities are not in the required
form). In our recent work [15], [16], [17], [18], [19], [20], we
developed concepts to excite the intrinsic oscillatory dynam-
ics of compliantly actuated mechanical systems [21], [22]
for cyclic tasks. The control approaches apply to systems in
which balancing is of minor importance such as multi-legged
hopping robots and thereby the focus is on exploiting the
natural dynamics of the plant.

This work aims at extending the concepts and designing
a robot system capable of efficient bipedal walking and run-
ning. This requires to address several tasks such as bouncing,
balancing, and swinging for foot placement [23], simulta-
neously. The contribution of this paper is twofold: first, we
propose a task-oriented system design which allows to intrin-
sically access and control the relevant dynamics quantities
independently. Second, we introduce a control framework,
which achieves the locomotion tasks while changing the dy-
namics of the plant only to a minimum extent and involving
neither a dynamic model nor higher derivatives of measured
states in the feedback loops. Due to the reduced requirements
regarding model knowledge and measured state derivatives
compared to existing approaches [14], [11], this method has
the potential of increased feasibility and robustness in the
practical implementation.

The paper is organized as follows: Sect. II motivates the
approach and introduces the basic concepts. The system
design is proposed in Sect. III. Then, Sect. IV introduces the
transformation for the task-oriented coordinates which forms
the basis for the controller design in Sect. V. Simulations
of the control system are provided in Sect. VI. A brief
conclusion is given in Sect. VIL



Fig. 1. Coordinate transformation

II. CONCEPTS

The basic idea of the approach is twofold. It combines a
task-oriented system design and a “minimally invasive” con-
trol approach. A main requirement of the controller design
is robustness against parameter uncertainties and measured
signal noise, which can be achieved by (adaptive) methods
exciting the intrinsic plant dynamics [17], but which in turn
require the plant to fit to the dynamics of the task.

A. Polar coordinates

The design of the bipedal locomotion system is the result
of synthesizing the following subtasks of the gait cycle:

« controlling the trunk orientation;

« foot placement;

o weight bearing via the leg axis during the stance phase;

« flexing the leg to ensure ground clearance during the
swing phase;

e energy injection to sustain the limit cycle of the walking
and/or running task;

« push-off to actively induce the flight phase.

Some of these subtasks such as trunk orientation and weight
bearing have to be fulfilled simultaneously and indepen-
dently.

From the viewpoint of versatile system design, the ground
clearance requirement (on uneven terrain with obstacles)
already excludes Raibert’s pogo-stick design [24] and sug-
gests a human-like segmented leg design. Further, segmented
legs can adjust their stiffness by changing their configu-
ration (bent, extended). The generalized joint coordinates
describing the configuration of the segmented leg do not
coincide with coordinates representing the above subtasks
appropriately. Therefore, so-called task oriented coordinates
are introduced (see, Fig. 1):

e 21 represents the rotation of the leg axis w.r.t. the
trunk. This coordinate is responsible to control the trunk
orientation during the stance phase and to control the
foot placement during the swing phase.

e 29 represents the distance between the ankle and hip
joint. With this coordinate the leg flexion is controlled.

o 23 represents the rotation of the foot w.r.t. the leg axis.
This coordinate direction can be used to inject energy
during the push-off phase.

Fig. 2. Kinematic structure.

In addition to this kinematics concept, the actuator archi-
tecture is of tantamount importance. Weight bearing with
reduced contact forces and efficient leg swinging during
the stance and swing phase as well as reducing the impact
forces of the ground contact demands compliant actuators
[6]. However, the nonlinear kinematics of the segmented
leg combined with linear joint elasticities lead to nonlin-
ear coupled elastic behavior in the above mentioned task-
oriented coordinates. The requirement that some of the above
subtasks have to be fulfilled simultaneously and indepen-
dently together with the introduction of the task-oriented
intrinsically decoupled coordinates lead to a specific (com-
pliant) actuator architecture. This functional decoupling in
task coordinates is achieved by so-called biarticular muscles
which result in an elastic coupling of adjacent joints. The
specific actuator architecture and requirements on the rigid-
body system kinematics which comply with the definition
of task-oriented coordinates, result in a system design which
can be controlled with simple structured, low effort, and very
robust feedback control methods.

III. SYSTEM DESIGN
A. Rigid body model

Consider the planar bipedal floating base system with a
kinematic structure as shown in Fig. 2. The position and
orientation of the base link frame {B} with respect to a
world coordinate system {WV} (in the plane) is described by
r, € R? and Ry, = Ry(¢) € SO(1), respectively, and the
configuration of the two legs is given by the joint coordinates
qeQcC RS. One rotational degree of freedom is considered
for the hip, knee, and ankle joint of each leg (Fig. 1, left),
respectively. The generalized velocity of the complete system
v = (7l ,w,q")" is composed of the translational velocity
7, and the angular velocity w = ¢ € R of the floating base,
and the joint velocity g € RS for all actuated joints. In the
following, we consider the dynamic system satisfying

M(q, Ry)¥ + p(q, v, Ry)
0

Ji(@)"Fy, (1
T —d(q) k



Fig. 3. Elastic actuator architecture. Red pulleys represent independent
degrees of freedom represented by additional motor coordinates 6 € R3.
67 is measured w. r. t. the trunk, 6 and 63 are measured w. r. t. the thigh link.
The rotation of the thigh w.r. t. the trunk is measured by g1. The two pulleys
in blue are rigidly connected to the shank (blue). Thereby, the relative
rotation of the shank w.r.t. the thigh is measured by g2. The grey pulley
is rigidly connected to the foot which has a rotational degree of freedom
relative to the shank, measured by g3. Each 6; can be equally represented
by the coordinates Al; which represent the deflections of springs. Thereby,
Al corresponds to spring implementing an elastic coupling of 61, g1 and
g2 with a 2/1 coupling ratio. The coordinate Als corresponds to a 1/1
coupling spring of 62 and go. Finally, Al3 implements a 1/2 coupling of
03, g2 and g3.

where M (q, R,) € R%*? represents the inertia matrix,
p(q,v, Ry) € R? represents the vector of Coriolis, centrifu-
gal and gravity forces, and d(q) is a damping force satisfying
d(g)"g > 0, Vg # 0. The most right term in (1) accounts
for contact wrenches F; € R® acting at foot k € {l,r}.
Thereby, the transposed of the Jacobian matrices J . (g) maps
the contact wrenches to the generalized forces of the bodies.

B. Elastic actuator design

In contrast to many bipedal locomotion approaches intro-
duced in literature so far [3], [4], [5], [14], [25], we consider
compliant actuators in the joints. In particular, this section
derives the compliant actuator architecture which implements
the decoupling in the task-oriented coordinates introduced
in Sect. II which will be analyzed in detail in Sect. IV.
Introducing motor positions 8 € R? as additional system
states for each leg, the torques

T=1¢(0,q) 2

in (1) represent generalized forces produced by springs in the
joints. This model already considers classical approximations
for robotic systems [26], [27] such that 8 can be considered
as control input.

In the following, we derive the compliant actuator archi-
tecture which produces the elastic torques in (2) such that it
complies with the concepts proposed in Sect. II. To this end,
consider a single leg with configuration variables ¢ € R?
and motor positions 8 € R3. The potential

U(0,q) = Ui(Aly) + Uz(Alz) + Us(Als) 3)

comprises functions which depend on intermediate variables

Ali(61,q) = [2(q1 — 01) + q2] a, “4)
Aly(02,92) = (g2 — 62) a, )
Als(03,q) = [(q2 — 03) + 2g5] a, (6)

with the lever arm constant ¢ > 0, representing general-
ized deflections of elastic elements (Fig. 3). The functions
Uy,U,,Us in (3) are assumed to be positive definite, i.e.,
VAl #0, U;(Al;) > 0, i =1,2,3. Then, as a consequence
of (4)—(6), the potential (3) is positive definite in a sense that

EI907‘]0 € Rgv Vo 7é Gan 7é 4o, U(an) >0.

In the following and without loss of generality, we con-
sider quadratic functions

1

Uy (AlL) = 51@1(&1)2, (7)
1

Us(Aly) = ikz(Ab)za (8)
1

Us(Als) = 5ks(Als)?, ©)

in (3), where ki,ko,k3 > 0 are spring constants. The
generalized spring force (for a single leg) can be derived
from the resulting potential, i.e.,

oU(8,q)
_Tq
2k1[2(61—q1)—q2]
= | k1[2(01—q1)—q2]+k2(02—q2)+k3[03—q2+42q3] a’.
2k3[03—g2+243]

(10)

The Hessian of the potential, also referred to as the mechan-
ical stiffness, takes the form

2
- 2009
0q?
4kq 2k1 0
= |2k1 ki +ky+ks 2ks|a’. (11)
0 2ks 4ks

The structure of the stiffness matrix indicates an elastic cou-
pling of the joint coordinates q1, q» and g2, g3, respectively.
Note that this is not a result of the particular choice of
the quadratic functions (7)—(9). The elastic coupling results
for any potential (3) defined by generalized deflections
introduced in (4)—(6).

IV. COORDINATE TRANSFORMATION

This section derives the transformation to the task-oriented
coordinates which together with the elastic actuator archi-
tecture proposed in Sect. III-B form the basis to effectively
control bipedal gaits.

Consider again a single leg, segmented in thigh, shank,
and foot (Fig. 1, left). For reasons discussed later, assume
that the segment lengths of thigh and shank are equal and
denoted by b > 0. The goal of the coordinate transformation
is to describe the configuration of the leg by coordinates
representing the length of the leg z5 (distance between tip of
the shank and hip), the orientation of this axial leg w.r.t. the



trunk z7, and the orientation of the foot w.r.t. the axial leg
z3 (Fig. 1, right). To this end, consider as an intermediate
computation step the position of the tip of the shank w.r.t.
a coordinate frame attached to the trunk and located at the
hip:

(12)
13)

2'(q) = — [sin(q1 + ¢2) +sin(q1)] b,
#'(q) = — [cos(q1 + g2) + cos(q)] b.

Then, the new coordinates result by transforming from
Cartesian to polar coordinates, i.e.

arctan (Sin(Q1+q2)+sin(q1) )

cos(q1+q2)+cos(q1)

z=f(q) = b\/2 + 2cos(dz)
Z?:1 q; — arctan (migz—m%)
(14
where z € Z C R3, with corresponding Jacobian matrix
1 % 0
ﬂw:agﬂ:()_¢§¥ﬁm (15)
0 3 1

2
A. Properties of the coordinate transformation

In the following we will summarize some important prop-
erties of the coordinate transformation (14):

(P1) From (15) it can be seen that the mapping (14) is
invertible everywhere except at go = 0,7, 27, .. ..

(P2) The mapping z2 = f2(q2) depends only on ¢ not on
q1,qs3- This will be important for the definition of the
control inputs considered next.

(P3) In the new coordinate system defined by (14), the
generalized spring force resulting from (3)—(6) is de-
coupled in a sense that the matrix

- (2) 20 )

is diagonal.

In case of the quadratic functions (7)—(8), property (P3)
can be verified by direct calculation, i.e.,

k1 0 0
k
Kz = 0 m 0 4&2 .
0 0 ks

The above properties will be exploited especially in the
definitions of the control inputs.

B. Control inputs

The controller introduced in the next section will be
formulated w.r.t. the functionally decoupled coordinate sys-
tem defined by (14). Thereby, a requirement of the spe-
cific system design is that combinations of torques and
equilibrium positions of the springs can be considered as
independent control inputs. For instance, it could be required
to control the trunk orientation with a PD controller via the
hip torque 7,; while independently bearing the weight via
the equilibrium position of the axial leg Z». In the following,

the control input combinations are derived which are required
to implement the subtasks explained in Sect. II.

The physical control inputs of the plant are the motor
positions 8. To define the equilibrium position z € Z C R3
as control input, we are seeking motor positions 8 = 0(z)
corresponding to z. This can be reached in two steps. First,
consider the inverse of (14)

q=g(z)=f(z)""

where ¢ € Q C R3, such that we can compute an equivalent
equilibrium position w.r.t. the Q coordinate system

(16)

a=9(z). a7
Then in a second step, equivalent motor positions 8 = 6(q)
can be computed using the equilibrium condition

ou(6,q)

——=0

oq

or equivalently due to the positive definiteness of the func-
tions U; (Al;) and the definition of the generalized deflections

(46,

(18)

01(q) = q + 5 (19)
92 ((.j2) = 672 ) (20)
03(q) = G2 + 2G5 . 21

To define the torque of the hip and the equilibrium
positions of the leg axis and the foot (7,1, Z2, Z3) as control
input, we are seeking motor positions 8 = 0(7, 1, Z2, Z3).
From the transformation law of generalized forces from the
Z to the Q coordinate system

T=J(q@) . (22)

and the structure of the Jacobian matrix (15) it can be seen
that 71 = 7,1. Then, given g and since the only motor
position which appears in Aly(6;,q) (defined in (4)) is 64,
the equation

_9U0,q)
g

can be uniquely solved for 6; = 6;(7,,1), since 71(61) is
strictly monotonic in ;. To relate the equilibrium positions
Z2, Z3 to the remaining motor positions 6o, 63, the equilib-
rium position Z;, corresponding to (7;1,Z2, Z3) has to be
computed. This can be done by considering the second row
of (16), (19), and the first row of (14), i.e.,

(01,q) = 71(01) (23)

G2 = 92(%2) (24)
G, — 20

a=-L-= (25)

Z = fi(qh, G2) - (26)

Once Zz; is obtained, the remaining motor positions 65, 63
result by applying successively (16) and (19)—(21). As a
result, (7,1, Z2, Z3) can be considered as control input.
Remark 1: The above derivation is only an example of
how the control input in the Z coordinate system can be



chosen independently. It can be verified that the combinations
of generalized forces and equilibrium positions (Z1, Z2, 7»,3)
and (7'271, Za, 7'273), can be considered as tantamount control
inputs. Note that this is a result of the system design intro-
duced in Sect. 3 and the particular kinematics as depicted
in Fig. 1, where the segment lengths of thigh and shank are
equal.

V. CONTROLLER DESIGN

The locomotion control concept is based on biomechanics
insights, special kinematics design, and our recently pro-
posed limit cycle control method as introduced in [15], [17],
[18], [20]. The controller explained next is an overall result
of the system design, the task-oriented coordinate trans-
formation, and our recently introduced model-free control
concepts.

The controller is hybrid in a sense that it combines
a switching logic (state machine) and continuous control
laws resulting in combined finite and continuous closed-loop
dynamics.

A. Control actions
Two types of control actions are considered:
1) changing the equilibrium positions of the springs;
2) implementing a PD control with gravity compensation
[28, Sect. 2.2.3]:

To1 = To(®) — kp [ — da] — kno,

where kp, kp > 0 are controller gains and 7, is the
torque acting due to the weight of the trunk on the
hip, or the “zero torque” control

Tz1 = Tg(d)) .

The control action 1) has multiple responsibilities:

27

(28)

o foot placement during swing and flight phase via the
control input z3;

o energy input by loading the spring (responsible for leg
extension) via the control input Z, and/or energy input
by push-off during the stance phase via the ankle joint
considering the control input Z3;

« controlling the ground clearance during swing phase by
shortening the leg via the control input 2s;

« fine tuning and repositioning of the foot for touch down
via the control input Zs3.

Except for the latter, all the control actions of type 1) are
instantaneous, i.e. the equilibrium positions z are changed
stepwise.

The control action 2) is responsible for controlling the
orientation of the trunk w.r. t. the ground (27) via the control
input 7, 1. The PD control (27) is active as long as the ground
reaction forces are sufficiently hight such that friction forces
support the torques in the hip, otherwise the “zero torque”
mode (28) is active.

Remark 2: Note that the torque control input 7, ; is
always considered in combination with the equilibrium po-
sition input Zs, zZ3. This combination is only possible due to

the specific elastic model (Sect. III-B) and the coordinate
transformation introduced in Sect. IV.

Further, note that to any of the task-oriented coordinates
one can relate a main functionality which can be controlled
independently. The coordinate z; is responsible to control
the trunk independent of the length of the leg, and the
leg orientation in the swing phase. The axial leg function
represented by z5 is used for weight bearing during stance,
and for ground clearance during swing. The ankle rotation
represented by z3 (possibly in combination with the axial leg
function) is responsible for energy injection.

B. Switching logic (state machine)

This section derives the finite dynamics of the control
system which determines the switching between different
controllers and desired states. It can be interpreted as a state
machine that changes finite states triggered by events. These
events are only functions of the continuous system states and
therefore this concept further supports the idea of exploiting
the natural dynamics of the plant [17]. In the following,
we present the control framework exemplary for a specific
running controller. Many different controllers and parameter
configurations resulting in different gaits can be considered
on the basis of this framework.

For each leg we consider the following events:

« touchdown of the foot denoted by 7'D;

o threshold functions for the axial leg force 7,2 >
eizT, Ty > esz, and 7,5 < Eizi’ where the arrow
(-)4/(+), indicates whether the force over-/undershoots
the threshold implication;

« takeoff of the foot denoted by T°O.

On the basis of the above events the state machine
illustrated in Fig. 4 switches the (continuous) control actions
described in Sect. V-A. Thereby, the superscripts (-)' and (-)"
indicate quantities of the left and right leg, respectively. In
the following, the functionality of each finite state in Fig. 4
is described:

State 1: Right after the TD, the hip torque of the stance leg
compensates only for the gravitational torque of the upper
body, while the equilibrium position of the leg axis keeps
the neutral position 2 = const.. For the swing leg, the
equilibrium position of the hip rotation keeps the value of
the hip position at the TO event z1(7T°0O) and the equilibrium
position of the leg axis keeps the parameter value 2, < 29.
The equilibrium positions of both ankle joints are such
that the feet keep parallel to the ground. In particular, the
equilibrium position of the stance leg ankle joint keeps the
value at the entry time instance of this finite state, i.e.,
—(¢+ 2})°". Therefore, this state mainly assures the ground
contact for the stance phase.

State 2: The assured ground contact of the stance leg
is detected using the threshold event 7,0 > dzT' In this
case, the upper body inclination is controlled via the hip
torque of the stance leg. Additionally, the foot of the swing
leg is placed by changing the equilibrium position of the
spring in the hip. Note that the foot placement controls
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Fig. 4. State machine controlling the gate cycle. Control actions for the
inputs described in Sect. IV-B are defined. Half a gate cycle is depicted,
i. e.the stance and flight phase of the left leg and the swing phase of the right
leg. The states 6 to 10 can be obtained by interchanging the superscripts
()" and (-)" in the equations of states 1 to 5. Note that the superscript (-)°
denotes the time instance of the finite state entry and the subscript (-)g
means foot placement.

the transportation velocity of the gait. The corresponding
algorithm is described in Sect. V-C.

State 3: The event T, > ezzT, where efﬁ > elzT, may
be used to trigger the energy injection of a superimposed
(periodic) hopping motion as the limit cycle control proposed
in [20]. This can be achieved by changing the equilibrium
position of the leg axis to the parameter value 2 > 29
and leads in turn to the TO of the stance leg. In case of
human like walking and running, the energy injection is
implemented via the ankle joint. Thereby, this finite state
may be used to prepare the push-off phase.

State 4: This finite state directly induces the TO and
already prepares for the ground clearance in the next swing
phase by either decreasing the equilibrium position of the
leg axis (of the stance leg) to 29 or by loading the spring
corresponding to the ankle joint with a constant pretension
angle 5 > 0. Additionally, the hip torque of the stance leg
compensates only for the gravitational torque of the upper
body, since the ground reaction forces are approaching zero
and therefore the orientation of the trunk cannot be regulated
any more.

State 5: During the flight phase, the equilibrium position
of the hip of the last stance leg is kept at the position
21(T'O) at the TO event. The next swing leg is shortened
by decreasing the corresponding equilibrium position to
25 . Further, the equilibrium position of the landing leg is
changed to the neutral position 29 = const..

States 6 to 10: The finite states 6 to 10 can be derived
analogously to states 1 to 5 by interchanging the superscripts
(-)" and ()"

C. Landing foot placement

The control system described above consists of two main
energy sources. One is step-wise changing the equilibrium
of the ankle joint. This source introduces elastic energy into
the system. The other energy source is the placement of the
landing foot. Further, energy losses are due to friction and
damping. It is evident that to achieve steady-state locomotion
such as running at constant forward velocity, the energy input
and the dissipation in the gait cycle have to be balanced.
As shown in [24], the foot placement can be considered
as input to control the forward velocity of the gait and
therefore to control the net energy exchange. The following
foot placement algorithm is based on [24]:

eGSR

21(7‘13,1,7'“3,17@ 22) = —¢ —sin” — . |
2

(29)

where
smean

b1 s - mean -d
5 + ky (er — 7’b,1) .

Herein, Ty = ¢t(T'O) — t(T D) represents the duration of the
stance phase and

1 t(TO)
e / For(t)dt .
’ T Jyrpy

(o1, 75 ,) = (30)

The second term in (30) is a regulation term where 73{)11

represents the desired forward velocity of the upper body
and ky is a positive gain.

Note that T and r{"" depend on the solution of the
differential equation representing the stance dynamics, which
is not a priori known. Starting with an initial guess, the values
of the previous stance phase can be used to place the foot
for the next landing leg.

VI. SIMULATIONS

This section exemplifies the working principle of the
control system and validates the effectiveness of the approach
in simulation.



A. Plant parameters

We consider a human-like mass distribution with a total
body mass m = 80kg, comprising 0.75m for the trunk,
0.0625m for each thigh, 0.0375m for each shank, and
0.025m for each foot. Thighs and shanks have segment
lengths of 0.5m. Each foot has a segment length of 0.2m.
The ankle joint of each foot is located at 25% of the foot
length measured w.r.t. the heel. The center of mass (CoM)
of the trunk is 0.3m above the hip. The CoM of thighs
and shanks are at 40% of the segments lengths (proximal)
and the CoM of each foot is at 30% of the forefoot length
measured w.r. t. the ankle joint. We consider a dimensionless
lever arm constant ¢ = 1 such that k; = 200Nm/rad,
ki = 1000Nm/rad, and k; = 600Nm/rad have the
physical unit of rotational stiffness. For the link side damping
the same structure as for the stiffness matrix (11) with
dy = d3 = 10Nms/rad, and ds = 25 Nms/rad is assumed.

B. Controller parameters

The parameters of the trunk controller have been chosen
kp = 1000 Nm/rad and kp = 200 Nms/rad with a reference
value gf)d = 0. For the leg axis, the threshold values eim =
400N, el . =1150N, and €}_| = 600N, and the amplitude
values 2, = 0.9-2b and 29 = 2 = 0.99 - 2b, where b =
0.5m have been considered. The push-off amplitude for the
ankle joint has been chosen 3 = 1/67. The proportional gain
of the velocity controller (30) has been chosen k, = 0.2s.
All controller parameters have been chosen manually.

C. Simulation setup

The control system dynamics have been simulated using
the articulated body algorithm [29] and a compliant ground
contact model [30] with a Coulomb friction coefficient p =
0.75. All simulations started with an initial guess of the
stance duration 7y = 0.2s. On the basis of this initial guess
and the reference values ¢?es and 7"{3’1, the initial condition
24(0) was computed applying (30). Further, 25(0) = 29,
A4(0) = —(¢7 + 21(0). 21(0) = —=z(0), 24(0) = %,
and 25(0) = —(¢% + 2£(0)). These initial conditions were
transformed to the Q coordinate system using (16). Then,
the initial motor positions result from (19)—(21). The initial
conditions of the trunk are chosen such that for ¢(0) =
¢ the landing foot almost touches the ground. All initial
conditions at velocity level except the vertical velocity of
the trunk (7,1 = 1'"{)171) were zero. The resulting initial value
problem has been integrated using a variable step solver of
MATLAB/Simulink with a maximum step size of 0.01s.

D. Results

The simulation demonstrates the periodic steady-state be-
haviour of the closed-loop system. The desired forward
velocity was set to 7'"‘@’1 = 2m/s. Fig. 5 shows a stroboscopic
picture of a complete, simulated gait cycle. Fig. 6 shows the
path of the configuration variables of one leg for five cycles
in the steady-state phase of the running motion. From the
latter plot the periodicity of the motion can be clearly seen.
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Fig. 5. A complete gait cycle in the steady-state phase of the running
simulation. The motion is depicted over time. Snapshots of the bipedal
system are shown at each transition of the finite states.
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Fig. 6. Path of the configuration variables of one leg. Five cycles in the
steady-state phase of the running motion are depicted.

Fig. 7 depicts the results of a convergence experiment.
Two simulation runs both starting with the same initial
conditions are shown. In the first simulation, the desired
forward velocity is linearly increased in the time interval
of 20s to 30s. In the second simulation, the system runs
uphill a slope of 8.75% while the desired forward velocity
is constant. Both graphs clearly demonstrate the ability of the
system to converge to different (desired) cyclic steady-states.

VII. CONCLUSION

In our conceptual approach, biarticular series elastic actu-
ators coupling the actuation of adjacent joints are exploited
for the generation of a stable running pattern. Our selected
leg segmentation (thigh and shank of equal length) and lever
arm ratios of the biarticular actuators (2/1 hip to knee and
ankle to knee, respectively) effectively decouple the tasks of
balancing the trunk and orienting the leg in the swing phase
from load carrying. Proposed control variables are associated
with these distinct functions of the leg. Neutral motor posi-
tions of compliant actuators are independent of each other,
hence simplifying control. This mapping of control variables
and leg functions yields a number of benefits. For example,
since the mapping stems from the morphology of the leg,
the concept does not constrain the choice of actuators.
Also, our approach enables the application of simple control
principles developed for telescopic legs [24] to beneficial
segmented legs. Simulations demonstrate that stable running
on level ground and uphill (8.75%) can be achieved with
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Fig. 7. Convergence behaviour of the forward velocity. The mean values
of the stance phases are plotted over time. Two experiments are shown:
acceleration from about 2 to 2.5m/s and running uphill on a constant
slope of 8.75%.

segmented legs without changing any control parameters.
This shows that the system can approach different limit
cycles. Starting from this demonstration of the concept, we
hope to understand the function and morphology of the
human leg with possibly coupled functions better. Joint angle
paths Fig. 6 can be compared with joint angle paths of
humans to tune control parameters. The question how the
human leg achieves linear behavior in the leg axis might in
part be answered by a nonlinear knee spring compensating
for the strong geometric nonlinearity in extended human leg.
Concordant with a passive knee function in human running
and positive work not only at the ankle but also at the hip, the
concept suggests introducing energy via biarticular structures
leaning the trunk forward to pump in energy, or leaning the
trunk backwards to decelerate. Again, the axial function can
remain in a passive bouncing mode, and biarticular structures
can manage energy without hampering the axial leg function.
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