
BIROn - Birkbeck Institutional Research Online

Karkalas, Sokratis and Gutierrez-Santos, Sergio (2014) Enhanced
JavaScript learning using code quality tools and a rule-based system in the
FLIP Exploratory Learning Environment. In: UNSPECIFIED (ed.) 2014
IEEE 14th International Conference on Advanced Learning Technologies
(ICALT 2014). Piscataway, U.S.: IEEE Computer Society, pp. 84-88. ISBN
9781479940370.

Downloaded from: https://eprints.bbk.ac.uk/id/eprint/15123/

Usage Guidelines:
Please refer to usage guidelines at https://eprints.bbk.ac.uk/policies.html or alternatively
contact lib-eprints@bbk.ac.uk.

https://eprints.bbk.ac.uk/id/eprint/15123/
https://eprints.bbk.ac.uk/policies.html
mailto:lib-eprints@bbk.ac.uk

Enhanced JavaScript Learning using Code Quality Tools and a Rule-based System
in the FLIP Exploratory Learning Environment

Sokratis Karkalas, Sergio Gutierrez-Santos
Department of Computer Science and Information Systems

Birkbeck College, University of London
London, United Kingdom

sokratis@dcs.bbk.ac.uk, sergut@dcs.bbk.ac.uk

Abstract— The ‘FLIP Learning’ (Flexible, Intelligent and
Personalised Learning) is an Exploratory Learning
Environment (ELE) for teaching elementary programming to
beginners using JavaScript. This paper presents the sub-
system that is used to generate individualised real-time support
to students depending on their initial misconceptions. The sub-
system is intended to be used primarily in the early stages of
student engagement in order to help them overcome the
constraints of their Zone of Proximal Development (ZPD) with
minimal assistance from teachers.

Keywords- rule-based system, exploratory learning,
personalisation

I. INTRODUCTION
FLIP is an Exploratory Learning Environment (ELE)

used for teaching introductory programming to University
students. This paper presents the architectural design of a
sub-system in FLIP that provides personalised support to
students based on their initial misconceptions. This system
can also adapt to the students’ particular circumstances based
on past experience.

Computer programming is one of the major challenges in
computing education [1, 2]. It is a composition-based task
that imposes major problems to novices [1]. Students at that
stage may suffer from a wide range of difficulties and
deficits [3] which consequently can have a negative impact
in their studies and their future career choices [3].

Programming is a craft and as such it can only be learnt
by doing exercises in the lab. Teaching in the practical
sessions requires a major effort from academic staff. It is
obvious that there is an analogy between the effectiveness of
the processes in the lab and the actual learning outcome that
can be achieved. If students can utilise as much as possible
of the resources available and individualised support is
provided in a timely fashion then it is more likely for them to
achieve an optimum result.

The focus of this paper is to present the architecture of a
system that provides individualised teaching to students in
the lab with no extra cost in terms of resources. The system
is adaptive and provides personalised support depending on
students’ initial misconceptions and past experience.

II. RELATED WORK
Intelligent Tutoring Systems (ITS) started appearing in

education in the late ‘70s. Typical examples of these systems
are given in [5, 6, 26]. These systems target bugs in

procedures. A system that resembles FLIP is PROUST [26]
in the sense that it utilizes a knowledge base of programming
plans along with the common misconceptions associated
with them. Another system that teaches LISP is ELM-ART
[27]. This is a rather different approach since the aim in this
case is to provide an intelligent courseware delivery service.
Other more recent attempts are presented in [28, 29, 30, 31].
The SQL tutor [28] is an intelligent but not adaptive web-
based tutoring system that teaches SQL. It uses constraint-
based modelling to represent domain knowledge and
compares student code with correct solutions to known
problems that have been specified by tutors. Another
constraint-based system is J-LATTE [30]. This system
teaches Java and provides multi-level support that includes
both design and implementation. An expert system supported
by decision trees that also teaches Java is [29]. A different
approach in terms of knowledge representation is used by
[31]. This is a web-based system that teaches Prolog utilizing
an ontology. Systems like the E-Lab [19] are too narrow in
scope since they focus solely on assessment.

 The above systems provide assistance to well-defined
Problem-Based Learning (PBL) scenarios [4] in a relatively
controllable way. FLIP does not belong to this category.
Help in FLIP is not provided in an intrusive way. Support is
always available but is only given on demand. Students are
given Inquiry-Based Learning (IBL) scenarios which by
definition are open-ended ill-defined problems [4] and try to
discover knowledge in an exploratory manner.

To the best of our knowledge there are no other systems
that teach introductory programming in this manner. Systems
that could be used as ELE like BlueJ [7], Greenfoot [8],
Alice [9], Karel [10, 11], ToonTalk [12], LOGO-based
Microworld [13], Scratch [14] and CodeSkulptor [20] are
sophisticated Integrated Development Environments (IDE)
that lack the intelligent support component. The problem is
not to teach novices about language constructs and semantics
but to provide a framework where certain compositions of
these constructs make sense [15, 16]. Experts know much
more than syntax and semantics [17, 18]. These stereotypical
solutions to problems as well as the strategies for using them
must be explicitly taught to the students [1] either by human
or artificial tutors.

III. THE PROBLEM
Programming is a craft and as such it presupposes the

development of technical skills. These skills can only be
developed through practical training in computer

2014 IEEE 14th International Conference on Advanced Learning Technologies

978-1-4799-4038-7/14 $31.00 © 2014 IEEE

DOI 10.1109/ICALT.2014.35

84

laboratories. Students are given IBL or PBL exercises and
work under the supervision of a facilitator (tutor). They
normally ask for help when they feel they cannot tackle
some problem regarding the syntax or the logic of their code.
If the students cannot receive the amount of help needed in a
timely fashion they may not be able to overcome their
problems and that can have a negative effect on their
confidence and their studies in general.

Ideally the learning experience in the computer
laboratory must be a sequence of successive iterations that
follow Colb’s learning cycle [21, 22]. Students attempt to
solve the given task in cycles. In every round they try to
develop something that moves them a step forward towards
the completion of the given task. This process is often
suspended when they hit the boundaries of the inner circle
within their particular ZPD [23]. In such cases the tutors try
to provide enough help so that the students can move on and
resolve the issue. The intention is always to provide only
enough and relevant help so that the student can overcome
the problem and carry on with the process. During this
intervention the facilitator helps the students to understand
the issues raised and to develop an abstract conceptualization
that can then be transformed to active experimentation in the
next cycle [21, 22]. After each successful cycle a little bit of
learning is achieved and gradually (possibly after many
iterations) the ZPD [23] circles expand. In a busy classroom
immediate and focused help cannot be guaranteed. The tutor
– student ratio might be a limiting factor. Other factors that
determine the effectiveness of this process might be the
competency and the general (personal, social etc.)
background of the tutor. Previous knowledge of the expected
typical student misconceptions is not guaranteed.

The intention of this project is to offload the (human)
tutors and delegate as much as possible of this work to
virtual intelligent tutors. If the system knows what to expect
in terms of misconceptions and knows how to adapt to the
students’ particular context, then immediate, focused and
personalised support can be guaranteed. Interaction between
students and teachers will be kept to a minimum and that will
promote independent and constructive [24] learning. Tutors
on the other hand, will be able to provide more valuable
support at a higher level.

IV. THE LAYERED ARCHITECTURE OF THE
STUDENT SUPPORT SYSTEM

JavaScript is an interpreted language. As such it does not
provide messages that you would normally get from a
compiler about syntax problems. You expect to receive such
messages at run time. It is self-evident that the sooner a
coding problem becomes known to the programmer the
better. This way the problems will be more evenly
distributed in time and the programmer will not have to face
all of them at the end of the development process. The
development process supported by FLIP is implemented in
four layers.

A. Layer 1 (L1)
The first layer is implemented within the code editor. The

component used by FLIP for this purpose is the Ace editor

(http://ace.c9.io) which natively supports syntax checking
based on JSHint (http://www.jshint.com). JSHint flags
suspicious usage of JavaScript code. Syntax checking takes
place dynamically as the programmer types in the code.
These warnings appear along the left side of the editor and
can be ignored by the programmer as their existence does not
prevent the system from moving on to the next step.

B. Layer 2 (L2)
The second layer is implemented by a separate

component that is part of the FLIP platform and is based on
JSLint. JSLint (http://www.jslint.com) is a code quality
control tool for JavaScript programs. It functions like JSHint
but its API is not hidden within the editor. This component is
directly accessible and therefore more configurable. It is
used to capture cases that, although valid according to the
language’s syntax, may not represent good programming
practices. If there are suspicious patterns, then the tool
reports back to the user offering possible automatic changes
in the code (refactoring) and/or visualisations that help them
develop a better understanding of the issue. Issues that fall
into this category could be undeclared variables, use of plain
equality instead of strict equality, lack of curly braces for
blocks of statements etc. This layer corresponds to a pre-
processing phase that takes place before execution. Problems
identified at that stage can be ignored by the programmer as
they will not prevent execution.

C. Layer 3 (L3)
The third layer is again implemented as a separate

component in the FLIP platform. This component uses the
Esprima (http://esprima.org) parser to produce the abstract
syntax tree (AST) of the code and then performs static
analysis on it. The program is effectively transformed into a
vector of characteristics. The vector is then given as input to
a rule-based reasoning system that identifies patterns in the
code likely to indicate potential student misconceptions.
These misconceptions correspond to the Concept Inventory
(CI) presented in [25]. If such misconceptions are detected
the component starts interacting with the student. During this
process it makes decisions on how to respond based on the
type of problem and previous experience. The help can take
various forms like a few tips and references to the language
documentation, code refactoring, correctness validation with
test wrapper functions and code tracing visualisations. The
intention in this case is to provide the students with
individualised help to the greatest possible extent so that they
can safely diagnose the problems, understand their
misconceptions and consequently embed the new concepts
into their knowledge structures. This component is expected
to respond to known student misconceptions / problems that
are not necessarily related to bad coding practices and
therefore may not be detectable by code-quality control
tools. Examples of such misconceptions are off-by-one
errors when using arrays in iterative loops, the notion of the
type of variables, comparisons between values of different
types, unnecessary code repetition etc.

85

D. Layer 4 (L4)
The fourth layer is a logical extension of the previous one

but it is implemented as a distinct component. The difference
is that it requires the prior selection of a given activity (task-
dependent support). The code in this case is checked against
the requirements of the activity by a decision tree
classification system. This system is able to provide
information regarding similarity of the given algorithm in
relation to a number of existing algorithms in the learning set
(database). The code is again converted into a vector of
characteristics. Then the vector is checked against the
decision tree and the system classifies the corresponding
algorithm as being (or not) the one expected. If the system
identifies missing components a number of
questions/suggestions are presented to enable the
programmer to isolate the problems indicated with the help
of code visualisation tools and discover the solution in an
exploratory manner. If the algorithm does comply with the
requirements, the system applies dynamic analysis to verify
its correctness. The whole process is adaptive and fully
automated in the sense that it is able to take under
consideration all the algorithms added to the database
regardless of the time of insertion.

V. AN OVERVIEW OF THE STUDENT SUPPORT
SYSTEM

The focus of this paper is the design of a sub-system that
corresponds to layer 3 of the system presented in the
previous section. The purpose of this sub-system is to mimic
the support expected to be provided by a human tutor in
problems that do not correspond to specific given tasks.
During development, the student encounters issues that
hinder the problem-solving process. These issues typically
correspond to misconceptions related to either the correct
interpretation and use of language constructs or the lack of
algorithmic thinking skills. In both cases, the assumption is
that the produced code is correct in terms of syntax and the
suspicious pattern may not be captured by code quality tools.

FLIP utilises a buggy ruler for this purpose. From a
conceptual point of view, the reasoner exists in a world that
comprises (false) concepts that represent known
misconceptions and students that deposit their understanding
through code and direct interaction with the reasoner.

The concepts exist in the reasoner in the form of rules.
These rules have been statically inserted by Experts and in
the present system no rule induction is possible. The
student’s understanding is dynamically inserted into the
reasoner in the form of facts. If the student’s understanding
triggers the activation of a concept which subsequently fires,
the system will start interacting with the user. An overview
of the system is depicted on Figure 1. Teaching entails a few
tips and some references to the language documentation or a
direct coding suggestion (using refactoring) or a test for
correctness (using test-wrapper functions and dynamic
analysis) or a presentation of some visualisation (using code
tracing). The teaching session is an iterative process. Thus
the result of these actions might provide the reasoner with
new data and subsequently provoke further action. The

process will carry on until either it is interrupted by the user
or there is no indication of a misconception in the code that
is under investigation.

Figure 1. The FLIP Architecture

Figure 2. The Reasoner Architecture

As said above, the reasoner might respond to the user in
different ways. The selected method depends on the level of
difficulty the user experiences. This is detected using the
information stored in the learner model. This is the second
major entity in the conceptual view of this system. If the
reasoner is invoked to deal with a particular misconception
for the first time then the selected response provides the
minimum possible help to the student. If the reasoner is
asked to teach again an issue that involves the same
misconception then the selected method will provide a little
bit more help than the previous time. The state of the learner
model is taken into account every time a decision needs to be
made regarding the amount of help to be provided. This
object gets continuously updated by FLIP in parallel with

86

any other processes that may take place at the same time so
that it reflects as accurately as possible the current situation
of the student. If the student has repeatedly used the reasoner
for the same misconception at the highest level of difficulty
then the system generates an event that provokes the
intervention of a (human) tutor.

Events that are generated by the user interface or the
reasoner are collected by the event acquisition component
and accumulated in a database of indicators. This database is
like a journal of historic data that stores all the events of
interest. The system, upon arrival of new entries, sends a
notification to the system control component which then
depending on the type of indicator(s) received may update
the user interface or the users’ state.

VI. THE REASONER ARCHITECTURE
The reasoner is a rule-based expert system that interacts

with the student when there is a misconception that needs to
be resolved. It takes the role of the teacher and repetitively
exchanges information with the student in order to assess the
current situation, identify the problems and provide
individualised support whenever possible. An abstract view
of this system is given in figure 2.

This system accepts two inputs: rules (misconceptions)
and facts (current student understanding).

Rules are inserted by experts and form the knowledge
base of the system. The conditional part of these rules
corresponds to one or more characteristics identified in the
code. The consequent part of the rules corresponds to the
action that needs to take place in case they fire. The rule
formation takes place in the Knowledge Acquisition
Component (KAC) and then the resulting structures are
stored permanently in the Knowledge Base (KB). Experts
can utilise a visual component that is part of the User
Interface (UI) to synthesise rules and instruct the KAC on
how these rules should be constructed.

Facts are inserted dynamically into the system during the
development process. The fact formation takes place in the
Fact Acquisition Component (FAC). The insertion process is
not direct. Users select a part of code in the editor and ask for
help. The reasoner invokes FAC to generate the facts (see an
example below). The facts are objects that are formed as a
result of static code analysis. The selected code is parsed and
analysed and the resulting constructs (if any) depict the code
status. The patterns identified in the code are effectively
transformed into a vector of characteristics (name/value
pairs). This vector is submitted to the Working Memory
(WM) as facts.

If there are facts that satisfy the conditional part of one or
more rules, then these rules get selected by the Rule
Activation Component (RAC) and placed in the Agenda (A).

If there are more than one rule in A then the system
selects the one that has the lower number of references to
characteristics and fires it. Firing the rule entails the
execution of its consequent. This can be either some form of
output to the user through the Student Support Component
(SSC) or the creation of a new fact. In this case the fact is
inserted into WM directly by A. The process carries on until

there is no active rule to be processed or in other words until
there is no misconception to be resolved.

As teaching takes place, the system provides feedback to
the user in the form of help and/or questions. If the user is
asked a question by the reasoner, then the answer may result
in a direct formation of a fact through FAC.

Feedback is also given in the form of justifications as to
how the decisions have been made by the reasoner. This
service is provided by the Explanation Component (EC).

VII. A WORKED EXAMPLE
The student after a number of unsuccessful attempts to

solve a problem issues a call for help. The selected code in
the editor follows:

1 var x = [2,5,1,8,9];

2

3 for (var i = 0; i <= 5; i++)

4 {

5 var sum = 0;

6 sum += x[i];

7 }

8

9 alert(sum);

The code is analysed by the FAC and the WM is populated
by a series of facts. The RAC activates the following three
rules:

1. Understanding the necessity of variables/constants
(10 Facts).

2. Understanding off-by-one errors when using arrays
in loop structures (21 Facts).

3. Understanding the difference between block scope
and function scope (7 Facts).

Each rule corresponds to a potential student
misconception [25]. One fact that satisfied the conditional
part of the 3rd rule was generated by JSLint (Level 2). All the
rest of the facts were generated by the analyser (Level 3).
The reasoner decides to fire the rule that relates to the lowest
number of facts (No 3). Simple problems have a priority over
more difficult ones.

The reasoner decides on the amount of help to provide
based on the current learner model [25]. If this needs to be
taught for the first time a number of links are presented,
directing the user to the part of the language reference that
explains issues related to block/function scope. Then the user
amends the code and asks for help again. If the change is
successful then the misconception is considered resolved. If
the misconception remains, then the system provides the
option to refactor the code automatically. The user can
accept the suggested change or ask for more help. The latter
implies that the user is still skeptical about the correctness of
the suggested change. The system executes a test function to
verify the correctness of the code. The test might fail due to
other problems that may exist in the code. If that happens the
system suggests to keep a snapshot of this case for later
reference, fix the problem and move on to the next one. The
whole process is repeated for every rule in the Agenda. In

87

parallel the system updates the user database with the
misconceptions found and the level of support provided. The
ultimate level of support in the system is a code tracing
visualisation. If help at that level has been given many times
then the system suggests a human intervention. After a
teaching session is finished, the system suggests a review of
existing misconceptions by presenting snapshots of the
user’s code from previous attempts.

VIII. CONCLUSIONS
This paper has described the general architecture of the

FLIP system, a system that integrates a combination of off-
the-shelf and own components to provide intelligent support
to early students of Javascript programming in the context of
an open-ended exploratory programming session. The paper
has focused especially on the reasoner that responds to
students’ misconceptions and provides support for them,
including a detailed example showing a fragment of real
code and how support is generated for the student.

Preliminary tests have shown that the system has
achieved its original design objectives and it operates as
described in the paper. An evaluation that will measure the
responsiveness and scalability of the system is scheduled for
the next edition of the JavaScript course in the summer term
and thus falls out of the scope of this paper.

The system in its present state does not support automatic
rule induction. We envision to make the system more
versatile in that respect possibly by replacing the Knowledge
Base component along with the inference engine with a Web
Ontology Language (OWL) reasoner. Having a richer
knowledge base without extra administrative overhead will
facilitate a better and more focused student support.

REFERENCES
[1] Soloway, Elliot. "Learning to program= learning to construct

mechanisms and explanations." Communications of the ACM 29, no.
9 (1986): 850-858.

[2] Jenkins, Tony. "On the difficulty of learning to program." In
Proceedings of the 3rd Annual Conference of the LTSN Centre for
Information and Computer Sciences, vol. 4, pp. 53-58. 2002.

[3] Robins, Anthony, Janet Rountree, and Nathan Rountree. "Learning
and teaching programming: A review and discussion." Computer
Science Education 13, no. 2 (2003): 137-172.

[4] Savery, John R. "Overview of problem-based learning: De�nitions
and distinctions." Interdisciplinary Journal of Problem-based
Learning 1, no. 1 (2006): 3.

[5] Brown, John Seely, and Richard R. Burton. "Diagnostic models for
procedural bugs in basic mathematical skills." Cognitive science 2,
no. 2 (1978): 155-192.

[6] Reiser, Brian J., John R. Anderson, and Robert G. Farrell. "Dynamic
Student Modelling in an Intelligent Tutor for LISP Programming." In
IJCAI, pp. 8-14. 1985.

[7] Kölling, Michael, Bruce Quig, Andrew Patterson, and John
Rosenberg. "The BlueJ system and its pedagogy." Computer Science
Education 13, no. 4 (2003): 249-268.

[8] Kölling, Michael. "The greenfoot programming environment." ACM
Transactions on Computing Education (TOCE) 10, no. 4 (2010): 14.

[9] Dann, Wanda, Stephen Cooper, and Randy Pausch. "Making the
connection: programming with animated small world." In ACM
SIGCSE Bulletin, vol. 32, no. 3, pp. 41-44. ACM, 2000.

[10] Roberts, Jim, and Richard Pattis. Karel++: A gentle introduction to
the art of object-oriented programming. Vol. 1. New York: Wiley,
1997.

[11] Becker, Byron Weber. "Teaching CS1 with karel the robot in Java."
ACM SIGCSE Bulletin 33, no. 1 (2001): 50-54.

[12] Morgado, Leonel, and Ken Kahn. "Towards a specification of the
ToonTalk language." Journal of Visual Languages & Computing 19,
no. 5 (2008): 574-597.

[13] Jenkins, Craig, and Caerleon Campus. "Microworlds: Building
Powerful Ideas in the Secondary School." Online Submission (2012).

[14] Maloney, John H., Kylie Peppler, Yasmin Kafai, Mitchel Resnick,
and Natalie Rusk. "Programming by choice: urban youth learning
programming with scratch." ACM SIGCSE Bulletin 40, no. 1 (2008):
367-371.

[15] Spohrer, James G., and Elliot Soloway. "Analyzing the high
frequency bugs in novice programs." (1986): 230-251.

[16] Spohrer, James C., and Elliot Soloway. "Novice mistakes: Are the
folk wisdoms correct?." Communications of the ACM 29, no. 7
(1986): 624-632.

[17] Adelson, Beth, and Elliot Soloway. "The Role of Domain Experience
in Software Design." Software Engineering, IEEE Transactions on 11
(1985): 1351-1360.

[18] Brooks, Ruven. "Towards a theory of the comprehension of computer
programs." International journal of man-machine studies 18, no. 6
(1983): 543-554.

[19] Delev, Tomche, and Dejan Gjorgjevikj. "E-Lab: Web Based System
for Automatic Assessment of Programming Problems." (2012).

[20] Ben-Ari, Mordechai Moti. "MOOCs on introductory programming: a
travelogue." ACM Inroads 4, no. 2 (2011): 58-61.

[21] Kolb, David A. Experiential learning: Experience as the source of
learning and development. Vol. 1. Englewood Cliffs, NJ: Prentice-
Hall, 1984.

[22] Konak, Abdullah, Tricia K. Clark, and Mahdi Nasereddin. "Using
Kolb's Experiential Learning Cycle to improve student learning in
virtual computer laboratories." Computers & Education 72 (2014):
11-22.

[23] Vygotski�, L. Lev Semenovich. Mind in society: The development of
higher psychological processes. Harvard university press, 1978.

[24] Huitt, W. "Constructivism. educational psychology interactive."
Retrieved April 2 (2003): 2008.

[25] Karkalas, Sokratis, and Sergio Gutierrez-Santos. "Intelligent Student
Support in the FLIP Learning System based on Student Initial
Misconceptions and Student Modelling" (under review)

[26] Johnson, W. Lewis, and Elliot Soloway. "PROUST: Knowledge-
based program understanding." Software Engineering, IEEE
Transactions on 3 (1985): 267-275.

[27] Brusilovsky, Peter, Elmar Schwarz, and Gerhard Weber. "ELM-ART:
An intelligent tutoring system on World Wide Web." Intelligent
tutoring systems. Springer Berlin Heidelberg, 1996.

[28] Mitrovic, Antonija. "An intelligent SQL tutor on the web."
International Journal of Artificial Intelligence in Education 13.2
(2003): 173-197.

[29] Sykes, Edward R., and Franya Franek. "A Prototype for an Intelligent
Tutoring System for Students Learning to Program in Java (TM)."
Proceedings of the IASTED International Conference on Computers
and Advanced Technology in Education, June 30-July 2, 2003,
Rhodes, Greece. 2003.

[30] Holland, Jay, Antonija Mitrovic, and Brent Martin. "J-LATTE: a
Constraint-based Tutor for Java." (2009).

[31] Peylo, Christoph, et al. "An Ontology as Domain Model in a Web-
Based Educational System for Prolog." FLAIRS Conference. 2000.

88

