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Abstract— Humanoid robot teleoperation allows humans to
integrate their cognitive capabilities with the apparatus to
perform tasks that need high strength, manoeuvrability and
dexterity. This paper presents a framework for teleoperation of
humanoid robots using a novel approach for motion retargeting
through inverse kinematics over the robot model. The proposed
method enhances scalability for retargeting, i.e., it allows teleop-
erating different robots by different human users with minimal
changes to the proposed system. Our framework enables an
intuitive and natural interaction between the human operator
and the humanoid robot at the configuration space level. We
validate our approach by demonstrating whole-body retargeting
with multiple robot models. Furthermore, we present experi-
mental validation through teleoperation experiments using two
state-of-the-art whole-body controllers for humanoid robots.

I. INTRODUCTION

Teleoperation stands for operating from distance, in which
it extends the human capability to operate a robot remotely,
where the human is unable to reach owing to the time
and space constraints or the dangers posed by hazardous
environments [1]. Moreover, the perception and decision
making capabilities of current robotic systems are still limited
preventing them from acting autonomously out of laboratory
settings and in real-world conditions. Teleoperation plays
an important role in a wide range of applications including
manipulation in hazardous environments [2], [3], telepresence
[4], telesurgery [5], and space exploration [6]. Teleoperation
is considered as a type of human-robot interaction at distance,
where for an effective and efficient mission, a bilateral
communication is paramount [7]. Given this perspective, the
human and the robot establish a team, in which the goal of
the teleoperated robot is the same as the human operator.
Furthermore, teleoperation brings together the excellent
cognitive capabilities of humans and the physical strength of
the robotic system together [8].

Humanoid robots are designed based on the idea of
anthropomorphism and unlike serial manipulators, they have
higher manoeuvrability and manipulation capabilities [9].
Hence, they facilitate higher capabilities during teleoperation.
At the same time, the complexity of humanoid robots offers
more challenges for teleoperation particularly in unstructured
dynamic environments designed for humans. The level of
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Fig. 1: Whole-body retargeting example scenario

autonomy, team organization and, the information exchange
between the operator and the robot are some of the vital
aspects in teleoperation performance to ensure successful
task completion [10], [11]. The level of autonomy ranges
from being a semi-autonomous robot at the symbolic or the
action level (high-level teleoperation) [7], [1] to complete
control of the robot at the kinematic and the dynamic level
(low-level teleoperation), either in the robot’s configuration
space or task space. A core component of the low-level
teleoperation system is the human motion retargeting to a
robot. An example scenario of whole-body retargeting of
human motion to a humanoid robot is shown in Fig. 1 where
each limb of the robot mimics the motion of the human limbs.

Two of the most studied teleoperation paradigms in
literature are: 1) master-slave; and 2) bilateral systems. Under
master-slave teleoperation paradigm, the flow of information
is unidirectional from the human to the robot, while under
bilateral teleoperation paradigm there is an exchange of
information between the human and the robot. In particular,
haptic feedback to the human from the robot [12], [13].
Teleoperation systems that involve humans in the control
loop at the kinematic and dynamic level should have the
prime objectives of situational awareness and transparency,
i.e., the human operator experiencing the remote environment
of the teleoperated robot as holistically as possible, while
maintaining the stability of the closed-loop system [14], [1].
Delays and information loss are some of the crucial problems
with this approach that affect the transparency and stability of
teleoperation greatly [1], [14]. Different approaches such as
Lyapunov stability analysis [15], [16], passivity based control
[16] have been employed to address these limitations. How-
ever, these methods are studied extensively with manipulators
and the stability measures for humanoid robot teleoperation
are not well established [17].

The research on teleoperation of humanoid robots can be
broadly classified into three categories: upper body teleopera-
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tion, lower body teleoperation, and whole-body teleoperation.
In upper body teleoperation, the mapping of the human motion
to the robot motion is considered at the kinematic level.
Inverse Kinematic (IK) and nonlinear optimization approaches
are the common methods for teleoperation scenarios. Using
inverse kinematics methods, human joint angles or velocities
are computed and mapped at configuration space to the
corresponding joints of the humanoid robot, taking into
account the robot limitations [18], [19], [20]. Nonlinear
optimization methods map the human’s hand motions at
task space to the desired trajectory of the humanoid robot
end-effector motions [21], [18]. Alternatively, a data-driver
mapping between the human and the robot arm is proposed
in [22]. In these cases, some consider the effect of the change
of center of mass (COM) in robot lower body motion and the
robot’s balance [21], while others do not and therefore, the
risk of robot falling down increases. So, concerning the lower
body teleoperation of humanoid robots, the aspects of stability
and locomotion have higher precedence over retargeting of all
the lower limbs. A more detailed description of such methods
are discussed in [23], [24].

Coming to the topic of whole-body teleoperation of
humanoid robots, the key challenge is to control the robot
such that it does not fall while keeping its manoeuvrability
and manipulability high, so that the human and the robot
team can successfully perform a given task. The balance of
the robot is achieved by either keeping the Center of Mass
(CoM) inside the support polygon or maintaining the net
momentum about the Center of Pressure (CoP) to zero [25],
[9]. Although, a set of safety limitations are considered to
maintain the robot’s stability, multi-link dynamic contacts
are not considered in [9]. Therefore, they can not handle
tasks which needs force exchange with the environment or
compensate for external disturbances. An attempt to solve
this problem is presented in [17] with simulations which
uses the natural frequencies of human and robot models in
the feedback law, and synchronize their motions to compute
the robot balancing and stepping strategies. Differently from
the described methods, a data-driven approach for whole-
body retargeting in a physics based animation environment
is proposed by the authors of [26].

One of the obvious shortcomings of the teleoperation
systems proposed in literature is the lack of ability to easily
adapt the system for different human users and humanoid
robots with different geometries, kinematics, and dynamics.
The possibility to perform human motion retargeting without
considering major design changes becomes limited. The
system designer often has to spend time and effort in finding a
new model of the human to be used during motion retargeting
step such as IK based approaches, therefore the usability and
scalability of the proposed teleoperation system decreases.

This paper presents a novel framework for whole-body re-
targeting and teleoperation of a humanoid robot that enhances
the scalability to multiple human operators or multiple robot
models. Our approach provides anthropomorphic references
for humanoid robot joints in real-time based on the human
limb motion measures, independently from the human body

dimensions, by directly using the robot model. The proposed
approach is validated by extensive whole-body retargeting
and teleoperation experiments.

The rest of the paper is organized as follows: Section
II introduces the basic notations, robot modelling, and an
overview of motion retargeting. Section III presents our
whole-body retargeting architecture. Section IV describes the
whole-body retargeting experiments and highlights the results
validating our approach. Section V shows the experiments
and results of whole-body teleoperation with two state-of-the-
art whole-body controllers for humanoid robots. Section VI
provides the conclusions and hints at our future work.

II. BACKGROUND

A. Notations & Modeling

The inertial frame of reference is denoted by I. Given
two frames, A and B, ARB ∈ SO(3) represents the
rotation matrix between the frames, i.e., given two vectors
Ap, Bp ∈ R3 respectively expressed in A and B, the rotation
matrix ARB is such that Ap = ARB Bp. The skew-symmetric
operation of a matrix is defined as sk(A) := (A − A>)/2,
and the vee operator .∨ maps a skew-symetric matrix from
SO(3)→ R3. Humans and humanoid robots are considered
to be multibody floating base systems, i.e., none of the links
has an a priori constant pose with respect to the inertial frame
[27], [28]. Superscripts .H and .R corresponds to a quantity
of the human and the robot respectively. The configuration of
the system can be determined by the triplet q that contains
the position IpB and the orientation IRB of the base frame
and the vector of joint values s that highlight the shape of the
robot. The velocity of the multibody system is represented by
the triplet ν composed by the linear I ṗB and angular velocity
IωB of the base frame with respect to the inertial frame along
with the vector of joint velocities ṡ. The Jacobian JA is the
map between the robot velocity and the linear and angular
velocities of the frame A, i.e.:

IvA = JA(q)ν. (1)

Jacobian matrix JA is composed of linear part J lA and angular
part JaA. Velocity vector of a frame v are made-up of linear
ṗ and angular parts ω.

B. Kinematic Motion Retargeting

The two main methods for the retargeting of human motions
at the kinematic level are the configuration space retargeting
and the task space retargeting.

1) Configuration space retargeting: The architecture
shown in Fig. 2 represents a typical configuration space
retargeting scheme [19], [25]. The measurements of the
human motion are given as input to an inverse kinematics
based method along with the human model. On the output
side we retrieve the human joint angles and velocities sH , νH .
Later, a mapping step morphs them to the robot joint angles
and velocities sR, νR.

Some of the key limitations of this approach are: i) finding
a customized mapping: we should apply the constraints of
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Fig. 2: Typical configuration space retargeting scheme.

the robot joints to sH , νH , find a customised offset and
scaling factor for each of the robot joint with respect to the
corresponding human joints; ii) dissimilarity of the human and
the robot kinematics: the robot kinematics can be different
from the humans, for example the human shoulder consists
of a spherical joint, while robot’s shoulder are three revolute
joints with different order. Therefore, at this step we should
use forward kinematics to find the relative rotation between
the chest link frame and the upper arm link frame of the
human, and then apply inverse kinematics to find the robot’s
joint angles and velocities; iii) different human kinematics:
different human subjects have different physical properties,
which results in different human models.

2) Task space retargeting: The architecture shown in Fig. 3
represents a typical task space retargeting scheme. In this
approach, the human link measurements in cartesian space
are mapped to the robot’s cartesian space at the first step
[21], [9]. A general attempt for such a mapping is a fixed
proportion between the human and robot’s geometry, e.g., the
human’s wrist rotation is mapped equally to robot end effector
orientation IRRwrist =

IRHwrist or for the case of robot’s end-
effector position we have shoulderpRwrist = γ shoulderpHwrist.
A heuristic to find γ is provided in [21], in which it is defined
as γ = robot’s arm length

human’s arm length . Later, the optimization problem, i.e.,
inverse kinematics, is solved with the robot’s model.

Some of the key limitations of this approach are: i)
workspace or precision limits: the workspace of the robot
may be narrowed (γ ≤ 1) for reaching some of the far points
or the precision is lost in the case γ ≥ 1 for fine manipulation
tasks; ii) robot’s internal configuration dissimilarity: the
robot internal configuration may not be similar to the human,
i.e., the degrees-of-freedom problem. It causes psychological
discomfort, as the user or people who are interacting with
the robot may not predict the robot’s motions because of non-
anthropomorphic motions that depend on the parameters of
the optimization problem [18]. Moreover, the precise control
of internal configuration becomes essential when the robot
acts in cluttered environments to avoid obstacles.

III. METHODS

A. whole-body Teleoperation Architecture

We propose a whole-body teleoperation architecture as
shown in Fig. 4. The human user receives visual feedback
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Fig. 3: Typical task space retargeting scheme.

from the robot environment by streaming the robot camera
images through the Oculus Headset. The robot hands are con-
trolled via the Joypads. The human locomotion information,
i.e., the linear and the angular velocities are obtained from the
Cyberith Virtualizer VR Treadmill. Additionally, the human
wears a sensorized full body suit from Xsens technologies
to obtain the kinematic information of various human links
with respect to the inertial frame of reference.

B. Kinematic Whole-Body Human Motion Retargeting

We perform the whole-body retargeting by geometrically
mapping anthropomorphic motions of human links to cor-
responding robot links. Fig. 5 shows our proposed method
for the whole-body retargeting of human motions. Similar
to the task space retargeting introduced in Section II-B, we
formulate the retargeting problem as an inverse kinematics
problem given only the rotation and angular velocity RH , ωH

of the human links and the robot’s URDF model. In our case,
the customized mapping between each link of the human and
the robot is done with a constant rotation HRR, and applied
directly on the robot’s URDF for the ease of implementation.
An additional benefit with this approach is the consideration
of the robot’s link properties and joint types using the URDF
model. Therefore, the change of the human subject or robot
geometry does not affect the retargeting of the human motions
to the robot, i.e., the proposed retargeting method increases
the scalability enabling application to different human subjects
or robots with minimal efforts.

In this formalization, the frame in which an individual
human link rotation and angular velocity measurements are
expressed should coincide with the corresponding robot link’s
frame. As an example, the actual link frame definitions of
both the human links and the robot links are highlighted
in the Fig. 4. The frame equivalence from the human to
the robot links is indicated by the numbering. In this case,
by identifying the relative rotation between the human link
frames and the corresponding robot link frames manually, we
obtain the robot’s desired motion in the frame attached to
the robot. Given the rotation from the human link frames to
the inertial frame, IRH, and the constant rotation from the
robot link frames to human link frames, HRR; equation (2)
provides the rotation from the desired robot link frames to
the inertial frame,

IR∗R = IRH
HRR. (2)

The fixed rotation HRR is computed offline by positioning
both the robot and the human models in a similar joint
configuration as highlighted in Fig. 4.

Once the motion of robot links is correctly extracted, the
robot joint positions is found by formulating the inverse
kinematics as an optimization problem [29], [28]. To solve
the inverse kinematics problem, we benefit from a dynamical
optimization method that ensures the convergence of the
frame orientation errors to a minimum [30]. We define the
following dynamical system:

V +KE = 0, (3)
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Fig. 4: The architecture of the whole-body teleoperation with active human motion retargeting.
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Fig. 5: Block diagram of kinematic whole-body motion
retargeting.

in which K is the gain matrix, E and V are respectively
the vectors collecting orientation and angular velocity errors
defined as follow:

Ei = sk(IR∗Ri

IRRi
)∨, (4a)

Vi = Iω∗Ri
− JaRi

(q)ν, (4b)

where Ei,Vi ∈ R3 are the errors computed for the i-th
link, and Ri is the i-th link of the robot. Hence, the joint
velocities can be found by solving the following optimization
problem:

ν(t) = argmin
ν
‖V +KE‖+ ‖λν‖ ,

s.t. G(s)ν ≤ g(s),
(5)

in which λ is the regularization term, and with G(s), g(s)
a linear inequality constraint is defined. Finally, the robot’s
desired joint positions s(t) are found by integrating ν(t).
To solve the optimization problem we rely on a quadratic
programming (QP) library [31].

Our proposed method allows to retarget human motions to
a robot even if their kinematics is not similar, i.e., in case
the humanoid’s robot limb and the human’s corresponding
limb has different degrees of freedom. Moreover, it enables
the anthropomorphic motion retargeting, as the robot mimics
human’s links motion.

IV. RETARGETING EXPERIMENTS & RESULTS

The human limbs’ rotation and angular velocity are
captured in real time using Xsens motion capture technology
that involves several MEMS based inertial sensors placed on
various body parts of the human. The whole-body retargeting
experiments are performed with motion data captured for two
human subjects. To demonstrate the scalability and usability
of our proposed method, we perform kinematic retargeting
with robots having different degrees of freedom (DoFs). The
robot models we considered are a) iCub humanoid robot with
32 DoFs, b) NAO humanoid robot with 24 DoFs, c) Atlas
humanoid robot with 30 DoFs. To show that our method is
not limited to humanoid robots, we perform a retargeting
scenario with Baxter dual arm 15 DoFs robot. Additionally,
we show the retargeting with a human model that has 66 DoFs.
The Fig. 6 highlights kinematic retargeting with different
models and human subjects shown using Rviz kinematic
visualization tool. The first row corresponds to the human
motion of standing on right foot from the first subject and
the second row corresponds to the human motion of standing
on the left foot by the second subject. Concerning the baxter
robot, the retargeting is done only for the arms and the head,
as it is a fixed base robot.

The orientation of the human links IRH is obtained from
Xsens measurements. The solution of the inverse kinematics
problem formulated in Section III-B along with the robot
model provides the joint values and velocities of the robot.
To compute the robot’s achieved link orientation IRR, we
use floating base forward kinematics employing the robot’s
joint values. Fig. 7 on the top, shows the human’s and the
robot’s right arm elbow joint values. Indeed, when the user
moves his elbow in a configuration that it is not feasible
for the robot, as can be seen at time instant t ∼ 13 s,
the inverse kinematics finds a feasible solution that tries
to minimize the rotation error between the human frames
and the iCub robot frames, see (5). Moreover, according to
the robot model, the robot’s kinematics may not resemble



Fig. 6: Rviz visualization of whole-body retargeting of human subjects motion to different models: a) Human Model b) Nao
c) iCub d) Atlas e) Baxter; top: human subject stands on the right foot, bottom: human subject stands on the left foot.
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Fig. 7: Performance of the whole-body retargeting of the
human motions to the iCub robot.

the human’s corresponding ones between two consecutive
links, e.g., the robot has lower DoFs than the human, or
the order/orientation of joints between the two consecutive
links are different. In this case, we use IRH IR>R measure
to evaluate the error between the robot’s link orientation and
the human’s one. Fig. 7 on the bottom shows the human’s
right lower leg link rotation matrix and corresponding one
of the iCub robot computed through kinematic whole-body
retargeting. For the sake of comprehension, the rotation matrix
is parametrized using Euler angles expressed a series of x,y,z
intrinsic rotations.

V. TELEOPERATION EXPERIMENTS & RESULTS

Towards demonstrating the capabilities of our whole-body
retargeting, we perform teleoperation experiments using two

state-of-the-art whole-body controllers for humanoid robots.
The whole-body teleoperation experiments are carried with
the 53 degrees of freedom iCub robot that is 104 cm tall [32].
The controllers run at 100Hz while the retargeting application
runs at 200Hz. The average walking speed of the robot is
0.23m s−1. Both the applications are run on a machine of
4th generation Intel Core i7@1.7GHz with 8GB of RAM.

A. Whole-Body Teleoperation with Balancing Controller

Momentum-based control [33] [34] proved to be effective
for maintaining the robot’s stability by controlling the robot’s
momentum as the primary objective. Additionally, a postural
task projected into the nullspace of the primary task can be
used for performing additional tasks like manipulation while
ensuring the stability of the robot. The control problem is
formulated as an optimization problem to achieve the two
tasks while carefully monitoring and regulating the contact
wrenches, considering the associated feasible domains by
resorting to quadratic programming (QP) solvers.

We considered one such momentum-based balancing
controller [33] and extended the postural task by giving the
joint references from whole-body retargeting. Fig. 8 shows
snapshots from the experiments of the whole-body retargeting
with the balancing controller.

In this experiment the robot is balancing on the left foot
and maintaining the stability of its center of mass as shown in
Fig. 9. Additionally, it tracks all the joints with the references
coming from whole-body retargeting. The vertical dashed
lines correspond to the experimental snapshots indicated in
Fig. 8. The references to the x and y components of the CoM
are close to zero to maintain the stability of the robot by
keeping the CoM inside the support polygon and the gains
are tuned to achieve good tracking. The CoM motion along
the z-axis does not effect the stability of the robot and the
gain value of the z components is kept lower in order to allow
the vertical movements of the robot during retargeting. The



(1) (2) (3) (4)

Fig. 8: Whole-body retargeting with balancing controller snapshots

input joint references from retargeting are smoothed through a
minimum-jerk trajectory [35]. A smoothing time parameter is
tuned in order to achieve good balancing between the postural
tracking and stability. Accordingly, the joints such as torso
pitch, torso roll, and left knee for which the human does not
move fast, while balancing on left foot, achieve good tracking.
On the other hand, the joints such as right shoulder pitch,
right shoulder roll, and left ankle pitch are moved frequently
while performing the retargeting and hence the tracking is not
close owing to the delay from the smoothing time involved
in producing minimum-jerk trajectory joint references for the
robot joints. Ideally, the smoothing time can be kept lower
considering that we receive continuous joint references from
retargeting. At this point, we did not conduct exhaustive tests
to find the lower threshold for the smoothing parameter that
ensures fast and accurate retargeting of dynamic motions
from the human while maintaining the robot’s stability.

B. Whole-Body Teleoperation with Walking Controller

Humanoid robot walking is another challenging control
paradigm. Divergent-Component-of-Motion (DCM) based
control architectures proved promising for humanoid robot
locomotion [23], [36]. The architecture typically consists of
three layers: 1) Trajectory generation and optimization layer
that generates the desired footsteps and the DCM trajectories
[36]; 2) Simplified model control layer that implements an
instantaneous control law with the objective of stabilizing
the unstable DCM dynamics; and 3) Whole-body control
layer that guarantees the tracking of the robot’s set of tasks,
including the Cartesian tasks and the postural tasks, using
the stack-of-tasks paradigm implemented through a quadratic
programming (QP) formalism.

We considered one such DCM based walking controller
[23] and extended the postural task by giving the joint
references from whole-body retargeting. Fig. 10 shows the
three different experimental stages of whole-body retargeting
with the walking controller. During the first and the third
stages the robot is in double support standstill phase while
during the second stage the robot is in walking phase.

The walking controller’s primary objective is to track
the center of mass x and y components along the desired
trajectory. The overall center of mass tracking of the x and
y components is very good for the entire duration of the
experiment as shown in Fig. 11.

Currently, we engage only the upper body retargeting, and
the lower body is controlled by the walking controller. During
our experiments we observed that the weights for achieving

satisfactory upper body retargeting of the postural task during
the double support standstill phase and the walking phase are
different. Having the same retargeting gains while walking
lead to uncoordinated movements eventually compromising
the robot’s stability while walking. So, we choose higher
retargeting gains during double support standstill phase and
the gain values are set to zero during the walking phase.
The transition between the two sets of weights is achieved
smoothly through minimum jerk trajectories [35]. Fig. 11
highlights tracking for some of the upper-body joints. The blue
line represents the desired joint position provided by human
motion retargeting and the orange line is the actual robot joint
position. The purple vertical dashed line indicates the starting
instance of the second stage, i.e., walking, and the green
vertical dashed line indicates the stopping instance of walking
phase. During the first stage, human motion retargeting is
good and the joint position error is low. Instead, during the
second stage, as the robot starts walking the joint position
error is higher as the retargeting gains are set to zero.

VI. CONCLUSIONS & FUTURE WORK

In this paper, we propose and validate a whole-body
teleoperation framework for humanoid robots, leveraging the
geometric retargeting of motion from human body parts to
the analogous humanoid robot parts. The proposed approach
increases the usability by employing solely the robot’s model
and by considering the orientation and angular velocity
measurements from the human links.

The proposed retargeting approach has been applied to
multiple robot models using motion data from multiple human
subjects. Furthermore, we performed active retargeting exper-
iments during bipedal balancing and locomotion tasks using
two state-of-the-art whole-body controllers for humanoid
robots. Our experimental validation strongly supports our
proposed framework.

Currently, in the balancing controller the center of mass
references are independent from the human while the re-
targeting is done in the postural space. Additionally, in the
walking controller, we restrict ourselves to do only upper-
body retargeting in postural space. The center of mass and
feet trajectory references are independent from the human.
In the future work, we will extend our framework to address
the above limitations.
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